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Simple Summary: Radon gas represents one of the main sources of exposure to radioactivity in
humans. It’s the second most important cause of lung cancer and the main cause of lung cancer in
non-smokers. Commercial radon detectors suffer from low resolution and lack of on-line monitoring
capability, while continuous radon detectors are expensive. This study presents a new semiconductor
sensing system for radon and alpha radiation in general, which is fabricated in a standard 180 nm
CMOS process with a single polysilicon layer.

Abstract: This study focuses on a CMOS sensing system for Radon and alpha radiation, which
is based on a semiconductor device that is integrated monolithically on a single chip with the
Readout Circuitry, thus allowing fabrication of a low-power and low-cost sensing system. The
new sensor is based on a new mosaic design of an array of Floating Gate non-volatile memory-like
transistors, which are implemented in a standard CMOS technology, with a single polysilicon layer.
The transistors are electrically combined in parallel and are operated at subthreshold, thus achieving
very high sensitivity and reduced noise. The sensing system’s architecture and design is presented,
along with key operation concepts, characterization, and analysis results. Alpha and radon exposure
results are compared to commercial radon detectors. The new sensor, dubbed TODOS-Radon sensor,
measures continuously, is battery operated and insensitive to humidity.

Keywords: radon; alpha radiation; CMOS sensor; silicon radiation detector; ionizing radiation
sensor; floating gate transistor

1. Introduction

Radon gas (Rn-222) is a noble, odorless, invisible, and chemically inert radioactive
gas that emerges naturally from soils and rocks. It represents one of the main sources of
exposure to radioactivity in humans, as it emits alpha particles that may damage lung
tissues after inhalation [1]. It is by now well-established that radon gas is the second most
important cause of lung cancer and the most important cause of lung cancer in non-smokers,
while every 1 in 15 homes in the US suffers from high level of radon concentration [2,3].

The commercial solid state semiconductor radon sensors are reviewed in [4,5] and
are implemented in PIN diodes. Low dark current PIN diodes are expensive since large
area photodiodes often have defects leading to large dark currents; thus, the sensors
are expensive.

The goals of this study were to specify the requirements for Radon gas sensors for
smart homes and report how to meet these requirements. It is obvious that for consumer
applications, the sensor must be low-cost, small, require low power, and exhibit high
sensitivity and reliability. It is obvious to the authors that a standard CMOS technology is
mandatory, and a transistor will exhibit higher sensitivity than a PIN diode.

The innovation of the new sensor, dubbed TODOS-Radon Sensor is outlined in the
sections below: Section 2.3 presents the new sensor and system architecture and innova-
tions. Device characterization is reported in Section 3.1. Section 3.2 presents experimental
results of Radon gas exposure. Section 4 concludes this study.
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2. Materials and Methods
2.1. Floating Gate Transisor

The operation principle to sense radiation using Floating Gate (FG) transistor is to first
pre-charge the FG using Fowler–Nordheim (FN) Tunneling by applying a large enough
electric field on the FG itself [6]. Once the FG is charged, an alpha particle incident will
generate e–h pairs that will be separated by an applied electrical field and will discharge
the FG [7]. Considering the fact that the threshold voltage of the device is proportional
to the charge within the FG as described by Equation (1), an alpha incident will shift the
device’s threshold voltage as illustrated in Figure 1.

Vth = φms −
Qss,ox

Cins
− Qss,sti

Csti
+

QFG
Csti

+
QD.max

Cins
+ 2φ f (1)

where φms is the combined work function difference, Qss,ox and Qss,sti are the fixed charge
densities in the read out oxide and in the control oxide respectively and Cins is the serial
oxide-STI capacitance, given by (see Figure 1a):

Cins =

(
1

Csti
+

1
Cox

)−1
(2)

∆Vth =
∆QFG

Csti
=

Ne–h·q
ε0εox A/tsti

(3)

Ne–h is the number of generated e–h pairs by a single alpha incident, A is the sensing
capacitor area and tsti is the sensing capacitor thickness.
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Figure 1. FG transistor radiation response illustration: (a) Sensing capacitor charging. (b) e–h
generation and separation. (c) Threshold voltage shift: Csti—sensing area capacitance; Qinj —injected
charge by FN tunneling; Qion —ionized charge in an alpha incident.
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The number of e–h pairs generated by an alpha incident-Ne–h, can be calculated by
dividing the absorbed energy of a single alpha particle with the e–h pair generation energy.
In the proposed Radon Sensor, the STI layer thickness is 3500

.
A. The absorbed energy is

calculated using popular SRIM software [8]. As shown in Figure 2e–h pair generation
energy in SiO2 is 17 eV [9].
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Figure 3. Implementation of C-Sensor in a single-poly CMOS process-schematic cross section. 
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Figure 2. Absorbed energy of a 5.5 MeV alpha particle crossing SiO2 layer with range of 3500
.
A.

The total absorbed energy within the STI layer is 53.7 KeV, so the number of e–h pairs
produced by an alpha particle is:

Ne–h =
absorbed energy

pair generation energy
=

53.7 KeV
17 eV

≈ 3150 (4)

2.2. C-Sensor

Fabricating an FG transistor in standard CMOS process with a single polysilicon layer
was done in the mature, well-proven TowerJazz High Voltage standard 180 nm CMOS
Process [10]. TowerJazz had been developing Floating-Gate technology for memory devices,
which had been later further developed and extended for direct sensing of radiation and
dubbed C-cell. This technology and its reliability have been documented in the open
literature [11–16]. The essence of this technology is shown in Figure 3.
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2.3. System Implementation

A way to effectively increase the sensing area of the device while keeping high yield,
is by using a mosaic array of C-Sensors, where all cells are connected in parallel as shown
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in Figure 4. Each cell in the mosaic array is considered as sub-pixel. Although a defect in a
single sub-pixel will disable the sub-pixel itself, it will be negligible considering that there
are thousands of sub-pixels.
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The sensors array is built by 90 × 64 sub-pixels, where each sub-pixel sensing area is
17.5 µm × 12.5 µm , so that the entire array sensing area is 1.12 mm × 1.12 mm .

In order to decrease DC and temperature dependencies, a differential measurement
is performed using the concept of active and blind sensor arrays. Considering that alpha
particle is a heavy particle, meaning its penetration depth is relatively small, few layers of
Kapton film (~50 µm) were used to cover one of the arrays so it could be considered as a
blind detector. The device layout is shown in Figure 5.
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Another key concept in the proposed architecture is operating in the sub-threshold
region, decreasing the power and noise, and also increasing the sensitivity due to the
exponential relation I = Ids ∝ exp

(
VGS−Vth

nKT

)
at subthreshold.

isig =
dI

dVth
·∆Vth =

q
nKT

·I·∆Vth (5)

Operating in the subthreshold region introduces a linear relation between the output
signal and the bias current—I. This point is used as a feature to configure the sensitivity of
the device, adapting it to long/short term measurements.

Since the power consumption of the device is dominated by the bias current of the
sub-pixels, working in the subthreshold will result in low power consumption which will
enable the device to be operated by standard AAA batteries.

An incident alpha particle on the active sensors array will increase current as shown in
Equation (5). Subtracting the blind array’s current from the active array’s current provides
a differential measurement. Hence, the readout circuit was designed as a precise current
subtractor followed by a Trans Impedance Amplifier (TIA), to convert the output signal
into output voltage (see Figure 6). The difference between two adjacent samples of the
readout voltage, meaning the output voltage derivative, reflects the amount of alpha
particles incidents.
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Considering Equation (3), the threshold shift of a single sub-pixel caused by a single
alpha incident is given in Equation (6).

∆Vth,α =
Ne–h·q

ε0εox A/tsti
=

3150·1.6·10−19

8.84·3.9·10−12·12.5·17.5·10−12/3500·10−10 = 23 mV (6)

So that the average threshold voltage shift of the entire array is:

∆Vth =
∆Vth,α

64 × 90
= 4 µV (7)

3. Results
3.1. Device Characterization

As the first part of the device characterization, the charging mechanism was tested
to achieve controllability over the threshold voltage of each sensor array. Figure 7 shows
an initial calibration process to shift the sub-pixels threshold voltage into higher and
positive values.
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The need to have such controllability over the threshold voltage comes from the need
to: (a) minimize the offset between the arrays, keeping the readout circuit out of saturation,
(b) configure high threshold voltage, to increase the e–h separation ratio, and (c) perform a
sort of reset stage once the readout circuit is close to saturation.

To characterize the device response to alpha particles radiation, the device was exposed
to an alpha source, Po-210, with an alpha emission rate of 925 Bq for two periods of 6 min,
with a reset stage before each exposure.

The number of alpha particles reaching the detector is given by:

(emission rate)· AD

2·R2π
(8)

where AD is the detector active sensing area and R is the distance of the detector from
the alpha source. Incident alpha ratio is calculated to be 45 particles

sec , so that the expected
threshold voltage shift can be calculated by multiplying the threshold voltage shift caused
by a single alpha incident, with the number of alpha particles reaching the detector:

∆Vth = 4 µV·45
#α

sec
·300 ≈ 52 mV (9)
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Figure 8 describes the experiment flow and the threshold voltage shift. Table 1
summarizes the results over three different devices, where each device was exposed twice
to the alpha source, while a reset stage was performed before each exposure (see Figure 9).
Table 1 indicates the bias current of the active device in each exposure, the threshold voltage
shift and the readout voltage change through the exposure.
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Table 1. Summary of CMOS Sensor exposure to Alpha radiation.

#Device #Measurement Bias Current ∆Vth ∆Vout

1 1 103 µA 57 mV 1.75 V
1 2 102 µA 53 mV 1.81 V
2 1 90.5 µA 60 mV 1.8 V
2 2 85 µA 52 mV 1.76 V
3 1 98 µA 44 mV 1.92 V
3 2 110 µA 44 mV 1.45 V
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Figure 9. Vout profile during alpha radiation exposure. Vout is measured at the output of the TIA (see Figure 6a).

3.2. Radon Gas Exposure

Four instances of the proposed radon sensors were exposed to radon gas in concentra-
tions of 200 Bq

m3 up to 800 Bq
m3 for two periods of 9 days and 7 days respectively. The sensor

results were compared with commercial detectors: Radon Eye plus and Airthings wave.
Figure 10 presents 27 mV threshold voltage shift after 9 days of radon exposure for a

single sensor, while Figure 11 presents the readout circuit derivative of all instances, which
represents the voltage difference between two measures caused by alpha particles incident
on the active detector. All instances present the same trend, while the distribution of the
results reflects each sensor’s sensitivity, which is configured by the sensor’s bias current.
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Figure 12 shows the comparison between commercial radon sensors to the proposed
CMOS sensor. In order to convert the readout voltage into radon concentration, a calibration
factor is suggested:

Calibration Factor =
REFavg

CRSavg·Ibias
(10)
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Calculating the calibration factor for the compared device in Figure 12, is given by:

Calibration Factor =
501 Bq

m3

0.58 mV·96 µA
= 9.09

Bq
m3·mV·µA

(11)

Figure 13 shows radon measurement of a different CMOS sensor device, with a higher
sample rate, at a different period of time. Calibration factor is extracted again:

Calibration Factor =
180.5 Bq

m3

0.22 mV·85 µA
= 9.6

Bq
m3·mV·µA

(12)Radiation 2021, 1, FOR PEER REVIEW 11 
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4. Conclusions

A new sensing system for detecting high energy alpha particle and Radon gas is
reported. The system is based on a CMOS IC Sensor which was fabricated in a standard
0.18 µm CMOS process with a single polysilicon layer. The sensor’s unique architecture is
based on active and blind mosaic arrays of FG cells, operating in sub threshold region.

The sensing system was tested by exposure to an alpha radiation source in a controlled
environment as well as to Radon gas and showed high sensitivity and good correlation to
other commercial radon detectors.

In summary, the main advantages of the new Sensing System are: low cost compared
to commercial radon sensors, enabling it to be applied in every smart home; low power and
may be battery operated using standard AAA batteries; and the integrated digital sensor
allows for continuous sampling of radon gas in indoor air providing hourly resolution of
Radon levels. The CMOS die is passivated, and therefore insensitive to humidity.
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