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Abstract: One-pot reactions offer advantages like easy automation, higher product yields, minimal
waste generation, operational simplicity, and thus reduced cost, time and energy. This review
presents a comprehensive overview of one-pot reactions including triethyl orthoformate and amines
as valuable and efficient reagents for carrying out two-, three- or four-component organic reactions.
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1. Introduction

In organic chemistry, the one-pot reaction is a relevant and common topic due to its
immense advantages as a simple operation, with high mass efficiency, low cost, a lesser
amount of waste disposal, short reaction time, and simplification of practical aspects. The
reaction is also clean; it is possible to combine several catalytic procedures in the same
reaction vessel and provides high regioselectivity, atom efficiency and does not involve
workup and isolation of many intermediates [1]. One-pot multi-component synthesis has
great importance in organic synthesis and has increased in prevalence in recent years,
particularly in heterocyclic chemistry, which involves the simultaneous construction of mul-
tiple new C−C and C−heteroatom bonds [2]. There are several terminologies to describe
one-pot synthesis, including “cascade or tandem or domino reaction”, “multicomponent
reaction” or “one-pot step-by-step synthesis” [3]. The definition of one-pot reactions,
Figure 1, based on a single-operation reaction involving one reagent (intramolecular) or
two reagents (intermolecular) with sequential chemical transformations should be called
a cascade reaction instead of a multi-step reaction; a one-operation reaction with three or
more reagents should be called a multicomponent reaction (MCR) instead of a one-pot
reaction, although they belong to this category. These are reactions that converge to form a
product containing substantial elements from all or most of the atoms of the reagents; a
one-pot reaction with multiple steps, with three or more reagents of operation, should be
called one-pot stepwise synthesis (OPSS) rather than a cascade reaction because this OPSS
is carried out step by step using different reaction conditions for different steps [4–6].

In the last decade, several one-pot syntheses have been reported to construct various
molecular scaffolds of biological interest. Synthetic methods are very valuable because
they avoid various reaction steps as well as purification of intermediate products [7].
Orthoesters have occupied a significant place in the synthesis of heterocycles since the
beginning of the 20th century. Orthoformates are a very valuable group of reagents that
are storage-stable and very reactive. As alkylating agents, they transfer the associated
alkyl group; on the other hand, as formylation reagents, they are reactive in acidic as
well as basic conditions [8]. The reaction of amines with orthoesters is a suitable and
commonly used synthetic approach to obtain imidates, amidines, triazachrysenes, and
quinazolines [9,10]. Triethyl orthoformate (TEOF), an organic compound with the formula
CH(OEt)3, also called diethoxymethoxyethane, ethyl orthoformate and triethoxymethane, is
a colorless volatile liquid, orthoester of formic acid and is commercially available (C7H16O3,
MW = 148.23 g/mol, bp = 146 ◦C, mp = −76 ◦C and d = 0.891 g/mL), which also being
soluble in many organic solvents (water, alcohol, ether, etc.).
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Figure 1. Examples of the three one-pot reactions. 
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2. Synthesis by Two-Component Reaction 
Benzimidazole, benzoxazole, benzothiazole and their derivatives are essential classes 

of heterocyclic compounds in medicinal chemistry, presenting considerable biological ac-
tivities [11]. In the past, various synthetic methods have been described in the literature via 
the condensation reactions of triethyl orthoformate (TEOF) 1 with substituted amino aro-
matics 2 (Scheme 1), such as o-phenylenediamine, o-aminophenol, and o-aminobenzeneth-
iol, by the presence or absence of catalytic amounts under solvent-free conditions [8,12–14]. 

Figure 1. Examples of the three one-pot reactions.

This review summarizes some procedures of triethyl orthoformate reactions in the
one-pot synthesis of heterocyclic compounds.

2. Synthesis by Two-Component Reaction

Benzimidazole, benzoxazole, benzothiazole and their derivatives are essential classes
of heterocyclic compounds in medicinal chemistry, presenting considerable biological activ-
ities [11]. In the past, various synthetic methods have been described in the literature via the
condensation reactions of triethyl orthoformate (TEOF) 1 with substituted amino aromatics
2 (Scheme 1), such as o-phenylenediamine, o-aminophenol, and o-aminobenzenethiol, by
the presence or absence of catalytic amounts under solvent-free conditions [8,12–14].
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Numerous other methods for using TEOF with hydrazino reagents have also been doc-
umented in the literature [8]. Al-Majidi, in 2014, obtained 1,2,4-triazolo[3,4-b]benzothiazole
5 (65%) via treatment of TEOF 1 with 2-hydrazinobenzothiazole 4, under the reflux of
methanol and in the presence of acetic acid (a few drops) for 3 h (Scheme 1) [15].

Wang et al. [16] combined TEOF 1 and 2-amino-N-(1-arylethylidene)benzohydrazide
6 catalyzed by 10 mol % iodine (I2) in ionic liquid gave pyrazolo[5,1-b]quinazoline moiety 7
(Scheme 1). In the presence of K2S2O8, it can be oxidized and produce aromatized products
8 with excellent yields (75–86%).

Proença et al. [9] described the formation of triazachrysenes 10 through the dimer-
ization of 2-aminobenzonitrile 9 by a cascade reaction (Scheme 2). The sequence in-
volved the reaction of TEOF 1 with 2-aminobenzonitrile 9 using a protic acid as catalyst
(H2SO4/HNO3/CH3COOH) ranging from 41 to 83% under different optimization condi-
tions. When water was used as a solvent, one of the dimerization conditions, a new product
(11),was obtained, with only a yield of 26–33%. The proposed mechanism involves the
attack of 2-aminobenzonitrile 9 on the imidate formed by another molecule 9 with TEOF.
The nucleophilic attack of the amine on the cyanide group followed by hydrolysis gave rise
to the formation of compound 11, while the additional attack of the imine formed in the
earlier step to the nitrile functionality gives the formation of the triazachyrsenes 10, always
isolated like a salt.
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In 2015, Szczepankiewicz and Kuznik [17] reported a one-step reaction for the synthesis
of 3-arylquinazolin-4(3H)imines 13 by heating TEOF 1 with 2-amino-N′-arylbenzamidines
12, without solvent (Scheme 3).
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Scheme 3. Synthesis of quinazoline 13, quinazolinones 15 and N,N′-diarylformamidines 17.

Bunce et al. [18], published the path for the synthesis of quinazolin-4(3H)-ones 15
(Scheme 3), from TEOF 1 with 2-aminobenzamide 14, promoted by acetic acid, in one step.

Formamidines are one of the vital intermediates for the synthesis of heterocyclic and
functional group changes. Generally, this synthesis includes the reaction between TEOF
and amine derivatives, and can occur in the presence or absence of an acidic catalyst.

F. Shirini et al. [14], described a green and efficient procedure for the synthesis of
N,N′-diarylformamidines 17, using nanoporous TiO2 containing an ionic liquid bridge
(Scheme 3). The methods provided products with very good yields, short reaction times
under solvent-free conditions and catalyst reuse.

3. Synthesis by Three-Component Reaction

The three-component reaction between TEOF 1, amines 18 and diethyl phosphite 19 is
the most used method for the synthesis of N-substituted aminomethylenebisphosphonic
acids 20, Scheme 4. Some of these review approaches were reported in 2016 by Haji [19].

Between 2017 and 2020, Chmielewska et al. studied in some detail the three-component
reaction with benzylamines [20], 3-amino-1,2,4-triazole [21], and diamines (like benzenes, cyclo-
hexanes, cyclohexenes and piperazines) [22], which usually mainly resulted in the introduction
of mono-substituted products or the formation of bisphosphonates 20, aminophosphonates
21 or mixtures of the two compounds in the molecule in addition to aminomethylenebis-
phosphonic acid 22. In the cases of 1,2-diaminobenzene, 1,2-diaminocyclohexanes and
1,2-diaminocyclohexenes, only one amino group reacted. This reaction often results in
product mixtures that are difficult to separate. Cirandur et al. [23] developed the formation
of aminomethylene bisphosphonates 23 via the one-pot reaction of various aryl/heteroaryl
amines under microwave irradiation and solvent-free conditions, using CuO nanoparticles
as catalyst.
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Amira et al. [24] describe a simplified eco-friendly method for the synthesis of sulfamide-
containing bisphosphonate derivatives 25 (Scheme 5) involving one-pot three-component
reactions of TEOF 1, substituted aromatic sulfamides 24 and diethyl phosphite 19 under
microwave irradiation (500 W, 150 ◦C).
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Tetrazoles are a class of nitrogen-containing heterocyclic compounds, which do not
exist in nature but are of certain importance. They have received a lot of attention in recent
years due to their wide spectrum of applications in the field of biology and medicine,
such as anti-allergic, antibiotic, anticancer, anticonvulsants, anti-HIV, antihypertensive and
antiviral applications. Tetrazole is a pharmacophore fragment, which is metabolically more
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stable, and acts as a bioisosteric analogue for several functional groups like carboxylic acids,
clamidine and furan ring [1,25,26].

Darvish and Khazraee [27] developed an efficient and facile one-pot multi-component
approach for the synthesis of 1-aryl 1H-tetrazole derivatives 27 from TEOF 1, aromatic
amine 16 and trimethylsilyl azide (TMSA) 26 with FeCl3 as an environmentally benign
catalyst (Scheme 6).
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Tetrazole compound 27 has also been reported to be produced from sodium azide 28
instead of TMSA. In 2014, Naeimi and Mohamadabadi [28] reported that Fe3O4@silica sul-
fonic acid can be an efficient and reusable catalyst for the one-pot synthesis of 1-substituted
1H-tetrazoles 27. A wide diversity of aromatic amines containing electron-donating and
electron-withdrawing groups, like acetyl, methyl, bromine and chlorine, have undergone
condensation in shorter reaction times with very good yields. The catalyst can be effort-
lessly recovered from the reaction by a magnet and reused six times without weakening
the catalytic activity. In 2015, Naeimi and Kiani [29] synthesized 1-substituted-1H-tetrazole
derivatives 27 using zinc sulphide nanoparticles as a new heterogeneous catalyst at room
temperature under ultrasonic irradiation (50 W), in DMF as a solvent. The same research
group [30] described, in 2018, the synthesis of 27 by microwave irradiation (600 W, 60 ◦C),
with excellent yields (73–88%) and shorter reaction time (20 min). This method has ad-
vantages over other techniques, such as the more environmentally friendly process, the
recyclable solid catalyst and solvent-free conditions. These authors also found that the
catalyst can be recovered and used seven times with minimal loss of its action.

Similarly, Khan et al. [31] explore a series of 1-aryl 1H-tetrazole derivatives 27, as
antibacterial agents, using silver oxide as a reusable catalyst. The synthesized compounds
were obtained with high yields between 85 and 93% in a short time of 30–50 min. Another
approach for the synthesis of 1-aryl 1H-tetrazole derivatives 27 using Fe3O4/HT-NH2-CuII

as a new heterogeneous catalyst was reported by Salimi and Zamanpour [32]. The corre-
sponding products were isolated in good yields in water as solvent. The catalytic activity of
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Fe3O4@SiO2-Im[Br]-SB-Cu (II) was investigated, by Mashhoori and Sandaroos [33], in the
synthesis of 1-aryl 1H-tetrazole derivatives 27. As proposed by the authors, the mechanism
proceeds with TEOF 1 activated by the N3-coordinated Cu(II)Nano-catalyst followed by the
attack of amine 16 on TEOF, which results in the formation of an amide acetal intermediate.
Nucleophilic attack of the azide anion on the acetal amide followed by cyclization leads to
tetrazole 27.

A similar approach was described by Sarg et al. [34], using the combination of TEOF 1
with 3-amino-thiophene-2-carboxylates 29 in the presence of sodium azide 28 afforded the
3-tetrazolylthienopyridine-2-carboxylate derivative 30 (Scheme 7). Also, treatment with
2-amino-thiophene-3-carboxylates 31 in acetic acid afforded 2-(1H-tetrazol-1-yl)thiophenes
derivatives 32, in good yields (Scheme 7) [35].
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Muralidharan et al. [36], also synthesized tetrazole derivatives such as 2-(1H-tetrazol-
1-yl)-1H-imidazole-4,5-dicarbonitrile 34, 1-(1H-1,2,4-triazol-3-yl)-1H-tetrazole 36, and 5-
(1H-tetrazol-1-yl)-1H-1,2,4-triazol-3-amine 3 via the reaction of TEOF 1 and NaN3 28 with
imidazole 33, and triazole 35 and 37, respectively (Scheme 7).

The reaction between substituted thiazolylamine or oxazolylamine in DMSO and
tributylmethylammonium chloride (TBMAC) as catalyst gives 1-substituted 1H-1,2,3,4-
tetrazole, isolated in excellent yields (Scheme 8) [37].
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Substituted quinazolines or quinazolinone analogs, bicyclic heterocyclic compounds
obtained from the combination of two six-membered aromatic rings of benzene and pyrim-
idine, are a class of nitrogen-containing heterocyclic compounds which have attracted
widespread attention in medicinal chemistry for the design and development of new drugs
due to their numerous biological properties that depend on the position and nature of
the substituent in their skeleton and include, among others, antibacterial, anticancer, anti-
inflammatory, antifungal, antihypertensive, antimicrobial and antiviral properties. Con-
ventional heating methods are generally applied, as well as other strategies that include
the use of efficient and more environmentally friendly catalysts, or microwave irradiation.
The synthesis of quinazoline derivatives has also attracted great attention in recent years,
and numerous synthetic procedures for their formation have been developed [38–43]. It is
currently in numerous accepted drugs and biologically active compounds, like erlotinib,
gefitinib, prazosin, rutaecarpine and many others, as well as in clinical candidates and
biologically active molecules [44–46]. Pyrimidines and their derivatives are an important
class of heteroaromatic systems found in natural products, used as key intermediates in
medicinal chemistry to generate new chemical structures with a diverse range of phar-
macological activities, and are gaining attention due to their structural similarity to the
purines [47].

Compounds 46 were prepared in yields of 79–85%, via the one-pot reaction between
TEOF 1, with the 2-amino-thiophene-3-carboxylates 45 and the appropriate amine 18
(Scheme 9) [48].
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Scheme 9. Synthesis of compound 46.

An efficient procedure for the synthesis of 4(3H)-quinazolinones 48, (Scheme 10)
by one-pot reaction of TEOF 1, amines 18 and anthranilic acid 47 was also reported in
the literature, using Zn(ClO4)2 [49], silica-supported boron trifluoride (BF3–SiO2) [50],
CoCl2 [51], thiamine hydrochloride (vitamin B1) [52], and I2 [53] as the organocatalyst. The
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different quinazolinone 48 were obtained in yields of 67–98% within 15 min to 8 h, at reflux
or room temperature.
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thranilic acid derivatives 47, with good yields, Scheme 11. 
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action yield. Groups like halogen, methyl, methoxy, nitro, and trifluoromethyl at the para 
position of anilines reacted easily with TEOF 1 and dicarbonyl compound 50 provided the 
corresponding products 52 with good yields (Scheme 12). If the methyl or methoxy group 
is situated in the meta or ortho position, this may result in moderate yields. The reactions 
of dicarbonyl compounds substituted by phenyl, t-butyl and cyclopropyl were carried out 
under ideal reaction conditions and produced products with moderate to excellent yields. 
When diethyl malonate was used in the reaction, the product yield was reduced. 

Scheme 10. One-pot synthesis of 4(3H)-quinazolinones 48.

Venkateswarlu et al. [54] describe a facile, three-component, one-pot synthesis of
8H-quinazolino[4,3-b]quinazolin-8-ones 49 from TEOF 1, 2-aminobenzonitriles 9 and an-
thranilic acid derivatives 47, with good yields, Scheme 11.
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Scheme 11. One-pot synthesis of 8H-quinazolino[4,3-b]quinazolin-8-ones 49.

Different types of 3-acetyl-4-hydroxiquinoline derivatives 51 (Scheme 12) were syn-
thesized by a highly efficient multi-component microwave irradiation (MW) with reduced
reaction times and good yields using TEOF 1, and aromatic amines 16 with ethyl acetoac-
etate 50 [55]. Huang et al. [56] reported two effective, sustainable and clear approaches
for the formation of quinolone derivatives based on a branched/linear domino procedure
under ecological conditions. The position of the substituent significantly affected the re-
action yield. Groups like halogen, methyl, methoxy, nitro, and trifluoromethyl at the para
position of anilines reacted easily with TEOF 1 and dicarbonyl compound 50 provided the
corresponding products 52 with good yields (Scheme 12). If the methyl or methoxy group
is situated in the meta or ortho position, this may result in moderate yields. The reactions of
dicarbonyl compounds substituted by phenyl, t-butyl and cyclopropyl were carried out
under ideal reaction conditions and produced products with moderate to excellent yields.
When diethyl malonate was used in the reaction, the product yield was reduced.
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The formation of quinazolin-4(3H)-imines from TEOF 1, 2-aminobenzonitrile 9 and 
variously substituted aniline 18 using ammonium chloride as promoter, assisted by mi-
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donating or electron-withdrawing substituent positioned on the aniline ring. 

Scheme 12. Reaction of TEOF 1 and amines 16 with dicarbonyl compound 50.

Rad-Moghadam et al. [57] reported a microwave-promoted one-pot method for the
synthesis of 4-aminoquinazoline 54 (Scheme 13). The possible mechanism of the reaction
mainly includes the formation of the amidine intermediate from the reaction of TEOF 1
with 2-aminobenzonitrile 9 and NH4OAc 53. This is followed by the nucleophilic attack of
the amino group on the carbon atom of the nitrile group which gives the formation of the
4(3H)-iminoquinazoline intermediate, tautomerizes and results in product 54.
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Scheme 13. Synthesis of 4-aminoquinazoline 54.

The formation of quinazolin-4(3H)-imines from TEOF 1, 2-aminobenzonitrile 9 and var-
iously substituted aniline 18 using ammonium chloride as promoter, assisted by microwave
irradiation, has also been reported (Scheme 14) [58]. Using substituted aniline, the reaction
gave an excellent yield of the resulting products, regardless of the electron-donating or
electron-withdrawing substituent positioned on the aniline ring.
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acid as a catalyst and substituted aniline 16, gave ethyl (halo substituted phenylamino)-5-
methylthieno[2,3-d]pyrimidine-6-carboxylate derivatives 58 in good yield (Scheme 16). 
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A simple, one-pot synthesis by a three-component coupling reaction of TEOF 1, am-
monium acetate 53 and ketones 59 or 61 is also reported, as shown in Scheme 17. Konaka-
hara et al. [61] use the multicomponent coupling reaction catalyzed by zinc chloride 
(ZnCl2) for the synthesis of the 4,5-disubstituted pyrimidine derivative using ketone 59, in 
a single step. Soheilizad et al. [62] report the synthesis of pyrimidine derivatives 60 in the 
presence of boron sulfuric acid as a recyclable and effective catalyst under solvent-free 
conditions. This procedure has some advantages, such as catalyst reuse, shorter reaction 

Scheme 14. Synthesis of quinazolin-4(3H)-imines 13.

Zhang et al. [59] described a palladium(II)-catalyzed cascade reaction of TEOF 1 with
2-aminobenzonitriles 9 and boronic acids 55 that produces 4-arylquinazolines 56, in good
yields (Scheme 15). The pathway involves the coupling of the sp-sp2 carbon bond followed
by the formation of the intramolecular carbon-nitrogen bond.
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Scheme 15. Synthesis of 4-arylquinazolines 56.

Rao et al. [60] described the cyclocondensation of TEOF 1 with ethyl 5-amino-4-cyano-
3-methylthiophene-2-carboxylate 57, which, in the presence of a few drops of acetic acid
as a catalyst and substituted aniline 16, gave ethyl (halo substituted phenylamino)-5-
methylthieno[2,3-d]pyrimidine-6-carboxylate derivatives 58 in good yield (Scheme 16).
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A simple, one-pot synthesis by a three-component coupling reaction of TEOF 1, am-
monium acetate 53 and ketones 59 or 61 is also reported, as shown in Scheme 17. Konaka-
hara et al. [61] use the multicomponent coupling reaction catalyzed by zinc chloride (ZnCl2)
for the synthesis of the 4,5-disubstituted pyrimidine derivative using ketone 59, in a single
step. Soheilizad et al. [62] report the synthesis of pyrimidine derivatives 60 in the presence
of boron sulfuric acid as a recyclable and effective catalyst under solvent-free conditions.
This procedure has some advantages, such as catalyst reuse, shorter reaction time (2 h) and
good yields (70–86%). Trivedi et al. [63], presented an efficient and ecofriendly method for
the synthesis of 4-disubstituted quinazolines 62, under solvent and catalyst-free conditions
at 100 ◦C, from 2-aminoaryl ketones 61. This method provides high yields (88–94%) in a
moderate reaction time (90–120 min).
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Dolzhenko et al. explored a one-pot reaction using TEOF 1, and cyanamide 63 with
different amines under microwave irradiation (MW), at 150 ◦C (Scheme 18). This three-
component reaction produced a variety of amino substituents, making it perfect for gener-
ating compound libraries for drug discovery processes. In general, this multicomponent
reaction does not require any catalyst, resulting in the formation of product with high
purity and similar yields. These authors confirm that the method is reproducible in diverse
microwave reactors and under microwave-like heating. The synthesis of substituted 5-aza-
adenines 65 [64,65] or 5-aza-7-deaza-adenines 67 [66] or 5-aza-9-deaza-adenines 69 [67,68]
from 5-amino-1,2,4-triazoles 64 or 2-amino-4-phenylimidazole 66 or 5-aminopyrazoles 68
was performed using methanol or ethyl acetate as solvent. In these cases, higher yields
were obtained with very short reaction times. Together with the previous components,
TEOF 1 and cyanamide 63, 3-amino-substituted 5-aminopyrazole-4-carbonitriles 70 were
used to carry out the synthesis of the new 7-aminosubstituted pyrazolo[1,5-a][1,3,5]triazine-
8-carbonitriles 71 without catalysis [69] or in the presence of DIPEA [70], both in methanol.
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vent as it forms an azeotrope with the ethanol that can be eliminated from the system by 
distillation, permitting a fast and broad exchange of reagents [72]. 

Scheme 18. Synthesis of one-pot three-component reaction between TEOF 1 and cyanamide 63.

A three-component, microwave-assisted reaction of TEOF 1 with a series of cyclic
secondary amines 72 and 5-aminopyrazoles 70, was also developed by Dolzhenko et al. [71]
for the synthesis of the new N-pyrazolylformamidines 73 (Scheme 19).
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Scheme 19. Synthesis of N-pyrazolylformamidines 73.

The efficient three-component reaction of TEOF 1 with cyanoamide 63 and primary
aromatic amines 16 at reflux in toluene provides N′-aryl-N-cyanoformamidines 74 in high
yields (Scheme 20). It is reported that the reaction occurred in toluene as the selected
solvent as it forms an azeotrope with the ethanol that can be eliminated from the system by
distillation, permitting a fast and broad exchange of reagents [72].
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Scheme 20. Synthetic route for aromatic cyanoformamidines 74.

In 2023, Kalinin et al. [73], reported the synthesis of formamidines 75, Scheme 21,
by a three-component, one-pot method, as key intermediates for the further synthesis of
5-azapurines derivatives.
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Scheme 21. Synthesis of formamidines 75.

Hua et al. [74] described the one-pot synthesis of TEOF 1 and primary amines like
benzylamine 77, aniline 79 and adenine 81 with pyridinone 76 under similar reaction
conditions (DMF and AcOH). Monocyclic pyridinones 78–82, were formed in yields of 68%,
61% and 50%, respectively (Scheme 22).
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The synthesis of a novel class of enaminone derivatives 84 with TEOF 1, aryl/heteroaryl
amines 18 and lawsone 83, in guanidinium chloride as organocatalyst under solvent-free
condition at 90 ◦C was reported by Olyaei et al. in excellent yields (75–87%) (Scheme 23) [75].
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In 2015, Sadek et al. [76] reported a one-pot reaction for the synthesis of pyrazolo[1,5-
a]pyrimdines-7(4H)-ones 87 through the reaction of TEOF 1, 5-aminopyrazoles 18 and Mel-
drum’s acid 85, under dioxane reflux (Scheme 24). A series of five 5-arylidene Meldrum’s
acid derivatives 86 were synthesized in 13–68% yield via Knoevenagel condensation from
aryl amine 18, by Pungot et al. [77]. More recently, other derivatives of 5-aminomethylene
Meldrum’s acid 86 have also been successfully synthesized by Al-Messri [78] with different
aromatic amines 18, TEOF 1 and Meldrum’s acid 85. The reaction proceeded through a
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Knoevenagel condensation of TEOF 1 with Meldrum’s acid 85 to produce an intermediate
such as Michael’s acceptor, followed by the regioselective addition of Michael’s with the
exocyclic amino moiety of the amino compound 18 to obtain the corresponding acyclic
adducts 86. After intramolecular cyclization, elimination of acetone and CO2, it yielded 87.
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Scheme 24. Synthesis of 5-aminomethylene Meldrum’s acid derivatives 86 and pyrazolo[1,5-
a]pyrimdines-7(4H)-ones 87.

Vandyshev et al. [79,80] explored the cascade heterocyclization reactions of TEOF 1,
1,2-diamino-4H-phenylimidazole 88 with cyclohexanedione 89 or ethyl acetoacetate 50
(Scheme 25). High yields of imidazo[1,5-b]pyridazines 90 and 91 were obtained when
a mixture of dimethylformamide (DMF), isopropyl alcohol (i-PrOH) and acetic acid, in
catalytic amounts, were used as solvents.

A novel series of hetarylaminomethylidene derivatives 93 was reported by Tikho-
molova et al. [81], and this author used furan-2(3H)-ones 92 by a three-component reaction
(Scheme 26). As proposed by the authors, the mechanism can proceed in two ways
(Scheme 27). In pathway A, the reaction continues through the formation of intermediate
imine 94 in situ by the nucleophilic addition of amine 18 to TEOF 1, which loses two ethanol
molecules. Then, furan-2(3H)-one 93 reacts with imine 94 to form intermediate 95, yielding
93, after which another ethanol molecule is eliminated. On the other hand, in pathway B,
the initial reaction is that of furan-2(3H)-one molecule 92 with 1 to form ethoxymethylene
derivatives 96, which are converted into intermediate compounds 95, by reaction with
amine 18. Product 93 is obtained after eliminating another ethanol molecule.
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More recently, Berrichi et al. [82] synthesized the 2-imino-2H-pyrano[3,2-c]pyridin-
5(6H)-ones derivatives 98 (Scheme 28) between TEOF 1, primary amines 18 and 2H-
iminopyranes 97. The reaction takes place at 80 ◦C for 5 h, in the presence of acetic
anhydride. Various primary amines such as aromatic, cyclic and aliphatic were used to
explore the versatility of this approach in synthesizing new compounds.
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4. Synthesis by Four-Component Reaction

Wu et al. [83] reported a palladium-catalyzed four-component carbonylative coupling
system for the formation of 3-aryl-4(3H)-quinazolinones 48 in a one-pot approach. A
combined mixture of TEOF 1, 2-bromoanilines 99, amine 16 and carbon monoxide (CO)
100 with a palladium acetate/di(1-adamantyl)-n-butylphosphine [Pd(OAc2)/(BuPAd2)]
complex at 100 ◦C gives 3-aryl-4(3H)-quinazolinones 48 with good yields (Scheme 29).

Reactions 2023, 4, FOR PEER REVIEW 19 
 

 
Scheme 27. Probable mechanism for the formation of 3-hetarylaminomethylidenefuran-2(3H)-ones 
93. 

More recently, Berrichi et al. [82] synthesized the 2-imino-2H-pyrano[3,2-c]pyridin-
5(6H)-ones derivatives 98 (Scheme 28) between TEOF 1, primary amines 18 and 2H-imino-
pyranes 97. The reaction takes place at 80 °C for 5 h, in the presence of acetic anhydride. 
Various primary amines such as aromatic, cyclic and aliphatic were used to explore the 
versatility of this approach in synthesizing new compounds. 

 
Scheme 28. Three-component synthesis of 2-imino-2H-pyrano[3,2-c]pyridine-5(6H)-ones 98. 

4. Synthesis by Four-Component Reaction 
Wu et al. [83] reported a palladium-catalyzed four-component carbonylative cou-

pling system for the formation of 3-aryl-4(3H)-quinazolinones 48 in a one-pot approach. 
A combined mixture of TEOF 1, 2-bromoanilines 99, amine 16 and carbon monoxide (CO) 
100 with a palladium acetate/di(1-adamantyl)-n-butylphosphine [Pd(OAc2)/(BuPAd2)] 
complex at 100 °C gives 3-aryl-4(3H)-quinazolinones 48 with good yields (Scheme 29). 

 
Scheme 29. Synthesis of 4(3H)-quinazolinones 48. Scheme 29. Synthesis of 4(3H)-quinazolinones 48.

Heterocycles containing a pyridone core have a diversity of biological properties, such
as anticancer, antiulcer, ACE-inhibiting, anti-inflammatory, antifungal, anti-HIV, antiviral
and cardiotonic activities [84].

Huang et al. [2] described, for the first time, a new four-component synthesis of a
substituted 2-piridone derivative 102 (Scheme 30) by branched domino reaction between
TEOF 1 as a building block C1, aromatic amines 16 and two categories of dicarbonyl
compounds, such as 1,3-acyclic diketones 50 and diethyl malonate 101, under microwave
irradiation (120 ◦C). The same research group also evaluated the scope and limitations
of the reaction with various alkylamines or other amines, and products were obtained in
yields of 50 to 78%.
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5. Conclusions

One-pot reactions allow many reactions to be combined so that synthetic efficacy
can be initiated to match that of nature, but important tasks remain before this promising
method will be able to meet the demands of pharmaceutical chemistry and materials.
In summary, we have reviewed recent developments in the one-pot reactions of triethyl
orthoformate with different amines and numerous new reaction sequences have been
developed in the last decade. The reaction method allows combining several catalytic
procedures in the same reaction vessel and provides high regioselectivity, atomic efficiency
and does not involve workup and isolation of many intermediates.
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