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Abstract: Among the bases of DNA, guanine is the most easily oxidized. Imidazolone (Iz) is a guanine
oxidative damage, and we sought to generate Iz-containing oligomers. In this paper, we describe
the methods and conditions to increase the yield of Iz by employing photooxidation reactions using
light-emitting diodes (LEDs) with emission wavelengths of 365 nm and 450 nm. For photooxidation
performed with the 450 nm LED source at light intensities of 2.75-275 mW /cm?, peak yields of Iz
were 35% at light intensities of 27.5 and 68.8 mW /cm?. For reactions performed with the 365 nm LED
source at light intensities of 5.12-512 mW/ cm?, the peak yield of Iz was 34% at a light intensity of
51.2 mW/cm?. By varying the irradiation time, the maximum yield of 1z (34-35%) was obtained with
irradiation times of 5-20 min using the 450 nm LED source at an intensity of 13.8 mW/cm?. Using
the 365 nm LED source at an intensity of 25.6 mW/cm?, the maximum Iz yield obtained was 31% at
irradiation times of 2-5 min. Thus, we obtained conditions that can provide an Iz yield of up to 35%.
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1. Introduction

DNA is oxidized by ultraviolet light, radiation, reactive oxygen species, and light
irradiation in the presence of photosensitizers [1-24]. Oxidized DNA is one of the factors
that cause mutations leading to cancer. Among the four bases of DNA, guanine, which has
the lowest oxidation potential [25], is the most susceptible to oxidation [26-29], meaning
that, among oxidative lesions, guanine oxidative damage is the most likely to occur.

Among guanine oxidative damage events, 8-oxoguanine (8-oxoG) is one of the earliest-
detected lesions that has a biological impact [30-33] and is known to contribute to G:C—T:A
transversions but not to G:C—C:G transversions [34-36]. Therefore, guanine oxidative
damage other than 8-oxoG may be involved in G:C—C:G transversions. Guanine oxidative
lesions such as imidazolone (Iz) (Figure 1) [37,38], oxazolone (Oz) (Figure 1) [37,38], guani-
dinohydantoin (Gh) [39,40], and spiroiminohydantoin (Sp) [39—41] have been reported to
contribute to G:C—C:G transversions [42-50]. The structures of both Gh and Sp have sp?
carbons that break the 7t-7t stacking of DNA. On the other hand, 1z and Oz have planar
structures and are more favorable for DNA elongation than Gh and Sp [44,46]. Moreover,
since Iz is gradually degraded to Oz under in vivo conditions, we believe that Iz and Oz
are important for the generation of point mutations in human cells.

To build on these previous in vitro studies on Iz and Oz, it is necessary to clarify
whether 1z/Oz-induced mutations occur in cells. Such analyses require the preparation
of large quantities of DNA oligomers containing Iz, and we thought that using a light
source with higher intensity than a transilluminator for one-electron photooxidation would
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increase the efficiency of the photoreaction, and then increase the yield of Iz. When ir-
radiated with demonstration equipment from various companies including a laser, the
yield of Iz increased with devices that emit light with a stronger intensity than a transil-
luminator. However, with too strong light irradiation, the raw material was completely
lost, and the yield of Iz was lower than that when irradiated with a transilluminator.
Therefore, it has become necessary to perform an analysis using a light irradiation de-
vice that can vary the intensity. In addition, recently, photochemical synthesis using
light-emitting diode (LED) has been reported [51-58]; LED sources are cheap and easily
available. Therefore, we chose LED as the irradiation device to reduce the cost for Iz
generation. As shown below, we conducted photoreactions with a previously used ultra-
violet (UV) transilluminator and newly purchased LED sources, and then examined the
conditions under which Iz can be generated efficiently. Notably, DNA 30-mers containing
Iz (5"-CTCATCAACATCTTIZAATTCACAATCAATA-3'), the substrate that we use in our
polymerase analysis, are difficult to separate by high-performance liquid chromatography
(HPLC). Therefore, we instead employed DNA 6-mers (5'-CTTXAA-3/, where X is guanine
or 1z), for which HPLC can be used to separate the guanine- and Iz-containing oligomers.
The 6-mers containing DNA damage products were then used to synthesize DNA 30-mers
using a previously described ligation method.
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Figure 1. The structures of guanine, imidazolone (Iz), oxazolone (Oz), riboflavin and lumichrome.

2. Materials and Methods

Riboflavin (Figure 1) was purchased from Kishida Chemical Co., Ltd. (Osaka, Japan).
The 6-mer oligonucleotide (5'-CTTGAA-3') was purchased from Japan Bio Service Co.,
Ltd. (Saitama, Japan). The reaction solution consisted of 10 pM 5'-CTTGAA-3/, 75 uM
riboflavin, and 5 mM cacodylate buffer (pH 7.0). In Figure 2, photoreactions employed
a 3UV™ Transilluminator (Model LMS-26E; UVP LLC, Upland, CA, USA; 6.5 mW/ cmz)
for 1-120 min. A controller (Model CL-1501) and LED sources with emission wavelengths
of 365 nm (Model CL-H1-365-9-1-B; 512 mW /cm?) and 450 nm (Model CL-H1-450-9-1-B;
275 mW/cm?) were purchased from Asahi Spectra Co., Ltd. (Tokyo, Japan), and these LED
sources were used in the experiments presented in Figures 3 and 4. The distance between
the light source and the reaction solution was set to 4 cm in Figures 2—4. Figure 3 shows a
solution that was irradiated for 2 min with the 450 nm LED with light intensities of 2.75,
13.8,27.5, 68.8, 138, 206, and 275 mW /cm? or the 365 nm LED with light intensities of 5.12,
25.6,51.2, 128, 256, and 512 mW /cm?. Figure 4 shows a solution that was irradiated for
2-20 min with the 450 nm LED with an intensity of 13.8 mW/ cm? or the 365 nm LED with
an intensity of 25.6 mW/cm?. Photo-reacted solutions were analyzed by HPLC using a
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CHEMCOBOND 5-ODS-H column (Chemco Plus Scientific Co., Ltd., Osaka, Japan); 5 um,
150 x 4.6 mm; solvent: 50 mM TEAA (pH 7.0), 7-9% CH3CN; cycle length: 30 min; flow
rate: 1.0 mL/min), and absorbance was monitored at 260 nm. Identification of DNA 6-mers
containing Iz was performed as described previously [5,42].

A B
100% -+
—lz
o
1 80% -
1z / 60% -
|
l J\ 40%
I
,MJ J ,_,Wwwf M e 20%
I | [ o
d 19 20 e 0 20 40 60 80 100 120
min min

Figure 2. Photooxidation of guanine-containing DNA oligomers under UV-A irradiation with a
transilluminator. (A) A representative spectrogram showing the results of HPLC analysis of the
solution subjected to photooxidation for 10 min. “G” is 5-CTTGAA-3'. “Iz” is 5'-CTTIzAA-3'.
(B) Time course of photooxidation. The graph shows the percentages of the raw material remaining
(black line) and the percentages of 1z produced (red line); the amount of the raw material at baseline
(before photoirradiation) was defined as 100% (on the y-axis). Analyses were performed twice, and
the mean was calculated.
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Figure 3. Photooxidation of guanine-containing DNA oligomers under irradiation with an LED source
at various light intensities. A solution was irradiated for 2 min with 450 nm (A,B) or 365 nm (C,D)
light from an LED source. (A) A representative spectrogram showing the results of HPLC analysis of
the solution subjected to photooxidation with the 450 nm light at an intensity of 13.8 mW /cm?. “G”
is 5'-CTTGAA-3'. “1z” is 5'-CTTIzAA-3'. (C) A representative spectrogram showing the results of
HPLC analysis of the solution subjected to photooxidation with the 365 nm light at an intensity of
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25.6 mW/cm?. (B,D) Photooxidation at various light intensities. The graphs show the percentages of
the raw material remaining (black line) and the percentage of 1z produced (red line); the amount of
the raw material at baseline (before photoirradiation) was defined as 100% (on the y-axis). Analyses
were performed twice, and the mean was calculated.
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Figure 4. Photooxidation of guanine-containing DNA oligomers under irradiation with an LED
source for various reaction times. A solution was irradiated for various intervals with the 450 nm
light at an intensity of 13.8 mW/cm? (A,B) or with the 365 nm light at an intensity of 25.6 mW /cm?
(C,D) using an LED source. (A,C) A representative spectrogram showing the results of HPLC analysis
of the solution subjected to photooxidation (1 min) with 450 nm (A) or 365 nm (C) light. “G” is
5-CTTGAA-3'. “Iz” is 5'-CTTIzAA-3'. (B,D) Time course of photooxidation. The graphs show the
percentages of the raw material remaining (black line) and the percentage of Iz produced (red line);
the amount of the raw material at baseline (before photoirradiation) was defined as 100% (on the
y-axis). Analyses were performed twice, and the mean was calculated.

3. Results and Discussion
3.1. Reanalysis of Iz Generation Using Transilluminator

Since guanine has the lowest oxidation potential in DNA [25], one-electron oxidation
of guanine with excited riboflavin leads to the generation of 1z [37-39,42-45]. Taking
advantage of this property, DNA oligomers containing single Iz can be synthesized from
DNA oligomers containing single guanine. In our laboratory, the Iz-containing product
(5’-CTTIzAA-3') previously was generated from the raw material (5'-CTTGAA-3') using
a UVP transilluminator. To compare with LED-based photoreactions (described below),
transilluminator-based photoreactions were repeated as part of the current study. The raw
material was irradiated with 365 nm light in the presence of riboflavin, and the distance
between the light source and the reaction solution was set to 4 cm. When the quantity
of the raw material before light irradiation was set to 100%, the calculated yields of 1z at
various irradiation times were as follows: 4% at 2 min, 14% at 10 min, 26% at 30 min, 30%
at 60 min, and 29% at 120 min (Figure 2). The yield of 1z following irradiation for 120 min
did not increase compared to that obtained at 60 min, so the irradiation was not performed
for intervals exceeding 120 min.
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3.2. Analysis of Iz Yields Using LEDs at Various Light Intensities

Next, to increase the yield of Iz, we used two LEDs (purchased from Asahi Spec-
troscopy, Tokyo, Japan), for which the irradiation light intensity (maximum light intensities
of 512 and 275 mW /cm? at 365 and 450 nm) exceed that provided by the UVP transillumi-
nator (6.5 mW/cm?). Given that blue-light irradiation in the presence of riboflavin leads to
the production of Iz from deoxyguanine [59,60], as well as the observation that riboflavin
has two absorption maxima (at 360-380 nm and 440-450 nm) [61-67], we selected LED
sources with emission wavelengths of 365 and 450 nm for the experiments described here.

Photoreactions were performed using the 450 nm LED while adjusting the irradiation
light intensity from 0 to 275 mW /cm? (Figure 3A,B). The Iz yields at various light inten-
sities were as follows: 8% at 2.75 mW/cm?, 27% at 13.8 mW /cm?2, 35% at 27.5 mW /cm?,
35% at 68.8 mW /cm?, 31% at 138 mW/cm?, 28% at 206 mW /cm?, and 24% at 275 mW /cm?
(Figure 3B). Thus, peak Iz yields (35%) were obtained at light intensities of both 27.5 and
68.8 mW /cm?. Using LED sources with a stronger intensity than that of a transilluminator
increased the efficiency of the photoreaction, resulting in an increase in the yield of Iz.
However, the Iz yields at light intensities exceeding 138 mW/cm? were lower than the
maximum yield (Figure 3B).

Using the 365 nm LED source under the same conditions, the 1z yields obtained at
various light intensities were as follows: 11% at 5.12 mW/ cm?, 30% at 25.6 mW /cm?,
34% at 51.2 mW/cm?, 19% at 128 mW/cm?, 11% at 256 mW /cm?, and 5% at 512 mW /cm?
(Figure 3D). Therefore, the peak Iz yield (34%) was obtained at a light intensity of
51.2 mW /cm?; this value was nominally lower than the peak obtained using the 450 nm
LED source (Figure 3D). The Iz yield decreased at light intensities exceeding 51.2 mW /cm?
(Figure 3D). These results indicated that, for LED sources, peak light intensity did not
provide peak production of Iz, an observation that is discussed further in Section 4.

3.3. Analysis of the Efficiency of 1z Generation at Various LED Irradiation Times

The results obtained using the transilluminator indicated that the yield of Iz did not
increase when changing the irradiation time from 60 to 120 min (Figure 2). However, given
the results of the high irradiation light intensity provided by the LED sources (Figure 3),
it was possible that the yield of Iz decreased with the increase in LED irradiation time.
To test this hypothesis, we repeated our experiments using various time intervals for
irradiation with LED sources at fixed light intensities of either 13.8 mW /cm? at 450 nm or
25.6 mW /cm? at 365 nm. We then quantified the yield of 1z at each irradiation time point
(Figure 4).

For the 450 nm LED source, photoreactions were performed at intervals of 0-20 min.
The Iz yields at various times were as follows: 21% at 1 min, 24% at 2 min, 34% at 5 min,
35% at 10 min, and 34% at 20 min (Figure 4B). The 1z yield fell to 23% after irradiation for
60 minutes (Figure S1). Thus, the 1z yield peaked at 34-35% with irradiation intervals of
5-20 min and decreased with longer intervals of irradiation.

For the 365 nm LED source, photoreactions were performed for intervals of 0-20 min.
The 1z yields at various times were as follows: 27% for 1 min, 31% at 2 min, 31% at 5 min;
27% at 10 min, and 18% at 20 min (Figure 4D). Therefore, the peak 1z yield was 31% at
2-5 min, and decreased with longer intervals of irradiation. We suggest a possible reason
for this decrease in Iz yield in Section 4.

3.4. Exploring Why the Yield of 1z Decreases at Higher Light Intensities or Longer
Irradiation Times

In Sections 2 and 3, we noted that, with LED irradiation (at either 450 nm or 365 nm),
longer irradiation times and stronger light intensity conditions resulted in decreased
product yields. To investigate the basis of this phenomenon, we used an alternative
oligonucleotide (5'-CTTCAA-3’) that does not contain guanine; this reactant was subjected
to 2 min of irradiation with the 365 nm LED at an intensity of 51.2 mW/ cm?. Under
these conditions, 22% of the raw material was converted (Figure S2); in contrast, 88% of
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oligomers containing guanine was converted under the same conditions (Figure 3D). Thus,
oligomers lacking guanine still underwent photoreaction, although the yield was decreased
compared to that observed with oligomers containing guanine; we inferred that excessive
light irradiation decomposes the product.

Riboflavin is capable of oxidizing guanine upon irradiation with light of a wavelength
of 365 or 440 nm [59,60], simultaneously undergoing degradation to produce lumichrome
(Figure 1) [59,60,68-74]. Lumichrome absorbs light at 365 nm but not at 440 nm; therefore,
unlike the case with 365 nm light, irradiation with 440 nm light in the presence of lu-
michrome will not oxidize guanine [59,60]. Even when the oligonucleotide (5'-CTTGAA-3)
was used, it did not react with 450 nm light in the presence of lumichrome but reacted
with 366 nm light to generate Iz (Table S1). Thus, the difference in the results seen for
irradiation at 450 and 365 nm in Figures 3 and 4 (respectively) may reflect the difference in
the photooxidative capacities of riboflavin and lumichrome. To permit determination of the
contribution of the photosensitizer, the HPLC gradient was changed to 7-30% CH3CN over
30 min, and the levels of riboflavin and lumichrome were quantified at 365 nm (Figure S3).

Under the conditions employed in Figure 3, irradiation with 450 nm light at an intensity
of 27.5 mW /cm? resulted in riboflavin at 59% of the input concentration, with a yield of
13% lumichrome. On the other hand, irradiation with the 450 nm light at an intensity
of 275 mW/cm? resulted in riboflavin at 5% of the input concentration, with a yield of
39% lumichrome. These results indicated that riboflavin persists in greater amounts than
lumichrome under the conditions that provide the highest yield of Iz, while riboflavin
is largely eliminated under conditions that decrease the yield of Iz. Similar results were
seen for photooxidation with 365 nm light; irradiation at a light intensity of 51.2 mW /cm?
yielded 39% riboflavin and 21% lumichrome, while irradiation at 512 mW /cm? yielded 1%
riboflavin and 18% lumichrome.

Under the conditions employed in Figure 4, five minutes of irradiation with 450 nm
light yielded riboflavin and lumichrome at 61% and 13%, respectively; twenty minutes of
irradiation with 450 nm light yielded values of 20% and 32%. Five minutes of irradiation
with 365 nm light yielded riboflavin and lumichrome at 39% and 22%, respectively; twenty
minutes of irradiation with 365 nm light yielded values of 6% and 39%. These results
resembled those described in the preceding paragraph for experiments performed under
the conditions used in Figure 3.

Thus, our results suggested that, for irradiation with 365 nm light, lumichrome (a
photoproduct of riboflavin) serves as a photosensitizer even upon the depletion of ri-
boflavin, and Iz yield is decreased under conditions of stronger light intensity or prolonged
irradiation (Figures 3D and 4D). On the other hand, for irradiation with 450 nm light, photo-
generated lumichrome does not act as a photosensitizer; only the remaining riboflavin
contributes to a decrease in Iz concentration, and this decrease occurs more slowly than
that seen at 365 nm (Figures 3B and 4B).

4. Conclusions

DNA oligomers containing 1z are synthesized more efficiently using irradiation with
LED sources emitting light at 365 nm (at a light intensity of 512 mW/cm?) or 450 nm (at a
light intensity of 275 mW /cm?) than a transilluminator (at a light intensity of 6.5 mW/cm?),
which is the previously described technique. By optimizing the light intensity and the
interval of irradiation time, the yield of Iz was increased to 35%, as obtained using an LED
light at 450 nm.

Although Iz gradually degrades under in vivo conditions, 1z is an important DNA
damage because it may have more of an effect on metabolically active cells such as cancer
cells than on normal cells. The results of this study showed that more Iz was obtained in a
shorter time by LEDs than by a transilluminator, making it easier to use 1z as a research
material. In addition, a large amount of Oz can be obtained by decomposing Iz, which is
useful for research on Oz.
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Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/reactions4040046/s1, Figure S1: Photooxidation of guanine-
containing DNA oligomers under irradiation with a LED light source for 60 min. “*” was not derived
from DNA; Figure S2: Photooxidation of cytosine-containing DNA oligomers under irradiation with
a LED light source at an intensity of 51.2 mW/ cm?2. HPLC analysis (260 nm) of reaction solution
after (A) no and (B) 2 min of irradiation. was not derived from DNA. Figure S3: Photooxidation
of riboflavin under irradiation with a LED light source for various reaction times. A solution was
irradiated for various intervals with 450-nm light at an intensity of 13.8 mW /cm? (A) or with 365-nm
light at an intensity of 25.6 mW/cm? (B). Table S1: Photooxidation of guanine-containing DNA
oligomers under irradiation with two LED light sources. The reaction solution consisted of 10 pM
5'-CTTGAA-3', 75 uM lumichrome, and 5 mM cacodylate buffer (pH 7.0)/0.84% DMSO.
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