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Abstract: Contemporary technological and industrial advancements have led to increased reliance on
chemicals for product innovation, leading to heightened contamination of water sources by traditional
pollutants (organic dyes, heavy metals) and disease-causing microorganisms. Wastewater treatment
processes now reveal “emerging pollutants”, including pharmaceuticals, endocrine disruptors, and
agricultural chemicals. While some are benign, certain emerging pollutants can harm diverse organ-
isms. Researchers seek cost-effective water purification methods that completely degrade pollutants
without generating harmful by-products. Semiconductor-based photocatalytic degradation, particu-
larly using titanium dioxide (TiO2), is popular for addressing water pollution. This study focuses
on recent applications of TiO2 nanostructures in photocatalysis for eliminating various water pollu-
tants. Structural modifications, like doping and nanocomposite formation, enhance photocatalyst
performance. The study emphasizes photocatalytic elimination mechanisms and comprehensively
discusses factors impacting both the mechanism and performance of nano-TiO2-based photocatalysts.
Characteristics of TiO2, such as crystal structure and energy band-gap, along with its photocatalytic
activity mechanism, are presented. The review covers the advantages and limitations of different
TiO2 nanostructure production approaches and addresses potential toxicity to human health and
the environment. In summary, this review provides a holistic perspective on applying nano-TiO2

materials to mitigate water pollution.

Keywords: titanium dioxide; nanostructures; synthesis methods; photocatalytic mechanism; dyes;
heavy metals; pesticides; microbes; environmental applications; toxicity

1. Introduction

The World Water Development Report (2020) [1] underscores the critical environmental
priority of protecting water reserves amidst global climate change challenges. Currently,
natural aquatic environments face vulnerability to various hazardous substances from
multiple sources, including civic society, the public sector and, notably, industrial activities.

Various industries (textile, pharmaceutical, agricultural, papermaking, printing, cos-
metics, and food processing) generate extensive wastewater laden with diverse organic
pollutants, such as pharmaceuticals, dyes, heavy metals, endocrine disruptors (EDCs),
pesticides, and herbicides, leading to contamination. Additionally, water contamination
results from a multitude of microorganisms thriving in raw household sewage, containing
fecal matter and other decomposable substances. This conducive environment for micro-
bial proliferation contributes to the onset and transmission of diseases. Notably, prevalent
waterborne bacteria, like Escherichia coli, originating from the excrement of both farm ani-
mals and humans, cause ailments like diarrhea, renal failure, colitis, and hemolytic uremic
syndrome [2]. Salmonella, inducing illnesses such as typhoid fever and salmonellosis [3],
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and cholera, caused by Vibrio cholera’s cholera toxin production [4], are severe diseases.
Bacterial pathogens, like Pseudomonas aeruginosa, contribute to conditions like diarrhea
and Shanghai fever [5], while Legionella, a primary agent in transmitting Legionnaire’s
disease [6], can proliferate in water sources.

Several treatment methods, including chemical precipitation, separation, adsorp-
tion, coagulation, biological treatment, and Fenton oxidation techniques, are currently
employed [7]. Despite their application, these methods often result in partial pollutant
degradation, transferring contaminants between phases and producing secondary by-
products requiring additional treatment [8,9]. Biological treatment, reliant on microbial
metabolism [10–12], is reliable, cost-effective, and safe but exhibits lower efficacy in sus-
pended solids removal, necessitating improved operational management. Coagulation
and precipitation methods form flocs using polymer or inorganic coagulants (e.g., Fe, Al),
aiding pollutant coagulation for subsequent removal through water-soluble metal salts,
pH adjustment, or polymer coagulants producing sludge flocs to effectively precipitate or
separate solids from wastewater [13–15]. While these techniques enhance treatment effec-
tiveness, chemical use raises environmental concerns, and the resulting biological sludge
contributes to pipe blockages and water quality deterioration. Fenton oxidation, leveraging
Fenton’s reagent for oxidative capabilities, generates hydroxyl radicals (•OH) through
hydrogen peroxide and iron salt reactions [16–20]. This involves minimal additional de-
vice use compared to other oxidation methods, making it easy to implement. However,
drawbacks include significant sludge generation and increased operating expenses for
subsequent processing.

Currently, there is a growing emphasis on advanced oxidation processes (AOPs) utiliz-
ing semiconductor materials as a promising alternative to conventional methods [21]. These
processes offer advantages, such as simplified equipment requirements, indiscriminate
oxidation, straightforward operational management, cost efficiency, and comprehensive
decomposition of organic dyes into harmless byproducts [22]. A unique aspect of AOPs
involves the generation of reactive species, like •OH radicals, enabling rapid and indis-
criminate oxidation of organic, inorganic, and biological contaminants. Heterogeneous
photocatalysis, employing oxide-based nanomaterials, is particularly effective in eliminat-
ing water-soluble pollutants from both water and wastewater under light exposure [23].

Metal oxide semiconductors, like titanium dioxide (TiO2), demonstrate enhanced
adsorption ability and act as effective catalysts due to increased reactivity, high photosensi-
tivity, extensive specific surface area, cost-efficiency, non-toxicity, and biocompatibility [24].
TiO2, notably one of the most widely used photocatalysts, owes its extensive utilization
to advantageous characteristics, including heightened photocatalytic activity, chemical
stability, cost-effectiveness, and abundance [25,26]. Existing in crystal structures. like
anatase and rutile, TiO2 exhibits distinct band-gaps and surface attributes, significantly
influencing its photocatalytic activity and selectivity. Anatase TiO2 is generally recognized
as the most active among these structures [26,27]. Given their widespread application and
exploration, TiO2-based nanostructures have undergone diverse means of optimization and
chemical modifications to enhance efficiency and broaden their application scope. Efforts
have particularly focused on improvement in TiO2’s absorption of visible light through
doping with non-metal or transition metal ions, combination with other semiconductor
materials or deposition of noble metal nanoparticles with a surface plasmonic resonance
(SPR) effect [28–30].

This review comprehensively summarizes recent advancements in applying TiO2
nanostructures for photocatalytic water and wastewater remediation. It specifically ex-
plores the photocatalytic remediation of various pollutants commonly found in urban water
and wastewater samples, highlighting the mechanisms involved, and addressing a breadth
of pollutants not extensively covered in recent reviews. Additionally, the present review
elucidates the benefits and drawbacks of common synthetic approaches to fabricating TiO2
nanostructures and provides insights into the overall characteristics of titanium dioxide.
Lastly, the toxicity mechanism of titanium dioxide nanostructures is thoroughly discussed.
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2. Overview of TiO2
′s Characteristics

2.1. Structural Properties

Titanium dioxide encompasses eight crystal phases: rutile, anatase, brookite, TiO2-B
(monoclinic) [31], TiO2-R (ramsdellite) [32], TiO2-H (hollandite) [33], TiO2-II (columbite) [34],
and TiO2-III (baddeleyite) [35–37]. Rutile, anatase, and brookite have primarily attracted
attention in research and applications due to their natural occurrence under atmospheric
pressure [38,39]. While other phases have been investigated, their formation involves high
pressure, limiting practical significance [40,41]. Each crystal structure features distinct
atomic arrangements, with titanium atoms in anatase, rutile, and brookite forming an
octahedral coordination with oxygen [42]. Despite similarities, the configuration of TiO6
octahedra varies across phases (Figure 1).
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Figure 1. Anatase, rutile and brookite TiO2 crystal structure along a, b and c axis directions. Green is
used to indicate Ti atoms, while red is utilized for O atoms [43].

Anatase, with a tetragonal lattice in the I41/Amd space group (space group num-
ber 141), exhibits lattice parameters a = b = 3.785 Å and c = 9.514 Å. Despite the lowest
thermodynamic stability among the three TiO2 polymorphs, anatase’s TiO6 octahedra form
a 3D framework, with O atoms positioned at the vertices through corner-sharing. As
a result, a corner-sharing pattern is established as each O atom is shared between two
octahedra. Rutile, the most robust for unit sizes > 14 nm [44], adopts a tetragonal lattice
(P42/mnm space group, space group number 136) with lattice parameters a = b = 4.593 Å
and c = 2.958 Å. Its TiO6 units with a slight orthorhombic distortion [45], and in an edge-
sharing configuration, form chains along the c-axis, interconnected by shared vertices, thus
constructing a 3D network. This leads to a more densely packed structure than that of
anatase. Brookite, less prevalent, has an orthorhombic lattice (Pbc21 space group, space
group number 29) with lattice parameters a = 5.502 Å, b = 8.942 Å, and c = 5.144 Å. Similar
to rutile, brookite’s TiO6 octahedra connect via edge-sharing, forming chains along the
c-axis. However, brookite displays a more distorted arrangement and decreased symmetry
compared to rutile [43].

XRD is commonly utilized by researchers to identify the prevalent TiO2 polymorphs.
Anatase shows characteristic peaks at θ values (diffraction angles) of 12.65◦, 18.9◦, and
24.05◦. Rutile’s peaks appear at θ = 13.75◦, 18.1◦, and 27.2◦, and brookite’s peaks are located
at θ values of 12.65◦, 12.85◦, 15.4◦, and 18.1◦ [46].
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2.2. Energy Band-Gap (Eg)

A scholarly discourse is taking place concerning the band-gap characteristics of the
three as-mentioned TiO2 polymorphs, due to various imperfections. The band-gap within
titanium dioxide originates from the arrangement of electrons in both Ti and O atoms.
Across all three polymorphs of titanium dioxide, the valence band (VB) mainly comprises
O 2p orbitals, while the conduction band (CB) primarily consists of Ti 3d orbitals [47,48].
The most increased point of the VB resides at the Γ point within the Brillouin zone, while
the lowest point of the CB sits at the X point. The band-gap of titanium dioxide is termed
‘direct’, indicating that the transition of an e− from the VB to the CB does not require
a conservation of momentum. However, there are suggestions in some studies of the
indirect character of the TiO2

′s band-gap, possibly due to the separation of O 2p and Ti
3d orbitals brought about by the crystal field from six O atoms [42,49]. This separation
leads to a displacement of the CB, concerning momentum in relation to the VB. In all three
titanium dioxide polymorphs, defects, as well as foreign elements, can create specific points
inside the band-gap, influencing the material’s electronic characteristics. For instance, O
vacancies may incorporate states close to the CB in anatase titanium dioxide, consequently
heightening its photocatalytic capability. Correspondingly, the inclusion of transition metals
can incorporate states adjacent to the VB or CB, thereby modifying the material’s electronic
features [50,51]. Moreover, the characteristics of TiO2’s electrons are notably impacted by
defects and foreign elements, such as oxygen vacancies that contribute to the material’s
n-type doping. These anomalies additionally have the potential to alter the band-gap
properties, with indications supporting the notion that oxygen vacancies may generate
specific points inside the band-gap in anatase, as well as in rutile titanium dioxide [52–54].

Despite the fact that it is widely acknowledged that anatase titanium dioxide possesses
a direct band-gap ranging from 3.2 to 3.26 eV, conflicting studies exist regarding the band-
gap’s nature (ranging from 2.8 to 3.0 eV) in rutile titanium dioxide. Absorption thresholds
are observed at 384 nm for anatase and 410 nm for rutile [55]. Some research studies have
indicated an indirect band-gap in rutile TiO2, while others propose the presence of a direct
band-gap transition close to 3 eV. The brookite phase exhibits a barely decreased band-gap
(≈2.9 eV). Additionally, the absorption thresholds differ among these phases, as the anatase
phase absorbs light within the UV region, whereas the rutile and brookite phases tend to
absorb light within the visible region [56].

2.3. Robustness and Phase Shift

In comparison to other phases, rutile stands as the most robust form of TiO2, display-
ing exceptional resistance to decomposition or phase alterations, even under extremely
increased temperatures. Nevertheless, metastable phases, like anatase and brookite, are
able to transform into the more thermodynamically robust rutile through calcination at
specific temperatures. Numerous studies have delved into the mechanism behind TiO2
phase transitions during calcination. According to [57], the transition process from anatase
to rutile involves nucleation and subsequent growth. Initially, rutile nuclei form on the
surface of anatase, progressively expanding into the bulk. Given the substantial differences
between anatase and rutile, the transformation necessitates the breakage and reformation
of bonds [58]. As anatase transitions to rutile, the {112} planes of anatase persist as the {100}
planes in inaugurally formed rutile. This transition involves rearranging Ti and O atoms
within these planes through the relocation of Ti atoms to form rutile by the rupture of two
Ti–O bonds in the TiO6 octahedron. Consequently, the creation of O vacancies accelerates
the transformation, while Ti interstitials impede it. This shift from anatase to rutile repre-
sents a non-equilibrium phase transition, typically occurring within a certain temperature
range (400–1000 ◦C). The calcination temperature significantly impacts product impurities,
size of particles, and the specific surface area during this transformation process. The
presence of impurities and the processing atmosphere notably affect defect structures, influ-
encing both temperature and phase transition rate. In general, impurities such as Li, K, Na,
Fe, Ce, and Mn oxides tend to stimulate phase transformation through the enhancement
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of oxygen vacancies, whereas impurities such as S, P, and W tend to hinder it. Reductive
atmospheres, like H2 and Cl2, facilitate the transformation, while conducive atmospheres
restrain it by promoting the formation of Ti interstitials [58].

The artificial synthesis process is instrumental in producing anatase nanoparticles,
particularly when synthesizing TiO2 in an aqueous solution [59]. This choice is influenced
by the close energy levels among the aforementioned titanium dioxide phases. When
nanoparticles are sufficiently small (<13 nm), their minimal surface free energy becomes
crucial in determining phase transformations [60]. Anatase remains the most stable phase
for nano-TiO2 crystals <11 nm, while the rutile phase demonstrates thermodynamic stability
for nanocrystals larger than 35 nm. Brookite, positioned between anatase and rutile, exhibits
intermediate stability. Functioning as a metastable phase, brookite shares physical attributes
that fall between those of anatase and rutile [60].

2.4. Other Features

The anatase phase exhibits elevated charge carrier concentrations, as opposed to the
rutile and brookite phases, credited to its larger specific surface area, as well as increased
quantity of O vacancies. Normally, the charge carrier concentration within titanium dioxide
falls approximately between 1016 and 1021 cm−3 [61–64]. These distinct characteristics
render each phase appropriate for diverse applications. More specifically, the anatase phase
finds common use in photocatalysis, while the rutile phase is preferred in solar cells, given
its effective charge transfer abilities.

Rutile’s refractive index (≈2.6) is marginally higher than that of anatase (≈2.48),
indicating the denser nature of the rutile phase, leading to increased radiation absorption.
Anatase typically exhibits a dielectric constant ε ranging from 31 to 51, whereas rutile’s
dielectric constant falls within the range 110 to 117 [50,51,65–67]. The aforementioned
values are approximations for crystalline titanium dioxide thin films, while deviations
may occur in amorphous thin films. The basic features of anatase, rutile and brookite TiO2
crystal structures are detailed in Table 1.

Table 1. Basic features of anatase, rutile and brookite TiO2 crystal structures [42,48,50,51,61,65,67–70].

Feature Anatase Rutile Brookite

Crystal structure Tetragonal
I41/Amd (141)

Tetragonal
P42/mnm (136)

Orthorhombic
Pbc21 (29)

Lattice parameters a, b, c
(Å)

a = b = 3.785
c = 9.514

a = b = 4.593
c = 2.958

a = 5.502
b = 8.942
c = 5.144

Lattice volume (Å3) 136.25 62.07 257.38
Specific Gravity (g/cm3) 3.8–3.9 ≥4.2 3.9–4.1
Hardness (Mohs scale) 5.5–6.0 5.5–6.0 5.5–6.0

Density (kg/m3) 3830 4240 4170

Refractive index ng = 2.5688,
np = 2.6584

ng = 2.9467,
np = 2.6506

ng = 2.809,
np = 2.677

Band-gap (eV) 3.2–3.26 2.8–3.0 2.9
Absorption band-gap (eV) 2.04 1.78 2.20

Ti-O bond length (Å) 1.92–1.95 1.91–1.94 1.87–2.04
O-O bond length (Å) 2.43 2.43 2.49

3. Methods Utilized in the Synthesis of Nanoparticles

Typically, various metal and metal oxide nanoparticles can be synthesized using two
primary methods: top-down and bottom-up approaches. Top-down techniques encompass
the disintegration of larger or bulk substances to create the desired nanomaterials. Con-
versely, bottom-up strategies involve the assembly of individual atoms and molecules to
form larger nanomaterials, as illustrated in Figure 2. The diversity of physical, chemical,
and environmentally friendly approaches employed in synthesizing different nanoparticles
aligns with either of these two approaches.
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3.1. Physical Methods

All physical methods utilized for synthesizing nanoparticles have been identified as
top-down approaches. These physical techniques, including mechanical or ball milling,
laser ablation, lithography, sputtering, etching, and pulse wire discharge, operate within
the framework of a top-down approach, breaking down large molecules into smaller
ones [71–76]. Among these methods, lithography stands out for nanoparticle synthesis
effectiveness but necessitates high energy input. Despite the substantial energy employed,
this method is almost unsuitable for producing symmetrical nanoparticles [77].

The fundamental drawback of the top-down techniques lies in generating nanopar-
ticles with an imprecise surface structure. It is believed that the conventional top-down
approach induces significant crystallographic damage to the resulting structures [78]. Al-
though the physical route is simple, swift, and direct, it yields nanoparticles of inferior
quality, characterized by flawed surface morphology and unintended impurities [79].
Hence, scientists have been exploring an alternative approach, namely the bottom-up
method, aiming to synthesize high-quality and high-purity nanoparticles.

3.2. Chemical Methods

The chemical methodology utilized in nanoparticle production predominantly adopts a bottom-
up technique. This bottom-up approach involves the combination of small molecules or atoms to
create larger molecules through self-assembly mechanisms. Bottom-up methods mirror agglom-
eration processes and stand in contrast to top-down approaches. Several chemical methods, like
sol–gel processes [80], hydrothermal methods, chemical vapor deposition [81], physical vapor depo-
sition [82], solvothermal [83], co-precipitation [84], chemical reduction [85] and microwave-assisted
approaches [86], are included in the bottom-up strategies for nanoparticle production [87].

3.3. Green/Biosynthesis Methods

Traditional methods have long been employed for nanoparticle synthesis, yet recent re-
search underscores the superiority of green approaches over conventional methods, due to
several benefits, including reduced failure rates, cost-effectiveness, and simplified characteri-
zation. Green synthesis, or biosynthesis, involves the utilization of biomolecules to facilitate
nanoparticle formation by diminishing the titanium precursor. These biomolecules serve not
only as reducing agents but also as capping agents, curbing nanoparticle agglomeration. Pro-
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teins, polysaccharides, organic acids, enzymes, flavonoids, terpenoids, and phenols, among
others, can serve as these biomolecules. Additionally, green nanoparticle synthesis demonstrates
greater environmental friendliness compared to physical and chemical synthesis, notably lower-
ing emissions of harmful chemicals. Leveraging the manifold advantages of green synthesis,
it has found successful applications across various fields [88]. In Table 2, the benefits and
drawbacks of the methods utilized in synthesizing nanoparticles are summarized.

Table 2. Benefits and drawbacks of synthetic methods.

Synthetic Method Benefits Drawbacks

Physical
• No capping reagents are required.
• Absence of by-products.
• Size distribution and shape are uniform.

• Enhanced cost.
• Sophisticated facilities needed.
• Extreme conditions.

Chemical
• High controlled size distribution and shape.
• Cost efficient.

• Noxious capping reagents are needed.
• Toxic emissions.
• Long-lasting reactions.

Green/biosynthesis

• Eco-friendly.
• Facile process.
• Cost efficient.
• No capping reagents are needed.

• Wide particle size distribution.
• Nanoparticles’ aggregation.
• Potential contamination.

3.4. Synthesis of Nano-TiO2 Materials

The synthetic approach with titanium dioxide can be customized to generate diverse
crystal structures, sizes, and shapes, all of which can significantly impact its sensing ca-
pabilities. Various synthetic techniques, such as sol–gel, hydrothermal, and vapor phase
methods, have been utilized to craft TiO2 nanomaterials with distinct characteristics. The
sol–gel synthetic approach is initiated by hydrolyzing titanium alkoxides in the presence
of H2O and alcohol, subsequent to a condensation reaction, which results in the forma-
tion of a robust gel precursor. The hydrothermal synthetic method entails subjecting Ti
precursors to high pressure and temperature in an aqueous solution, yielding nanocrys-
talline titanium dioxide with distinct morphologies. Vapor phase synthesis comprises the
thermal breakdown of Ti precursors in a gaseous phase, yielding high-purity titanium
dioxide nanoparticles with controlled particle size. This segment offers an overview of hy-
drothermal, sol–gel, and green synthetic approaches, alongside chemical vapor deposition,
physical vapor deposition, as well as other approaches. Table 3 summarizes and compares
several synthetic routes, delineating their respective benefits and limitations.

In general, the bottom-up synthetic approaches, such as sol–gel, hydrothermal, CVD and
PVD, have gained interest and constitute the most common ways for producing TiO2 nanos-
tructures, due to their advantage in controlling particles’ size and structural attributes during
synthesis. However, the aforementioned approaches are costly, time- and energy-consuming,
requiring increased temperature and pressure conditions. Additionally, noxious and volatile
reagents are utilized that can harm both the environment and human life, while mass production
is limited. All these characteristics promote limitations in their manufacturing, as well as potential
environmental applications [89]. Hence, an eco-friendly and cost-efficient approach is needed to
synthesize TiO2 nanostructured materials on a larger scale with fewer hazards [90]. Consequently,
green synthesis has been proposed as an alternative approach for TiO2 nanostructure synthesis.
Green synthesis is a naturally adaptable, environmentally benign and non-toxic approach that uses
less expensive chemicals and requires low energy for cost-efficient production [91,92]. Biological
extracts can operate as both stabilizing and reducing agents and the same reducing agent can be
employed to develop a variety of metallic nanoparticles [93], while water-soluble metabolites are
mostly involved in the reduction process [91]. Moreover, nanostructures with better morphology
and stability have also been reported through a green synthetic approach [91].



Reactions 2024, 5 142

Table 3. Comparison of the most commonly utilized methods for the production of TiO2 nanoparticles.

Synthetic Method Benefits Drawbacks

Sol–gel

• Cost-efficient.
• Low temperature needed.
• Increased control.
• Enhanced specific surface area.
• Eco-friendly.

• Sensitivity to reaction conditions.
• Post-treatment needed.

Hydrothermal
• Variable control.
• Enhanced specific surface area.

• Need of increased temperature and
pressure.

• Time-consuming.
• Concentrated chemicals are used.

Chemical Vapor Deposition (CVD)
• Enhanced purity.
• Exceptional control of film thickness and

morphology.

• Complex infrastructure.
• Increased cost.
• Expertise required.
• Non-eco-friendly.

Physical Vapor Deposition (PVD)

• Increased purity.
• Precise control of film thickness and

morphology.
• Eco-friendly.

• Increased cost of equipment and
maintenance.

• Enhanced energy requirements.

Green/biosynthesis

• Eco-friendly.
• Cost-efficient.
• No capping and stabilizing reagents

required.
• No complex infrastructure required.
• Ease in handling.
• Reduced agglomeration.

• Control of size may be challenging.

3.4.1. Sol–Gel Synthetic Approach

The sol–gel approach stands as a widely adopted method in the fabrication of tita-
nium dioxide. In comparison to alternative methods, this approach allows operation at
lower temperatures and provides precision in regulating the size and morphology of TiO2
particles. TiO2 can be generated in various forms, such as powder, aerogel, fiber spinning,
and thin films. The precursors commonly fall into two categories: (a) metal alkoxides
and (b) inorganic metal salts [94–96]. The primary steps involve hydrolysis, condensation,
aging, drying, and heat treatment. When metal alkoxides serve as precursors, hydrolysis
takes place by substituting the OR group of metal oxide M-O-R with water’s hydroxyl
group, forming a molten gel. With time, the metal alcoholates of hydroxide coalesce to
construct a 3D network, eventually resulting in gel formation as the solvent diminishes.
Through tailoring the primary precursor’s chemical structure and meticulously controlling
processing variables, nanocrystalline products characterized by enhanced chemical purity
can be attained. The typical process of preparing titanium dioxide via sol–gel procedures
entails hydrolysis and polycondensation reactions of Ti(OR)n (titanium alkoxides), culmi-
nating in the creation of oxo-polymers that subsequently transition into an oxide network.
The sol–gel technique is advanced based on the subsequent equations (Equations (1)–(4)):

M(OR)n + H2O → M(OR)n−1(OH) + ROH (hydrolysis) (1)

M(OR)n + M(OR)n−1(OH) → M2O(OR)2n−2 + ROH (dehydration) (2)

2M(OR)n−1(OH) → M2O(OR)2n−2 + H2O (de − alcoholation) (3)

M(OR)n +
n
2

H2O → MOn/2 + nROH (overall reaction) (4)
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The hydrolysis and condensation processes happen concurrently, resulting in the
creation of a sol or a colloidal suspension containing nanoparticles within a liquid phase.
This sol undergoes aging and drying phases, leading to the formation of a gel, which is then
subjected to enhanced temperature calcination, in order to eliminate organic residues and
attain the desired crystalline configuration for titanium dioxide. Through modulation of
synthesis parameters, like pH, temperature, and precursor concentration, the as-mentioned
approach offers precise manipulation of the dimensions, structure, and crystalline nature of
titanium dioxide nanoparticles. Furthermore, this method is comparatively straightforward,
cost-efficient, and adaptable for large scale production.

Studies concerning this technique predominantly concentrate on manipulating various
factors within the procedure to enhance the characteristics of TiO2. These influential factors
encompass the molar ratio of precursor:H2O, solution’s pH, precursor type, catalyst type,
annealing temperature and time. This review particularly delves into the impact of the
precursor:H2O molar ratio, the pH value of the solution, and annealing duration and
temperature. The detailed process of the sol–gel method is depicted in Figure 3.
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Figure 3. Schematic illustration of the sol–gel synthetic approach for the production of distinct TiO2

nanostructures.

Precursor:H2O Molar Ratio

In the initial hydrolysis stage of the sol–gel procedure, the quantity of H2O utilized
plays a pivotal role. In cases where the H2O volume is insufficient, additional substances,
like alcohol compounds, might not dissolve entirely. In [97], it was proposed that the
precursor:H2O ratio (Rw) should not fall below 2.5, emphasizing that adequate water
content enhances the hydrolysis rate. According to another study [98], the Rw value yields
three potential outcomes, Firstly, a Rw value that is too small may result in incomplete
alcoholate dissolution. Secondly, at a moderate Rw value, water engages with monomer
molecules. Finally, an excessively large Rw value, surpassing the critical value, might
expedite hydrolysis completion within a brief period.

Solution’s pH

The solution’s pH value during synthesis significantly influences the production of
TiO2. It holds the ability to impact both the shape and the comprehensive structure of the
resulting titanium dioxide nanoparticles. In previous research [99], a highly acidic titanium
tetrachloride solution subjected to high-temperature aging resulted in the synthesis of
small, finely-tuned particle sizes. The study revealed that pH value not only influenced
particle’s morphology, but also affected the robustness of the colloid. Studies suggest that
an escalation in particle size occurs because of an abundance of H+ ions within the solution
that substantially disrupt both nucleation and growth processes.
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Annealing Procedure’s Time and Temperature

Temperature and duration are pivotal elements in the annealing process of titanium dioxide
powder synthesized through the sol–gel technique. Managing these variables allows for the
modification of TiO2’s structure and properties. In a study by Castrejon-Sanchez [100], TiO2
created via the sol–gel approach underwent annealing at 475 ◦C for times ranging from 35
to 200 min. Observations revealed a structural shift in the sample from 100% anatase to 0%
rutile, indicating a transition in TiO2 structure from anatase to rutile as the annealing time
increased. Additionally, Kim and co-researchers [101] investigated temperature’s impact on
titanium dioxide thin films and noted that, at 400 ◦C, TiO2 maintained an anatase structure,
while a transformation to rutile occurred at temperatures approaching 1000 ◦C.

Other Parameters

Additionally to titanium dioxide nanoparticles and coatings, ordered mesoporous titanium
dioxide stands out as a distinctive TiO2 material due to its exclusive porous configuration,
drawing significant interest recent decades for potential applications across various domains,
like photocatalysis, energy storage, and drug delivery. The synthetic procedure for ordered
mesoporous titanium dioxide generally includes the utilization of surfactants acting as templates,
in order to regulate the material’s pore size and structure. One prevalent approach constitutes
the sol–gel method, where the precursor is dissolved in a surfactant template-containing solvent,
leading to subsequent hydrolysis and condensation reactions that yield the ordered mesoporous
structure. Alternatively, the hard templating route employs rigid inorganic templates, like SiO2
or Al2O3, to create the mesoporous framework, subsequently filled with the titanium dioxide
precursor and subjected to enhanced temperature calcination for eliminating the template.
Other methodologies encompass the utilization of block copolymer templates, the microwave-
assisted synthetic approach, electrospinning, etc. [98,99,102–104]. The development of ordered
mesoporous titanium dioxide remains an active realm of exploration, characterized by continual
endeavors directed towards optimizing the conditions of synthesis and tailoring the material’s
attributes for specific applications.

3.4.2. Hydrothermal Synthetic Approach

The hydrothermal approach is a frequently utilized method for manufacturing tita-
nium dioxide, wherein the manipulation of process conditions facilitates regulation of
the particles’ size and configuration. This technique involves the utilization of water as a
solvent, combined with an appropriate solute to create the initial substance. The reaction
transpires within a steel pressure container, occasionally using a PTFE (polytetrafluoroethy-
lene) liner. The reaction’s temperature and pressure levels depend on the concentration
of the solution. Within the pressure vessel, dissolution and crystallization reactions take
place, resulting in the creation of titanium dioxide.

The critical variables influencing the hydrothermal process encompass temperature,
solution pH, and reaction duration. Hashemi and his team [105] accomplished the cre-
ation of 3D heterogeneous structures comprising ZnO nanowires specifically grown on
TiO2/ZnO composite nanofibers through a combined approach employing electrospinning
and the hydrothermal technique. Additionally, Aditya and Basanta [106] adopted an al-
ternate solvent method, distinct from the hydrothermal approach, employing a precursor
mixture of TiCl4 and distilled water to fabricate TiO2 thin films.

Moreover, Prathan and colleagues conducted a study that introduced a hydrothermal tech-
nique to produce vertically-aligned TiO2 nanorods on a fluorine-doped tin oxide glass substrate,
employing minimal amounts of harmful substances [107]. Through optimized conditions, they
achieved enhanced crystalline orientations across the [001] axis, predominantly exposing (002)
facets, resulting in excellent visible light transmittance and effective electron pathways. The
as-mentioned low-cost method exhibits promise for cultivating well-aligned titanium dioxide
single-crystal nanorods appropriate for solar cell applications, while reducing the utilization
of precursors and HCl. In a separate investigation, Ibrahim and co-researchers [108] varied
hydrothermal reaction times between 1 to 5 h and observed some influence on TiO2 charac-
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teristics and performance, albeit not distinctly evident. Furthermore, researchers like Reilly
and his team [109] utilized porous glass microbeads as a substrate for titanium dioxide growth,
reducing TiO2 wear rates. In addition, Hameed and Abdulrahman [110] utilized titanium
isopropoxide and potassium hydroxide as precursors, heating the solution and subjecting it to
a magnetic field, resulting in TiO2 with enhanced antibacterial activity compared to samples
without magnetic treatment. The experimental process is illustrated in Figure 4.
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3.4.3. Chemical Vapor Deposition (CVD) Synthetic Approach

In the production of TiO2 through chemical vapor deposition, the initial substance
changes from a solid to a gas form, then onto the substrate, where it undergoes pyrolysis or
chemical reactions to create thin titanium dioxide films. Key factors influencing this process
include precursor concentration, deposition temperature, and substrate morphology. Previ-
ous research employing chemical vapor deposition often utilized titanium isopropoxide
as a precursor, also termed metal–organic chemical vapor deposition. For instance, Ahn
and colleagues [111] employed titanium isopropoxide as a precursor, comparing plasma
enhanced chemical vapor deposition (PECVD) and low-pressure chemical vapor deposition
(LPCVD) processes for TiO2 fabrication. The deposition rate of PECVD was observed to
be three times faster than that of LPCVD. Similarly, Djerdja and his team [112] utilized
TiCl4 as a precursor, in order to deposit TiO2 films at lower temperatures, noting that
substrate properties significantly influenced the quality of the resulting titanium dioxide
films. Astinchap and co-researchers [113] examined the impact of substrate temperature
and the quantity of precursor used on thin films of titanium dioxide.

In a separate study, Zhang and Li [114] innovatively utilized titanium isopropoxide as
the precursor, employing atomizing chemical vapor deposition technology for the first time.
An ultrasonic transducer atomized the precursor, successfully depositing TiO2 films onto the
substrate. Observations indicate that, as the temperature rises, there is a corresponding increase
in the surface roughness of the sample, along with an augmentation in the anatase diffraction
peak. Moreover, it is suggested that elevating both the substrate temperature and precursor
concentration contributes to enhanced film crystallinity. Additionally, the rate of deposition
demonstrated an initial rise followed by a decrease as the precursor concentration increases.

3.4.4. Physical Vapor Deposition (PVD) Synthetic Approach

Physical vapor deposition is a method that converts the precursor into a gaseous
form before applying it onto the substrate. In contrast to chemical vapor deposition, this
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technique does not entail any chemical reactions. PVD technology encompasses two main
approaches for deposition based on the target object: cathode arc and magnetron sputtering.
Esparza-Contro and his team [82] effectively modified the chemical characteristics of a
titanium dioxide film. This was accomplished by regulating the oxygen partial pressure,
while coating a Fe wire on the film, employing PVD technology.

Then, Ghufran and co-researchers [115] utilized cathode arc and magnetron sputtering
technologies to apply TiO2 thin films. They analyzed both the surficial morphology, as well
as the chemical composition, of the as-mentioned thin films utilizing SEM/EDX analysis.
This evaluation aimed to study the adhesion characteristics of these thin films. The research
findings concluded that a higher roughness in the deposited TiO2 film correlated with
increased adhesion. While the majority of the studies involving PVD-based titanium
dioxide film preparation concentrate on altering the deposition process-impacting factors,
such as the crystal structure, oxygen flow rate during deposition, grain size, target surface
roughness, distance from the matrix, and deposition power, there are also investigations
focused on enhancing the entire PVD apparatus.

Moreover, Artoshina and his team [116] enhanced the conventional magnetron sput-
tering apparatus and employed AFM and XRD techniques for characterizing the Ag@TiO2
and Tm-Ag@TiO2 samples. The use of an inverted DC measuring and controlling tube
increased material density when sputtering onto the substrate, resulting in more stable
equipment parameters during operation compared to traditional methods.

Furthermore, Supriad and colleagues [117] utilized electrolytic polishing technology,
in order to treat the deposited target material. Their findings indicated that substrates with
decreased surface roughness facilitated the plating of titanium dioxide film, and smoother
substrate surfaces led to better adhesion of the film.

Finally, in another study [118], magnetron sputtering technology was employed to
deposit TiO2/SnO2 and TiO2/CuO films.

3.4.5. Green Synthetic Approach

Chemical vapor deposition, physical vapor deposition, and the sol–gel synthetic ap-
proaches are part of both physical and chemical methodologies. In general, these techniques
involve increased temperatures and pressures, posing potential harm to the environment.
In contrast, the green synthetic approach, utilizing plants and microorganisms, is charac-
terized by a reduced environmental impact and is considered as more eco-friendly. This
approach falls into two categories: plant synthesis, using plant extracts, and microbial
synthesis, employing bacteria, fungi, yeast, and enzymes. Subsequent sections will delve
into progress and developments within both these methods.

Synthesis of TiO2 Nanoparticles Using Microorganisms

The synthesis of titanium dioxide nanoparticles through microorganism-mediated pro-
cesses surpasses conventional chemical and physical methods in creating stable, cost-effective,
and environmentally friendly nanoparticles. Various microorganisms, like fungi, yeast, and
bacteria, are utilized, given a composition rich in proteins, polysaccharides, organic acids, and
enzymes [119]. These microorganisms aid in metal ions’ reduction to metal nanoparticles via
hydrolysis and reduction processes [120]. Enhancing nanoparticle stability is achievable by
coating them with nanoparticles, a process facilitated by the bioactive components present in
microorganisms. Utilizing microorganisms in the green pathway for nanoparticle production
is more feasible for large scale manufacturing, due to their resilience to agitation and pressure
compared to plant-based methods [121]. Moreover, manipulating the metabolism of microor-
ganisms allows for the acquisition of nanoparticles with favorable properties, achieved through
the optimization of various operational conditions.

The microorganism approach extensively employs intracellular and extracellular meth-
ods [122]. Intracellular nanoparticle formation involves introducing metal precursors into
the culture, leading to their uptake by microbial cells. Consequently, the resulting nanopar-
ticles are somewhat challenging to extract, necessitating further steps, such as chemical
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treatments, centrifugation, and filtration, to disrupt cells and extract the nanoparticles.
Conversely, the extracellular method involves trapping metal ions onto the surface of
microbial cells, followed by the reduction of these ions into nanoparticles through bioactive
precursors within the microbial cells (Figure 5). Many researchers favor this method for
nanoparticle production, due to the lack of additional extraction steps.
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Bacteria exhibit promising potential, due to their abilities in mobilizing and immobilizing
metals, particularly in the reduction of metal ions for nanoparticle generation. While the exact
mechanism behind nanoparticle generation through bacteria remains incompletely explored,
achieving the desired morphology is attainable through optimization of operational parame-
ters [123]. Babitha and co-researchers [124] conducted research utilizing Propionibacterium jensenii
and TiO(OH)2, leading to the production of crystalline anatase titanium dioxide nanoparticles
with sizes ranging from 15 to 80 nm, as verified through XRD and FE-SEM analyses.

Furthermore, Salman and co-workers [125] examined TiO2 nanoparticle synthesis
using Lactobacillus crispatus without employing calcination. These nanoparticles, displaying
anatase as the crystalline phase, were characterized by a particle size equal to 70.98 nm,
showcasing both spherical and oval shapes. In addition, Órdenes and his team [126]
employed a non-pathogenic soil bacilli (Bacillus mycoides) and TiO(OH)2 in their research.
Notably, an organic substance layer was observed on the TiO2 nanoparticles, speculated to
be an extracellular matrix produced by the bacterium. The as-developed organic substance
played a role in green synthesis by assisting in capping and stabilizing the nanoparticles,
while it appeared to be a peptide or carbohydrate through FTIR analysis. Moreover,
Sunkar and his team utilized B. cereus and titanium dioxide, in order to produce pure
anatase TiO2 nanoparticles [127]. Their research highlighted nanoparticle production, due
to the bacteria’s negative electrokinetic potential. Additionally, the hydrolysis of TiO2
nanoparticles was facilitated by B. cereus’ extracellular proteins, as certified by FTIR study.

In addition, Suriyaraj et al. [128] utilized Ti(OH)4 along with extremophilic and
radiation-resistant B. licheniformis to produce nanoparticles, measuring 16.3 nm and dis-
playing sphere-shaped morphology. Optimal conditions revealed the pH value of the
as-mentioned nanoparticles as equal to 4.5. TEM analysis showcased the production of
nanoparticles on the cell wall surface of the bacterial species after treatment with Ti(OH)4.
In addition, other research using the same bacteria and TiO2 as raw materials synthesized
irregular, as well as spherical nanoparticles [129]. Employing the intracellular approach,
the process was characterized by a longer oxidation duration (96 h), causing a delay. On
the contrary, titanium dioxide nanoparticles were extracellularly synthesized within 48 h
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using Lactobacillus species [130]. The aforementioned nanoparticles varied in size (8–35 nm)
and were identified to possess rutile and anatase crystalline phases, as verified through
TEM and XRD analyses, respectively. Similar to other bacterial species, these species at-
tracted titanium cations, due to negative electrokinetic potential. Additionally, the slightly
acidic pH and decreased oxi-red potential activated oxidoreductase enzymes bound by the
membrane, thus leading to nanoparticles generation.

TiO2 nanoparticles were created at 37 ◦C by utilizing Halomonas elongata and TiO(OH)2,
leading to anatase TiO2 nanoparticles [131]. Mixing the H. elongata supernatant with
TiO(OH)2, followed by incubation at 37 ◦C, resulted in the production of titanium dioxide
nanoparticles within the white precipitate. Although this approach seemed straightforward,
it exhibited a delay, taking 96 h to complete. FTIR analysis identified various functional
groups, such as alkyl halides, alkenes, alkynes, and alcohols. Further research involved
synthesizing titanium dioxide nanoparticles from the supernatant of Streptomyces species
HC1, using TiO(OH)2 as Ti precursor [132]. White clusters of TiO2 nanoparticles were
obtained by subjecting a solution with pH=5 to a steam bath at 60 ◦C for 30 min in this
research. XRD data confirmed these nanoparticles to be in the anatase phase, characterized
by spherical shapes with sizes ranging from 43 to 67 nm, as observed in SEM images.

Fungi and yeast present distinct advantages compared to bacteria, due to their high
metal tolerance, convenience in handling, isolation, culture, and maintenance, without
the necessity of additional intricate or costly equipment (Figure 6). In the synthesis of
TiO2 nanoparticles utilizing Fusarium oxysporum fungi and K2TiF6 as raw materials, the
extracellular method was employed [133]. The resulting TiO2 nanoparticles exhibited
spherical shapes, ranging in size from 6 to 13 nm, and were found to exist in both brookite
and rutile phases. Another innovative approach involved investigating a novel approach
using Aspergillus flavus mycelia and titanium dioxide [134]. Surficial analysis unveiled
that, although these nanoparticles were agglomerated, they exhibited stability without
direct aggregation, indicating that the conversion of titanium dioxide into titanium dioxide
nanoparticles occurred at the surface. Additionally, it was observed that immobilized
Aspergillus flavus mycelia were more efficient in binding TiO2 nanoparticles.
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Another study investigated the utilization of Trichoderma viride [136]. The obtained nanopar-
ticles were crystalline, displaying a size equal to 74.4 nm. These nanoparticles possessed a
spherical shape and high purity. In other research [137], TiO2 nanoparticles were synthesized
utilizing the wild mushroom Fomitopsis Pinicola and titanium isopropoxide, showing rutile
phase formation with reduced crystallinity. FTIR studies confirmed the involvement of reducing
and capping agents, like polyphenols and flavonoids, throughout the entire nanoparticles’
synthesis process. Recently, TiO2 nanoparticles were produced utilizing Trichoderma citrinoviride
and titanium isopropoxide [138]. The research team employed an extracellular approach in
an acidic environment followed by calcination at 450 ◦C for 2 h. Nevertheless, XRD analysis
indicated a mixture of two phases in these nanoparticles, namely rutile and anatase.

Saccharomyces cerevisiae was combined with TiO(OH)2 that served as the TiO2 precur-
sor [130]. Baker’s yeast consists of various compounds, such as methoxy and hydroxyl
derivatives of quinones, benzoquinones, and tolu-quinones, which proved highly effective
in producing TiO2 nanoparticles. In another investigation, baker’s yeast was utilized along-
side TiCl3 as the TiO2 precursor for intracellular generation of TiO2 nanoparticles [139].
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Notably, this method resulted in the production of highly pure anatase crystalline phase
without any presence of the rutile phase. SEM and TEM analyses of the nanoparticles
emphasized the spherical nature of the nanoparticles, ranging in diameter from 3.6 to
12 nm, while surface analysis revealed a relatively simple lamellar structure.

Enzymes play pivotal roles as reducing agents, catalysts, and stabilizers in the enzyme-
mediated synthesis of titanium dioxide nanoparticles. Consequently, several research
teams have employed specific enzymes in the production of titanium dioxide nanoparticles.
Nevertheless, this method of creating titanium dioxide nanoparticles has received limited
attention, due to its dependence on specific substrates and controlled growth parame-
ters. Enzymes utilization may not be economically feasible concerning commercialization
prospects. In a study by Sumerel and his team [140], silicatein and Ti-bis(ammonium
lactate)di-hydroxide (BALDH) were utilized to fabricate TiO2 nanoparticles, resulting in
the production of both amorphous and crystalline forms. Subsequent XRD study verified
the transformation of the amorphous TiO2 nanoparticles into the anatase phase upon heat-
ing to 427 ◦C. Further elevation of the temperature to 827 ◦C led to the crystallization of
titanium dioxide nanoparticles into the rutile phase.

In addition, Johnson and co-researchers [141] detailed the production of TiO2 nanopar-
ticles utilizing Ti-BALDH and urease enzymes as the initial components, in order to study
the impact of incubation temperature and reaction duration on the crystal phases of TiO2
nanoparticles. Regardless of the experimental conditions, XRD analysis confirmed that
the acquired nanoparticles were consistently in the anatase crystalline phase. Altering
the incubation temperatures and reaction times had minimal influence on the surficial
morphology of the obtained titanium dioxide nanoparticles.

Synthesis of TiO2 Nanoparticles Using Plants

The fabrication of titanium dioxide nanoparticles through plant-mediated means offers
several advantages in comparison to microorganism-mediated synthesis. This method
is more convenient, cost-effective, yields higher outputs, is easily manageable, requires
less time, and does not necessitate the maintenance of cell cultures [142]. Moreover, this
approach holds additional value by utilizing plant waste, such as fruit peels, seeds, and as
stems, enhancing sustainability. Plants contain various metabolites and phytochemicals
that serve as effective reducing agents during nanoparticle synthesis.

Although diverse parts of plants have been employed in plant-moderated titanium
dioxide nanoparticle fabrication, utilizing leaves from different plants could emerge as
a promising approach due to their availability, in contrast to roots, stems, and seeds.
Additionally, leaves’ treatment is cost and energy effective, as stems, seeds, and roots are
challenging to finely crush for phytochemical extraction. Furthermore, flowers are less
preferable, given their usage in perfume manufacturing and for decorative purposes. The
graphical representation of plant-moderated synthesis, particularly using leaf extracts, for
nanoparticle production is depicted in Figure 7.
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The initial phase of plant-mediated synthesis involves acquiring plant extracts from
any plant part, which are subsequently boiled in an appropriate solvent, usually distilled
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water or ethanol, after a thorough cleaning process. The obtained filtered solution, recog-
nized as the plant extract, serves as the reducing agent required for the Ti precursor [143].
With continuous stirring and suitable conditions, the plant extract undergoes gradual
addition of an appropriate titanium precursor. A noticeable alteration in the solution’s
color indicates the initial formation of amorphous TiO2 nanoparticles. After filtration,
these amorphous titanium dioxide nanoparticles are washed using a proper solvent, in
order to prohibit contact with the plant extract. Ultimately, the filtered titanium dioxide
nanoparticles are dried and subjected to calcination at 500 ◦C, leading to the formation of
crystalline titanium dioxide nanoparticles.

Gowri and his team [144] utilized Nyctanthes arbour-tristis leaves as the primary plant
extract, along with titanium isopropoxide, as the titanium precursor for their initial ex-
perimentation. Upon XRD analysis, it was discerned that these nanoparticles possessed
pure, crystalline anatase TiO2 phases. Furthermore, Sethy and co-workers [145] fabricated
titanium dioxide nanoparticles demonstrating a notably enhanced specific surface area
(105 m2/g) and a significant pore diameter equal to 10.50 nm. For this research, Syzygium
cumini leaves had been chosen as plant extract source, as well as capping agent, leading
to the production of irregularly shaped nanoparticles with non-uniform characteristics.
Remarkably, the as-mentioned nanoparticles presented a decreased zeta potential equal to
−18.7 mV, contributing to a moderately stable behavior.

In the synthesis involving Mentha aquatic leaf extract, titanium isopropoxide served
as the titanium source [146]. The resulting nanoparticles displayed a sphere-shaped mor-
phology and possessed a stable anatase TiO2 crystalline phase, which was attributed to the
high content of phenols and flavonoids found in Mentha aquatic leaves. These significant
discoveries have spurred further investigations into plant extracts.

Pushpamalini and his team [147] fabricated titanium dioxide nanoparticles under heat
treatment at 400 ◦C, in order to entirely remove biomolecules and prevent agglomeration.
Utilizing different plant species (Piper betel, Ocimum tenuiflorum, Moringa oleifera and Co-
riandum sativum) they obtained titanium dioxide nanoparticles exhibiting the anatase TiO2
phase in total and characterized by sizes equal to 6.6 nm, 7.0 nm, 6.6 nm and 6.8 nm, respec-
tively. The FTIR analysis suggested nearly complete elimination of biomolecules at 400 ◦C,
a conclusion further verified through TEM analysis, which revealed subtle clustering of the
acquired TiO2 nanoparticles.

Moreover, Subhapriya and co-researchers [92] utilized TiOSO4 and Trigonella foenum-
graecum for the development of titanium dioxide nanoparticles, displaying strong light
absorption at a wavelength equal to 400 nm. Aloe barbadensis, commonly known as aloe
vera, is recognized for its abundant minerals, vitamins, amino and fatty acids, terpenoids,
and flavonoids. The as-mentioned plant extract was incorporated into two research projects
using TiCl4 as the Ti source. Th research of [148] documented a calcination procedure
to synthesize TiO2 nanoparticles, yielding anatase-phase nanoparticles within the size
range of 60–80 nm. Conversely, [149] omitted the calcination process, resulting in mixed
phases of titanium dioxide nanoparticles, including anatase, brookite, and rutile, within
a size range equal to 20–50 nm, while displaying a sphere-shaped morphology. The use
of calcination within the methodology facilitated the production of pure single-crystalline
TiO2 nanoparticles.

Furthermore, Hameed and his team [150] synthesized TiO2 nanoparticles utilizing
banana peel extract and titanium dioxide. The subsequent AFM analysis verified an
average diameter equal to 88.45 nm for the as-prepared TiO2 nanoparticles, while the XRD
analysis confirmed a volume of 31.5 nm. Finally, Ali and co-researchers [151] conducted
a novel fabrication process of TiO2 quantum dots using watermelon peel waste. The
resultant composite exhibited an average particle size equal to 7 nm and manifested a
polycrystalline crystal structure. Notably, it displayed effective inhibitory properties against
various pathogenic bacteria, such as Bacillus subtilis, Escherichia coli, Cryptococcus neoformans,
Candida albicans, Aspergillus niger and Pseudomonas fumigatum. The synthetic procedure of
the as-mentioned composite is illustrated in Figure 8.
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Madadi and his team [152] synthesized TiO2 nanoparticles using titanium butoxide as
the Ti precursor combined with Glycyrrhiza glabra root extract. The resulting nanoparticles
exhibited an increased size range (60–70 nm) compared to previously reported nanoparti-
cles. In a separate study, titanium N-tetra-butoxide was employed as the Ti precursor in an
ethanolic root extract of Kniphofia foliosa [153]. Rather than utilizing heat, precipitation of
titanium dioxide nanoparticles occurred by employing a NaOH solution. Variations in the
precursor:plant extract volume ratios (1:2, 1:1 and 2:1) were investigated for characteriza-
tion purposes. XRD analysis indicated that produced samples with volume ratios equal
to 1:1 and 2:1 yielded crystalline titanium dioxide nanoparticles featuring an anatase TiO2
phase, while the 1:2 sample exhibited fewer crystalline nanoparticles. Excessive plant ex-
tract presence led to reduced crystallinity. These nanoparticles showcased stability even at
temperatures surpassing 500 ◦C, exhibiting sizes in the range of 8.2–10.2 nm. Additionally,
FTIR analysis confirmed the presence of significant phytochemicals within the root extract.

In addition, Al-Shabib and co-researchers [154] used Withania somnifera root extract in
conjunction with bulk titanium dioxide during the synthetic process. Withania somnifera
root extract is comprised of various elements, such as withanolide, flavonoid, amino acid,
alkaloid, and phenolic derivatives. The aforementioned constituents played a crucial role
in reducing bulk titanium dioxide for TiO2 nanoparticles, ensuring their stabilization as
well. Notably, the resulting nanoparticles were found to possess mixed crystalline phases
of anatase and brookite without undergoing calcination. Also, TEM analysis confirmed
the presence of nanoparticles exhibiting sphere- and square-shaped morphologies, ranging
in size between 50 and 90 nm. Moreover, zeta potential measurements indicated the
exceptional stability of the as-prepared nanoparticles, possessing a value equal to −24 mV.
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Flower extracts have been a subject of interest for synthesizing titanium dioxide
nanoparticles. Marimuthu and his team [155] synthesized TiO2 nanoparticles utilizing
Calotropis gigantea flower extract and TiO(OH)2. However, XRD analysis revealed impuri-
ties in the fabricated TiO2 nanoparticles, because of the presence of bioorganic molecules,
as well as residual TiO(OH)2 on the nanoparticles’ surface. Similarly, Aravind and co-
researchers [156] employed jasmine flower extract for the production of TiO2 nanoparticles.
Devikala and his team [157] achieved the production of nano-TiO2 particles using Cae-
salpinia pulcherrima flower extract and TiOSO4. XRD analysis showcased the anatase TiO2
phase and tetragonal structure of the obtained nanoparticles, while SEM and TEM analy-
sis revealed asymmetrical sphere-shaped nanoparticles within a size range of 20–25 nm.
Nanoparticle agglomeration was also observed in SEM analysis. Furthermore, EDX analy-
sis was conducted to determine atomic percentage and identify impurities, confirming the
purity of the acquired TiO2 nanoparticles, without the presence of any impurities.

There is a growing inclination towards utilizing seed extracts as an alternative means
for synthesizing TiO2 nanoparticles, thus circumventing the utilization of noxious chemi-
cals and organic solvents. An aqueous flax seed extract was employed to convert titanium
isopropoxide into nano-TiO2 particles [158]. A comparative investigation was conducted
within this research, both in the presence and absence of flax seed extract, to obtain TiO2
nanoparticles. The nano-TiO2 particles produced utilizing the seed extract exhibited mini-
mal agglomeration, smaller size, and greater visibility compared to those produced without
seed extract. Moreover, the particles generated in the presence of seed extract displayed
notably high porosity. These findings indicate that the seed extract, including both reducing
and stabilizing agents, proved highly efficient in synthesizing nano-TiO2 particles with
regulated shape and size. Lately, Aslam and co-researchers [159] synthesized nano-TiO2
particles using Abelmoschus esculentus seed extract, due to its high flavonoid content. The
resulting particles displayed uniform distribution with minimal agglomeration compared
to commercially available TiO2 nanoparticles. EDS analysis indicated no impurity peak,
signifying the total decomposition of reducing and capping agents during the calcination
process, ensuring that the obtained TiO2 nanoparticles possessed an anatase phase.

Taking into consideration the aforementioned literature, extensive and notable investi-
gations have focused on fabricating TiO2 nanoparticles through green synthesis methods,
aiming to address challenges linked with the traditional approaches [160]. Additionally,
Table 4 presents a breakdown of the benefits and drawbacks associated with the different
green synthetic approaches for nanoparticle production. Analysis in the same table (Table 4)
indicates that employing various plant extracts for nanoparticles’ synthesis emerges as a
more viable option compared to utilizing microorganisms from several perspectives.

Table 4. Benefits and drawbacks of the distinct green synthetic approaches.

Green Synthetic Method Benefits Drawbacks

Microorganism-assisted
method

• Effective production.
• Enhanced stability.
• Resistive nature to agitation and

pressure
• Adjustable culture parameters for

achieving desired nanoparticles’
physical properties.

• Requirement of cell culture
development.

• Decreased yield.
• Longer synthesis times.
• Potential contaminations.

Plant-assisted
method

• More convenient.
• Cost-efficient.
• Increased yield.
• Facile process.
• Utilization of plants waste.
• Shorter synthesis times.

• Nanoparticles’ aggregation.
• Crushing of harder parts of plants (such

as roots or stems) may be difficult.
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Other Approaches

Apart from the well-known methods, like sol–gel, hydrothermal, chemical vapor depo-
sition, physical vapor deposition, and green approaches, various other approaches exist for
fabricating TiO2 nanoparticles. One such method is the sono-chemical synthetic approach,
utilizing ultrasound waves to expedite nanoparticle synthesis. This technique proves ad-
vantageous by enabling swift nanoparticle production at low temperatures and pressures,
offering a cost-effective process. Microwave-assisted synthesis, another method utilizing
microwave radiation, is capable of yielding highly uniform nanoparticles at significant rates.
The utilization of microwaves facilitates prompt heating, minimizing the total duration
of the synthetic procedure [161–163]. The template-assisted synthetic approach presents
an additional approach for creating ordered mesoporous TiO2 nanoparticles [164–166]. By
employing a material as a template, this method guides the growth of TiO2, forming a
well-organized mesoporous structure, beneficial for tailor-making materials characterized
by specific pore sizes, as well as shapes.

Additionally, the plasma-assisted method stands out as a promising synthesis tech-
nique, employing plasma discharge in order to generate reactive species reacting with
Ti precursors for creating nanoparticles. This approach enables nanoparticle synthesis
at relatively decreased temperatures and pressures, offering the capability of producing
nanoparticles with distinctive properties and morphologies [167–169].

Finally, the solvothermal technique stands as one more viable method for synthesizing
TiO2 nanoparticles. In this approach, a solvent-dissolved Ti precursor undergoes heating
under elevated pressure, fostering nanoparticle creation. The aforementioned approach is
notably advantageous for nanoparticle generation, characterized by enhanced crystallinity
and purity, while allowing control over size and structure. For instance, Sugahara and his
team [170] achieved both dendritic, as well as spherical. morphologies of titanium dioxide
nanostructures utilizing two precursors and specific decreased temperature conditions,
employing the metal–organic decomposition (MOD) method.

4. Photocatalytic Activity Mechanism of TiO2

Because TiO2 acts as a semiconductor, it possesses a relatively narrow Eg between
its VB and CB. When exposed to visible or ultra-violet light, particularly in the UV-A
range with wavelengths between 315–400 nm [171], the surface of the semiconductor
absorbs this light, prompting electrons (e−) in the VB to acquire energy and to transition
to the CB. Consequently, these excited e− can interact with adsorbates, resulting in the
surficial generation of positively and negatively charged species [172]. However, the
observed photonic effectiveness for photocatalysis with TiO2 remains notably low, typically
<1% [173]. TiO2 possesses an Eg spanning 3–3.2 eV as previously mentioned, with its
maximum absorption wavelength (λmax) at ≈400 nm. Figure 9 illustrates the process of
exciting e− from the VB to the CB in TiO2. When exposed to light at this wavelength, the
TiO2 surface heats up significantly, reaching temperatures as high as 30,000 ◦C. As a result,
the prevailing reaction is commonly an oxidation process that leverages dissolved oxygen
in water to decompose pollutants (Equations (5)–(7)).

TiO2 + hv(light energy) → e− + h+ (5)

e− + O2(dissolved oxygen) → •O−
2 (superoxide radicals) (6)

h+ + H2O → H+ + •OH (7)

The hydroxyl radical, derived from this process, plays a pivotal role in breaking down
contaminants in water by functioning as an oxidizing agent. To maintain the particles’
electro-neutrality, specific measures are necessary, ensuring simultaneous reduction of
O and pollutants’ oxidation. This prevents the inhibition of the recombination proce-
dure by oxygen [174].
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According to research, superoxide radicals (•O2
−) can at times surpass hydroxyl radi-

cals (•OH) in the preference for a photo-degradation mechanism [175]. These superoxide
radicals might endure protonation to generate the hydroxy-peroxyl radical (•HO2). This
radical possesses the capability to eliminate undesired radical products, thus postponing
the electron/hole recombination, as elucidated in prior studies (Equation (8)) [176].

•O−
2 + •OH → •HO2 (8)

The sequence of steps involved in heterogeneous photocatalysis using TiO2 comprises
five stages: (i) moving molecules destined for degradation to the photocatalyst’s surface
through mass transfer [176], (ii) binding these molecules to the active sites of TiO2, followed
by the excitation of e− in the VB, due to light exposure [177], (iii) the adsorbed molecules’
degradation through photocatalysis, (iv) releasing the degradation products by desorption,
and (v) transporting these products away from the TiO2 surface. This mechanism aligns
with advanced oxidation processes (AOPs), a category of those water treatment techniques
devised as alternatives to traditional methods, like chemical precipitation and biological
treatment [178]. AOPs involve degrading pollutants using in situ generated •OH and
other reactive oxygen species (ROS) [179], enabling the breakdown of compounds resistant
to conventional treatments [180]. The non-specific nature of these radicals often leads
to scavenging, where free radicals remove undesirable molecules [181]. Evaluation of
the corresponding Gibbs free energy values for this mechanism demonstrates the overall
process as thermodynamically favorable and spontaneous [182].

Following photocatalytic degradation, five primary types of products emerge: (i) dehalo-
genation products, recognized for their slow formation alongside hydroxylation, (ii) alkyl chain
oxidation products, (iii) isomerization and cyclization products preserving atomic structures,
(iv) products from aromatic ring opening, and (v) decarboxylation products [183].
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5. Environmental Applications of TiO2-Based Photocatalytic Nanostructures
5.1. TiO2-Based Photocatalysts for Effective Elimination of Pharmaceutical Pollutants from Water
and Wastewater

During the last few years, numerous new organic pollutants have emerged in the
environment [184–186]. Various sources contribute to the environmental occurrence of
drug residuals, including hospital and manufacturing wastewater, as well as landfill
leachates [187,188]. The rapid increase in human population, accelerated industrialization,
as well as increased pharmaceutical dependence, have remarkably enhanced environmental
pollution [189,190]. Even though the release of pharmaceutical remnants into the environ-
ment may seem negligible initially, they tend to accumulate over time and pose severe
threats to humans and both terrestrial and aquatic organisms. Such compounds have
been detected in multiple origins, as hospital effluents, municipal wastewater treatment
plants, groundwater, surficial water, as well as drinking water [191]. Due to their robust
nature, these compounds resist degradation through the typical biological procedures used
in municipal wastewater treatment plants. As a consequence, they remain untreated for
prolonged periods, posing hazards to ecosystems [192]. Previous studies have indicated
that even at extremely low concentrations (50 ng/L), the occurrence of pharmaceutical
agents in surficial water and groundwater systems implies a significant risk to humans
and animals by contaminating their main source of drinking water [193]. In addition, the
increase in various types of antibiotics notably adds to the escalation of resistance among
bacteria and microbes against medicinal substances, consequently raising the likelihood
of increased risk to human populations [194]. Pharmaceutical substances enter aquatic
environments, like wastewater, through various mechanisms subsequent to their usage,
whether in their original state or as by-products of metabolism. The illustration in Figure 10
depicts the pathways through which these substances are released during the phase of
drug administration.
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Figure 10. Distribution pathways of medical products/pharmaceutical substances into the environment.

The utilization stage in the pharmaceuticals’ lifecycle significantly contributes to their
environmental release. Distinguishing if residuals found within the environment originate
from human or veterinary usage can be challenging, particularly when certain products
are used by both, due to specific product characteristics or misuse. The primary avenue
for pharmaceuticals entering the environment during consumption is through human
and agricultural animal waste, like urine and feces, which consistently find their way
into sewage or soil. Despite the fact that excretion constitutes the predominant approach,
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substantial amounts of products administered topically, like anti-inflammatory gels, can
be rinsed away during bathing. As a result, the quantity and nature of drug residuals
discharged post-consumption vary based on parameters, like the quantity and type of
substance ingested, administration method and metabolic degree [195].

Up to now, a variety of methods have been utilized for eliminating pharmaceutical
substances from water and wastewater effluents. These techniques encompass activated
sludge treatment, membrane reactors, algal and microbial reactors, alongside other bi-
ological procedures, like biological aerated filters, sequencing batch reactors, trickling
filters, rotating biological contactors, biofilm reactors, membrane bioreactors, constructed
wetlands, biological activated carbon filters, anaerobic digestion, bio-electrochemical sys-
tems, and phytoremediation [196,197]. Several crucial parameters, entailing physical and
chemical properties, contaminants’ biodegradability, solubility, robustness, as well as op-
erational conditions (such as temperature, pH, and duration), significantly influence the
fate of pharmaceutical pollutants in water bodies. Furthermore, attempts have been un-
dertaken to utilize indirect optical decomposition methods employing •OH, produced via
sunlight-mediated activation of nitrate and humic acid, acting as light sensitizers [198]. The
decay of optical properties in wastewater treatment processes depends on various parame-
ters, like intensity of solar irradiation, geographical location, depth of water, climate, and
water’s organic composition. High turbidity levels caused by increased sludge concentra-
tion limit light penetration, minimizing optical degradation within traditional wastewater
treatment plants [199]. In these facilities, impurity removal primarily relies on absorption
facilitated by particulate matter and microbial degradation. However, the effectiveness
of adsorption in eliminating pharmaceutical compounds is limited. Adsorption efficacy
depends on factors like electrostatic interactions, hydrophobic drug properties, and their
interactions with biological substances, like microorganisms. Additionally, factors like the
type of reactor (fixed bed or continuous system), flow rate, and adsorbent concentration
play significant roles. The literature suggests that acidic drugs (e.g., Ibuprofen, Clo-fibric
acid, Phenoprofen, and Bezafibrate) with pKa ranging between 3.6 and 4.9 have minimal
adsorption capacity to activated sludge [200]. While some drugs partially degrade and get
removed from water and wastewater, others undergo complete degradation, forming vari-
ous by-products [201]. Biodegradation includes the use of anaerobic or aerobic digestion
by varied microorganisms found in sewage sludge, typically used for handling it. This
process facilitates the breakdown of pharmaceutical substances present within the sludge.
However, some medications may persist without changing, leading to potential contamina-
tion of water bodies, like surface or groundwater. Additionally, the membrane process is
being considered as a biological treatment method. Ongoing research is exploring various
biological approaches to eliminate pharmaceutical pollutants. For instance, a previous
study found that activated sludge had the capability to remove steroid hormone E2 at a
percentage equal to ≈70–80% [202].

Given the limitations of traditional techniques in eliminating pharmaceutical pollu-
tants, such as low effectiveness, substantial energy usage, and the generation of detrimental
by-products, researchers have introduced advanced oxidation processes as an auspicious
and efficient alternative approach [203]. AOP methods include ozonation, photocatalysis
and Fenton/photo-Fenton approaches. The aforementioned methods aim to thoroughly
degrade and mineralize various pharmaceutical compounds, as per the available liter-
ature [204]. AOPs involve generating extremely reactive species as free radicals (•O2

−,
•OH and •HO2), focusing particularly on •OH. The as-mentioned radicals, especially
•OH, possess significant ability in eliminating pollutants’ molecules [205]. Based on the
drug effluent’s characteristics, as well as the preferred treatment goal, AOPs are able to
be utilized either separately or along with other biological and physical processes [206].
Among AOP methods, TiO2-based photocatalysis has arisen as a hopeful and effective
method for eradicating pharmaceutical contaminants from water-based settings [207,208].

Manasa and his team investigated the effectiveness of four distinct titanium dioxide
photocatalysts doped with boron and cerium (0.1 wt.% and 1 wt.% Ce-TiO2, as well as
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1 wt.% and 2 wt.% B-TiO2), prepared via the EDTA-citrate approach, for breaking down
typical fluoroquinolone-based antibiotics (ciprofloxacin and norfloxacin) using sunlight ir-
radiation. The observed band-gap values ranged from 2.5 to 2.9 eV, indicating the presence
of a new energy level towards efficient charge separation and recombination’s decrease.
At optimized conditions, 1 wt.% Ce-TiO2 and 1 wt.% B-TiO2 exhibited superior photo-
catalytic performance, potentially because of enhanced cerium adsorption rate and the
boron occupying interstitial lattice positions, along with a reduced band-gap. These cata-
lysts showcased 93% decomposition for both ciprofloxacin and norfloxacin, coupled with
increased disinfection effectiveness of the order of 95–99.99% [209]. Conversely, Suwan-
naruang and co-researchers investigated the impact of several N-doping concentrations
on surficial features, crystalline phase structure, optical and textural attributes, chemical
state, and photocatalytic performance of N-doped titanium dioxide nano-rice particles.
Under the examined parameters, the highest and lowest decomposition percentages of
ciprofloxacin were 94.3% and 70% for 12.5 wt.% N and 1 wt.% N, respectively, upon UV
irradiation for 4 h, indicating an enhancement of photocatalytic activity with increasing
nitrogen dopant concentrations [210].

Furthermore, Martins and co-researchers examined the decomposition of ciprofloxacin
through photocatalysis upon UV and visible light irradiation, utilizing high-efficiency
Au@TiO2 photocatalytic nanostructures. They achieved this by refining synthetic factors,
adjusting photocatalysis parameters, and employing computational modeling. They ob-
served that the resulting nanocomposites absorbed 40–55% more irradiation within the
visible spectrum compared to pure TiO2. Experimental assessments revealed a higher de-
composition of ciprofloxacin (91%) under UV light irradiation, while a percentage equal to
49% was achieved under visible light irradiation [211]. In another study, Cabrera-Reina and
colleagues investigated the elimination of the antibiotics imipenem and meropenem from
various aqueous solutions (distilled water, river water, and simulated wastewater treat-
ment plant effluents) using TiO2 photocatalysis at a pilot plant scale. They demonstrated
favorable decomposition rates under the specific experimental conditions employed [212].

Moreover, Truppi and his team developed a photocatalytic nanocomposite (Au@TiO2
nanorods) via a co-precipitation approach, followed by calcination at ascending tempera-
tures (250–650 ◦C). Their research focused on investigating the photocatalytic efficiency of
the as-mentioned nanocomposites in degrading an antibiotic molecule (nalidixic acid) uti-
lizing visible light irradiation [213]. Notably, nanocomposites calcined at 450 ◦C exhibited
degradation rates up to 3.2 times more rapid than that of TiO2 Evonik P25, a commercially
available reference material, towards decomposing the targeted compound.

In addition, Gomez-Aviles and co-researchers achieved total decomposition of ac-
etaminophen using C-TiO2 nanotubes calcined at 400 and 500 ◦C under solar light irra-
diation in 1 h. They utilized lignin as a carbon precursor, in order to alter the anatase
TiO2 lattice via a hydrothermal process followed by thermal treatment. The hydrothermal
method allowed the production of TiO2 nanotubes possessing a relatively well-developed
surface area, while the resulting C-TiO2 exhibited an Eg value equal to 2.95 eV, given the
existence of the lignin-derived material [214]. Lately, Penas-Garzon and co-researchers
studied activated carbon-TiO2 heterostructures prepared via different methods (solvother-
mal, microwave-assisted, and sol–gel) utilizing lignin as the carbon source. Among these
methods, the microwave-assisted route demonstrated superior performance towards the
photocatalytic degradation of acetaminophen, ibuprofen and antipyrine upon solar light ir-
radiation [215].

Additionally, Ahmadpour and colleagues showcased the efficacy of a TiO2@Zn-
Fe2O4/Pd photocatalyst produced via the photo-deposition method. They optimized
pH, catalyst concentration, and diclofenac’s initial concentration, demonstrating its excel-
lent performance in degrading this pharmaceutical substance under solar light exposure.
The catalyst exhibited super magnetic properties, facilitating its magnetic separation for
facile recovery from the reaction mixture [189].
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In a pioneering effort, the same researchers developed ZnFe2O4@TiO2/Cu nanocom-
posites for naproxen removal, achieving an 80.7% degradation efficiency under sunlight
irradiation. DRS analysis of the nanocomposites revealed heightened light absorption in
the visible spectrum, resulting in reduced electron-hole recombination. Copper’s inclusion,
possessing an enhanced specific surface area, fostered increased Cu-semiconductor charge
and energy transfer. The nanocomposites displayed notable stability and recyclability,
maintaining a 72.3% removal rate after 5 cycles of catalyst use [187].

Then, Murgolo and his team investigated a photocatalyst composed of hydroxyapatite
and TiO2 for eliminating diclofenac in water. Their findings indicated a remarkable 95%
degradation of the targeted compound within 24 h using the as-mentioned catalyst under
UV light exposure [216].

In a separate study, Czech and colleagues examined novel TiO2 nanocomposites inte-
grating pristine carbon nanotubes (MWCNTs) at varying concentrations (0.15–8.78 wt.%)
for the removal of acetaminophen from water. The most effective photocatalytic perfor-
mance was observed with the nanocomposite containing 1.72 wt.% MWCNTs, enabling
81.6% elimination of acetaminophen elimination from water [217].

Payan and his team also conducted a synthesis of Cu-doped TiO2 functionalized with
SWCNTs using a novel process combining sol–gel and hydrothermal methods. The charac-
terization analysis confirmed the successful integration of Cu ions into the TiO2 structure
and surficial attachment of nanoparticles onto SWCNTs without altering the TiO2 lattice
structure. Regarding photocatalytic performance, total decomposition of sulfamethazine
was accomplished under a pH value equal to 7, 10 wt.% SWCNT content, 4 wt.% Cu
content, sulfamethazine concentration equal to 30 mg/L and duration of reaction equal to
135 min [218].

Furthermore, Abdelraheem and colleagues carried out a comprehensive study involv-
ing the solar light-mediated remediation of domestic wastewater effluents using N,B-co-
doped TiO2. This study focused on the decomposition of bisphenol A, ibuprofen, triclosan,
diclofenac, and estrone in double distilled water and various treated wastewater samples.
The investigation also considered the impact of typical wastewater components, such as
NO3

−, Cl−, Br− and HCO3
− characterized by recognized ROS quenching attributes. The

obtained data demonstrated the successful removal of all examined compounds from
individual and combined systems, even in the occurrence of naturally present, typical
inorganic quenching agents [219].

Carbuloni and his team explored metformin’s decomposition using TiO2@ZrO2 nanocom-
posites upon UV light irradiation. Their study revealed the effective removal of metformin
from water under optimized conditions of pH and concentration of the utilized catalyst. The en-
hanced performance of the TiO2@ZrO2 nanocomposites towards the photocatalytic degradation
of the model pharmaceutical pollutant was linked to the textural and structural characteristics’
alteration, like increased specific surface area, reduced size of the particles, enhanced anatase
phase concentration and Eg variations [220].

Additionally, Escudeiro de Oliveira and colleagues employed nanotubes developed
on a Ti-0.5 wt.% W alloy for eliminating estrone (E1) and 17a-ethinylestradiol (EE2), which
constitute important drugs listed in the EU Watch List, upon both UV and visible light
irradiation. Based on their results, the doped samples presented enhanced photocatalytic
activity in comparison to samples without doping, as well as other semiconductors, when
subjected to both types of light irradiation. This superiority was attributed to reduced
recombination rates of photo-produced charges and a flat-band potential’s shift towards
more negative values [221].

Finally, Gurung and his team investigated the elimination of typically utilized phar-
maceutics (carbamazepine and diclofenac) utilizing a Ag2O@TiO2 (P25) photocatalyst.
Optimal removal percentages of the order of 89.10% for carbamazepine and 93.5% for
diclofenac were achieved after 180 min under UV irradiation and a photocatalyst dose
equal to 0.4 g/L in distilled water [222].
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It is widely accepted that the formation of a Schottky heterojunction through the
combination of noble metals with TiO2 can effectively boost photocatalytic activity [223]. To
elaborate, the majority of noble metals possess Fermi levels lower than TiO2’s conduction
band, leading to the suppression of charge carrier recombination [224]. Simultaneously,
the surface plasmon resonance (SPR) effect exhibited by nano-sized metals, such as Cu,
Ag, and Au, enhances the material’s absorption of visible light [225]. This SPR effect is
characterized by the collective oscillation of electrons on the surface of nano-sized metals,
and the controllable manipulation of SPR further augments photocatalytic activity [226].
More precisely, semiconductors loaded with plasmonic metals can significantly boost the
generation of photogenerated carriers while concurrently elevating the concentration of
superoxide or hydroxyl radicals on the semiconductor’s surface. Consequently, this results
in a robust capability to degrade various pollutants [227].

Generally, it is proposed that plasmonic metals share common features in their ability
to enhance semiconductors through three mechanisms. Initially, metal nanoparticles exhibit
a robust light absorption capacity within the visible spectrum and possess a significant
scattering cross-section at the resonant wavelength. Both these characteristics substantially
amplify the catalytic efficiency of proximal semiconductors. Secondly, the presence of
metal nanoparticles on semiconductors results in a more potent electromagnetic field
when subjected to localized surface plasmon resonance (LSPR) excitation compared to
individual nanoparticles. This intensification facilitates the generation and separation of
photogenerated electron-hole pairs within the semiconductor. Finally, the LSPR absorption
wavelength of metal nanoparticles can be adjusted by manipulating particle size and shape.
Consequently, catalyst performance can be enhanced by modifying the metal composition,
morphology, and the contact interface between semiconductors [227].

Kaur and his team [228] fabricated Ag-modified TiO2 catalysts with distinct mor-
phologies and examined the effect on salicylic acid degradation. It was proposed that the
morphological variations led to the difference in both interface and contact areas, which
affected the performance of the catalyst.

Moreover, Gang and co-researchers [229] synthesized Ag nanoparticles of 24, 27 and
30 nm through a controlled chemical reduction and these were subsequently loaded onto
TiO2. The Ag/TiO2 plasmonic photocatalysts displayed superior stability and excep-
tionally improved the photocatalytic efficiency for visible-light degradation of tetracy-
cline. Ag nanoparticles played a significant role and indicated size-dependent SPR effects,
while Ag nanoparticles of 30 nm presented the highest photocatalytic efficiency (90 %)
within 90 min.

5.2. TiO2-Based Photocatalysts for Effective Elimination of Heavy Metals from Water
and Wastewater

Metal ions present in water can undergo reduction to their lower energy state when
electrons generated via TiO2 photo-excitation are available, particularly when the reduction
potentials align favorably (Equation (9)). Alternatively, enhancing the reductive elimination
of metallic ions can occur indirectly by introducing sacrificial electron donors, like methanol
or formaldehyde (Equations (10) and (11)). Moreover, under specific circumstances where
the existing oxidation state of the metal ions is not the highest attainable, they can be further
oxidized to higher states through the influence of •OH or h+ (holes) (Equation (12)) [230].

Mn+ + ne− → M (9)

R − CH2OH + •OH → R − CH• − OH + H2O (10)

Mn+ + R − CH• − OH → M(n−1) + R − CHO (11)

Mn+ •OH/h+

→ Mn+1 (12)

Heavy metals are typically characterized by their increased atomic weight and density,
far surpassing that of H2O. Due to their relatively lower reactivity and strong properties,
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they have been extensively utilized across various industries. Nevertheless, noxious
heavy metals, like Pb, tend to accumulate swiftly in the environment, proving resistant to
biological degradation [231]. Extensive reports highlight the severe toxicity of heavy metals
to various human organs, leading to severe consequences, like mutations and cancer [232].
It is crucial to note that, while heavy metals are essential for proper bodily functions in
specific quantities, their excess presence can be detrimental. Studies indicate significant
adverse effects of heavy metals on plants, involving decreased uptake of nutrients and
reduced productivity, when grown in soil where these metals are present [233]. Titanium
dioxide has emerged as a cost-effective and time-effective method for heavy metal removal,
with primal research proposing their reduction to decreased oxidative states subsequent to
their surficial deposition onto the photocatalyst [234].

Titanium dioxide has been effectively employed in the reduction of heavy metal
ions through photocatalysis, such as Ni2+, Cd2+, Pb2+, and Cu2+, following first-order
kinetics. Enhanced removal of these metals was observed in more acidic conditions,
suggesting TiO2’s adaptability to function in such environments. Research indicates that the
mechanism primarily involved in heavy metal removal was adsorption, facilitated by the
substantial specific surface area of the nano-TiO2 particles [235]. These nano-TiO2 particles
demonstrated promise for reusability and operation under room temperature conditions.
Their adsorption capacity conformed to established isotherms, like the Langmuir isotherm,
showcasing TiO2 nanoparticles as a promising alternative for the removal of heavy metal
ions from wastewater [236].

Moreover, titanium dioxide has exhibited effectiveness in photo-catalytically eliminat-
ing As from industrial wastewater. The material displayed capability for multiple cycles
and retained its effectiveness after regeneration. Simultaneously, other heavy metal ions,
like Cu2+, Cd2+, and Pb2+, also presented reduced concentrations, indicating the potential
for simultaneous removal without sludge generation [237].

Ti nanotube arrays, altered with the coupling agent KH-570, proved highly effective
in degrading Pb2+, Cu2+, and Cr6+ present in water. The array’s arrangement enhanced
specific surface area, as well as photocatalytic effectiveness, while the coupling agent
augmented interaction between Ti and the heavy metals’ ions. Nevertheless, this altered
photocatalyst necessitated UV irradiation for effective operation, while its performance
was influenced by wastewater turbidity [238]. Despite these limitations, further evaluation
of this catalyst is warranted due to its beneficial aspects.

Titanium dioxide has established a significant history in eliminating Hg (Hg2+ to
Hg0) from wastewater, serving as both a photocatalyst [239] and an assisting agent [240].
Research indicates photocatalytic efficacy within a pH range of 3 to 7, notably highlighting
the effectiveness of the sol–gel method in producing particles with substantial surface area.
Enhancements in catalyst efficiency were observed when increasing pH levels in this range,
displaying considerable kinetics [241].

TiO2 nanotubes have proven remarkably efficient in eliminating Cu2+ ions from
water while concurrently generating hydrogen. Their enhanced catalytic activity stems
from the significantly larger surface area compared to traditional nanoparticles, attributed
to their distinctive shape and structure. The volume of hydrogen produced correlates
with the quantity of Cu2+, with an initial concentration of 10 mol % of Cu2+ in titanium
dioxide demonstrating optimal performance [242]. Furthermore, the transformation of Cr6+

ions to Cr3+ is achievable using doped TiO2 photocatalysts. Achieving >99% elimination
effectiveness was possible by doping with Fe and exposing the catalyst to visible irradiation.
Enhanced electron transfer among the doped titanium dioxide and the ions of heavy metal,
compared to pure TiO2, significantly contributed to the supreme performance [243].

Another method for Cr3+ ion removal involved doping TiO2 developed on graphene
oxide with Mn. This process commences with electron transfer from Cr6+ towards the
photocatalyst, yielding Cr3+, accompanied by subsequent electron transfer resulting in
Cr0 atoms [244]. The co-doping process involving Ag and Mn in TiO2 has demonstrated
remarkable effectiveness in eliminating Cr6+ and Cu3+ ions from water using a thermody-
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namically spontaneous adsorption mechanism. The as-mentioned photocatalyst exhibited
the ability to eliminate even negligible quantities of these heavy metal ions [245]. Another
approach, that of doping with Gd, also displayed positive outcomes in removing Cr6+ ions.
However, the observations were not as encouraging as those acquired from Fe and Ag@Mn-
co-doped TiO2 photocatalysts [246]. Furthermore, the elimination of Cr6+ from wastewater
was attained by creating a composite material consisting of titanium dioxide with EDTA
on a carbon sheet substrate, showcasing exceptional photodegradation efficiency. This
composite exhibited enhanced coordination, while the carbon sheet substrate acted as a
dispersion matrix both for nano-TiO2 particles and EDTA molecules [247].

The inclusion of MnO2 alongside TiO2 remarkably enhanced the elimination of
Pb2+ ions, despite a reduction in surface area. This alteration fostered appealing interactions
between the dopant and ions, resulting in heightened ion adsorption by the photocata-
lyst [248]. Furthermore, the elimination of heavy metals present in nuclear wastes, like
Cs+ and Sr2+, was achieved through doping titanium dioxide nanotubes with chromium
ions. The charged nanotubes significantly bolstered removal efficiency, capitalizing on the
increased specific surface area [249,250]. In addition, studies indicate the effective reduction
of arsenic, a common groundwater contaminant, through iron-doped TiO2. The incorpora-
tion of Fe ions enabled both adsorption and photocatalytic activity under visible irradiation
through decreasing the Eg value. Optimal results were achieved with 1 wt.% of Fe at a pH
value equal to 7, showcasing its potential as a promising agent for As removal [251].

Nanocomposites have emerged as viable solutions for removing heavy metal ions
from water. One proposed method towards the elimination of Pb from wastewater involved
the utilization of TiO2 bio-nanocomposites, crafted through a procedure combining sol–gel
fabrication of nano-TiO2 particles and mixing with a polymeric solution. The as-proposed
method presented a notable benefit, as it avoided introducing any by-pollutants into the
treated water [252].

The photo-electrocatalytic elimination of Cr6+ was found to proceed nearly thrice faster
compared to the conventional photocatalysis using TiO2. Incorporating spherical nanos-
tructures greatly expanded the reaction area, resulting in additional improvements [253].
Another effective approach for Cr6+ removal involved integrating Ag3PO4 into TiO2 nan-
otube arrays, which exhibited equal efficacy in removing organic dyes [254].

The combination of mesoporous hollow TiO2 nanospheres with 3-aminopropyl triethoxy-
silane significantly enhanced the photodegradation effectiveness towards Cu2+, Cd2+, and Pb2+.
The resulting composite demonstrated degradation efficiencies 12.7, 17.5, and 1.8 times higher,
respectively, than those achieved by bare hollow nano-TiO2 spheres [255]. Furthermore, the
integration of reduced graphene oxide (rGO) with titanium dioxide nanospheres effectively
removed Ag+ ions from water, where rGO contributed to increased charge carrier recombination.
The maximum adsorption efficiency recorded was equal to 34.8 mg/g [256]. Additionally, a
graphene-like TiO2@C nanocomposite was utilized to eliminate Pb2+ ions from water, displaying
an adsorption efficiency of the order of 331.7 mg/g [257].

5.3. TiO2-Based Photocatalysts for Effective Elimination of Organic Dyes from Water
and Wastewater

A method of removing dyes from the water is photodegradation. There are two
potential mechanisms that explain the process. One is the indirect path, where the dye
molecule is excited by visible light energy, causing it to enter its triplet excited state.
Subsequently, it is further transformed into a semi-oxidized radical by injecting electrons
into the conduction band of titanium dioxide (Equations (13) and (14)) [258].

dye + hv → dye∗(intermediate) (13)

dye∗ + TiO2 → dye+ + TiO−
2 (14)

The second proposed mechanism is direct. In this process, dye molecules interact with the
hydroxyl radicals produced, as well as with the electrons and holes formed due to excitation in
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the conduction band. This interaction leads to the reduction and oxidation of the dyes, respec-
tively [259]. The indirect mechanism is observed to predominate over the direct mechanism,
and the photodegradation is higher and requires less time [260] (Figure 11).
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Figure 11. Schematic representation of the direct and indirect mechanism of the photocatalytic
degradation of dyes using TiO2.

The pollution of water sources by dyes has been increasing over the years, mainly
because of industrial processes, endangering aquatic organisms and indirectly affecting
humans. These dyes are frequently non-biodegradable, accumulating in the body over
time [261]. Very often, industrial waste contains both dyes and heavy metals, which
meaning that it is impractical to remove them with different processes [262]. It would be
ideal to find an efficient and cost-effective way to remove both [263]. A type of dye that
is dangerous and difficult to decay is azo [264]. Accumulation of dyes in the water and
soil alter their characteristics, which presents a significant problem, being responsible for
significant degradation of the water and soil.

Traditionally, techniques like flocculation, adsorption filtration, and dialysis have been
employed to eliminate dye molecules from solution. Nevertheless, these techniques fre-
quently lack consistency and reliability, often resulting in incomplete structural degradation
and color removal. The discharge of inadequately processed waste into the environment
contributes to higher pollution levels [265]. TiO2 nanomaterials have also drawn attention,
in the case of water pollution, as possible solution.

The immobilization of TiO2 nanomaterials on a matrix has been identified as an effective
catalyst. Different azo dyes have been degraded with this type of catalyst. The process resulted
in complete removal of color, with dye type AO10 being the easier to degrade. The concentration
of organic carbon was significantly reduced in a few hours. TiO2 nanoparticles proved to be
very promising for industrial waste degradation. The degradation is caused by the conversion
of the double bond between two nitrogen atoms in the dye molecule to an NH4

+ ion [9].
Using Rhodamine blue as a pollutant, researchers tested the viability of a zeolite

matrix containing TiO2. They noted higher efficiency, while the composite was easier
to recover and reuse [266]. Similar dyes, like methylene blue, have been used to test
the difference between the use of micro-sized particles of TiO2 and nano-sized ones. As
expected, the nanosized particles are much more efficient. There are also reports that
solutions with higher pH are favorable for the degradation reaction [267]. A composite
using a naturally sourced support matrix for the nanoparticles was synthesized using
eggshells. The composite was tested on the same dyes as in the previous examples and had
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positive results. The synthesis was based on the solvothermal method, which is found to
play a role in the performance of the produced nanoparticles [268].

Simple TiO2 nanoparticles have been used to degrade different dyes under sunlight.
Solar radiation contains a percentage of UV light, making pure nanoparticles an effec-
tive option, if not the most efficient. Nevertheless, complete removal of the dyes was
achieved [269]. Other nanostructures, like nanotubes, have also been tested yielding sig-
nificant results. These can vary depending on the synthetic method and the target dye.
For Orange II, the hydrothermal method had better results. Physical adsorption is the
mechanism of degradation. Elevating the temperature lowered the time needed [270].

Doping is an easy method to increase the performance of the photocatalyst. Nickel and
platinum as doping agents produce remarkable results. It should also be noted that, these metals
make the nanoparticles magnetic, which helps recovery. They also proved to be very stable
when they were reused [271]. Making the TiO2 photocatalyst work effectively under visible light
irradiation is often the point of the doping, by lowering the band-gap value. Manganese proved
to be very effective as dopant, while zirconia and cobalt had negative results [272]. An increase
in surface area with doping is also an important consideration. Metals like iron, copper and
chromium have been tested. Doping with copper was found to be most effective at removing
methylene blue. The surface area and the lower band-gap are both important factors in this
result [273]. Reactive Red dye 198 was successfully degraded, using TiO2 doped with Fe and N.
A first-order reaction was observed, and the improved activity of the catalyst is attributed to the
generation of superoxide species, as suggested by Kaur and colleagues [274]. Another doping
element which has been tested is strontium. The doped TiO2, successfully degraded brilliant
green, which is an antiseptic and antibacterial dye [275].

The incorporation of elements that are not metals, such as nitrogen and sulfur, has
proven to enhance the photocatalytic efficiency of TiO2, improving the performance under
visible light irradiation. The band-gap is reduced by the creation of N2+ and S2+ levels. A
graphene matrix, containing TiO2 nanoparticles co-doped with these, proved to be a very
efficient catalyst for a number of different dyes [276,277].

Carbon doping has also been tested with TiO2 nanorods. This resulted in a very
efficient photocatalyst for dye removal, although the very high temperature requirements
limit the potential for large scale applications [278]. The rare earth ytterbium, recovered
from waste cathode ray tubes (CRT), was used to dope TiO2 nanosheets. Recycling the
material is an efficient way to make the process more environmentally friendly. The
experiments proved that dye degradation is possible, while also degrading heavy metals
(chromium) as reported by Zhang and his team [279].

MgO/TiO2 nanocomposites are used in the photocatalytic methanation of CO2 through
reduction [280], as well as in the production of biodiesel [281]. These composites can be
used in dye removal applications. Transition metals can also enhance the photocatalytic be-
havior of TiO2. Using sol–gel synthesis, TiO2 nanoparticles doped with iron were produced
and demonstrated high efficiency under visible light irradiation, at basic conditions [282].

Pure TiO2 nanoparticles, which work under UV light irradiation, have been immobi-
lized on polymer matrixes, retaining their efficiency, while exhibiting enhanced reusability.
The incorporation is achieved using a dehydration reaction [283].

Electro-spinning has been used to synthesize nanofibers from TiO2/CuO. The pho-
todegradation of an azo dye was tested, using the nanofibers. Enhanced adsorption capabil-
ities and the ability to work under visible and UV light were noted. A TiO2 nanocomposite
with zinc sulfide has proven to be a potent photocatalyst. Even at small doses, it can
degrade many different dyes when irradiated with ultra-violet light [284].

A TiO2/SiO2 nanocomposite, characterized by a high anatase content, has been devel-
oped. There are many experiments using methylene blue which test this composite, with
some studies using green synthetic methods [285].

Furthermore, a TiO2/SiO2 nanocomposite, doped with copper, was created using a
simple sol–gel technique. The presence of SiO2 in the composite enhances the adsorption
of organic compounds, while the addition of copper reduces the band-gap. High efficiency
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in the degradation of Rhodamine B was reported [286]. In order to create TiO2/SiO2
aerogels that work under visible light irradiation, researchers used tungsten and fluorine
as doping agents. The high pore capacity and lower band-gap helped in the degradation of
Rhodamine B [287]. Composites that use the same oxides, immobilized on the polymers
polydimethylsiloxane and chitosan, have also been tested [288].

Phosphor-containing nanocomposites have been synthesized for UV and visible light
photocatalysis. These NaYF4:(Gd, Si)/TiO2 nanocomposites exhibited enhanced absorption
of UV/visible light and the separation of electron and hole pairs for efficient photocatalysis.
Similar NaYF4:Yb,Tm-TiO2 nanocomposites exhibit photocatalytic activity under near-
infrared irradiation [289].

Palygorskite, a fibrous clay material, has also been used. Another usable clay is montmo-
rillonite, a cheap and non-toxic way to add a support structure to TiO2 nanoparticles. Under
ultra-violet light irradiation, the composite proved effective for dye degradation [290].

Other nanocomposites that have been tested are based on TiO2@SnO2. Their meso-
porous structure and high surface area make them efficient catalysts for photodegra-
dation [291]. Combining two catalysts often results in an improved composite mate-
rial. Researchers also noted that this material exhibits anti-microbial activity [292]. The
conditions of synthetic process can affect the properties of the resulting material. This
was demonstrated by researchers using a microwave hydrothermal process to synthesize
CdS/CdTiO3-TiO2 nanocomposites [293].

A novel TiO2 composite consisting of anatase interacting with a rutile phase containing
Ti3+ was synthesized by heating a mixture of TiO2 and Ti2O3 at high temperatures. For
this composite to degrade some dyes, requires other elements as co-catalysts, like Cu or
Pt [294]. A nanocomposite that exhibited great photocatalytic performance under both UV
and visible light irradiation was based on a zeolite matrix, which has the ability to adsorb
dyes. The composite was made by BiVO4/TiO2-NaY [295].

Graphene nanoplates incorporated with Ag2O/TiO2 were tested under visible light
and UV conditions. Hydrogen peroxide was used to enhance the catalysis. Anions, like
carbonate, nitrate, hydrogen phosphate, chloride, and sulfate, can affect the reaction [296].

TiO2 was used to enhance the surface area of fly ash by a factor of ten. This novel
material was used to successfully remove a heavy metal, a dye and a hazardous chemical
used in detergents, under ultra-violet light irradiation [297].

Titanium dioxide immobilized onto electro-spun fibers from PVA was employed for
the selective removal of methylene blue from a mixture of two dyes [298]. The polymer
structures make possible the recovery and reuse of the nanoparticles. This composite
demonstrated high photocatalytic efficiency in the decomposition of dye, attributed to the
rapid swelling of the hydrogel in acidic conditions [299].

Enzymes have also been used alongside nanomaterials for water treatment. Re-
searchers synthesized polydopamine tethered CPO/HRP-TiO2 nanocomposites with high
biocatalytic activity, stability and reusability. The synthetic method used was in situ poly-
merization along with an ultrasound bombardment size reduction technique. The enzyme is
responsible for the biochemical degradation of the chromophore part of the dye. It has been
employed in the degradation of aniline blue, crystal violet, and 2,4-dichlorophenol [300].

Multi walled carbon nanotubes have also been impregnated with TiO2 nanoparticles.
The composite has similar positives as other immobilization matrixes [301]. TiO2 nanopar-
ticles have also been used in combination with activated carbon. This composite has been
successful in degrading various dyes, in batches or with continuous flow [302]. Enhanced
photocatalytic properties have also been achieved with silver doping on C-TiO2 [303].

Graphene oxide (GO) has also been investigated when combined with TiO2, as water
filter, in order to remove dyes [304]. Higher presence of graphene oxide seems to positively
affect the removal capabilities [305]. Reduced graphene oxide (rGO) has also been employed
alongside TiO2 for dye degradation. Researchers utilized car bumpers as a recycled source
of carbon, showcasing a method of upcycling waste into a novel and high-performance
carbon-based photocatalyst. The technology holds the potential for improvement by
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investigating the possibility of using different plastics for their carbon [306]. A hybrid
rGO-TiO2/Co3O4 nanomaterial was synthesized through co-precipitation and utilized for
dye removal from wastewater. Reduced graphene oxide proved effective in narrowing
the TiO2/Co3O4 band-gap, allowing reaction under visible light. Furthermore, the rGO
component inhibited electron-hole recombination, promoting dye degradation [307].

The g-C3N4/TiO2 nanocomposite was able to perform under visible light irradiation. The
nanotube-shaped nanomaterial exhibited the highest level of degradation compared to other
structures and shapes derived from the experiments [308]. A graphitic carbon nitride-titanium
dioxide-graphene aerogel was also an efficient catalyst under visible light irradiation [309,310].
A membrane made by g-C3N4/TiO2/PAA/PTFE was successfully used to filtrate waste under
UV and visible light [311]. Another way to immobilize TiO2 nanoparticles is on glass beads.
These methods have been tested for dye and phenol removal [312,313].

Nanosheets of TiO2/g-C3N4 with dispersed Fe3O4 particles demonstrated high pho-
tocatalytic activity [314]. Similar results were observed for g-C3N4-TiO2 composites in-
dependently [315]. Additionally, a composite of TiO2 (MNTC nanosheets) formed from
nanorods co-doped with Mo/N on carbon nanofibers was relatively successful [316]. Car-
bon nanosheets, similar to graphene with TiO2, demonstrated high adsorption capac-
ity [257]. TiO2 nanosheets also served as the foundation for a composite with Cu-biphenyl-
amine, which achieved complete degradation of the dyes in under 3 h [317]. Another
composite of TiO2 nanosheets with silver completely removed the dye in 20 min [318].

Carbon dots are a zero-dimensional nanomaterial. SnO2 carbon dots have been at-
tached onto TiO2 nanospheres to create a highly effective catalyst [319]. Three-dimensional
nanomaterials containing nanorods have been used to create nanospheres of TiO2 doped
with platinum towards the visible light-assisted degradation of dyes [320].

Fe3O4 has also been tested with TiO2. The experiments were performed under ultra-
sound to enhance performance [321]. In addition, the embedding of Fe3O4 has been proven
to be extremely useful, in order to provide TiO2 with magnetic separation ability [322].
Moreover, the combination of oleic acid with TiO2 was tested [323].

Photo-electrocatalysis has proven to be an efficient method for treating water containing
methylene blue. Doping TiO2 with fluorine enabled degradation under visible light and
improved the generation of electron-hole pairs, enhancing performance [324]. In another
study, met-anil yellow and Remazol red B dyes were successfully degraded through photo-
electrocatalysis [325]. Furthermore, Pd-doped TiO2 nanorods showed the ability to produce
hydrogen as a byproduct during the removal of Rhodamine B through photo-electrocatalysis
under solar irradiation. The unique structure of platinum atoms in the rod configuration
contributed to its enhanced performance, particularly in retaining charges [326].

The use of TiO2 as a photonic crystal has been demonstrated to enhance the degrada-
tion ability of catalysts in various studies. Titanium dioxide inverse opals have been proven
to be effective in degrading dyes and phenols under ultra-violet light [327]. Photonic crys-
tals coated with gold nanoparticles were able to remove phenols using visible light [328]. In-
verse TiO2 opal photonic crystals coupled with TiO2/poly(3-hexylthiophene) have demon-
strated the ability to remove dyes with visible light sources [329]. TiO2@SiO2 photonic
crystals have been employed for the degradation of acetaldehyde and dyes [327,330]. An
nc-TiO2/SnO2 inverse opal composite membrane and Cu2O/TiO2 have also been used
as photocatalysts [331]. Inverse TiO2/Pt opals Schottky structures on the Ti substrate
have proven effective in degrading phenols [332]. Additionally, a novel photonic crystal
structural-induced Cu3SnS4/Ti3+-TiO2 p-n coaxial heterojunction array was proved able to
degrade dyes [333].

5.4. TiO2-Based Photocatalysts for Effective Elimination of Pesticides from Water and Wastewater

The imperative need to remove pesticide residuals from water stems from their re-
markably enhanced toxicity. One method for achieving this is mineralization, a process that
involves the complete release of all inorganic components from organic pesticides through
degradation. TiO2 demonstrates the capacity for photocatalytic degradation of pesticides.
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Resulting radicals from this reaction subsequently interact with dissolved oxygen, generat-
ing organic peroxyl radicals (ROO•), crucial for achieving total pesticide mineralization
(Equations (15) and (16)) [334].

organic pesticides
TiO2 photo−excitation/adsorption→ intermediates (15)

intermediates → CO2 + SO2−
4 + SO3−

4 + SO−
3 (16)

The use of pesticides in the agriculture sector has proved extremely necessary, in order
to fulfill the rising food requirements driven by a significant enhancement of the population
globally. While pesticides effectively enhance production and prevent agricultural losses,
they come with various environmental drawbacks [335]. Similar to dyes and pharmaceu-
ticals, pesticides pose significant threats to aquatic organisms, given their exceptionally
increased biological toxicity. These substances not only cause fatalities but also lead to a
notable reduction in aquatic organisms’ activity [336]. Moreover, their non-biodegradable
nature contributes to their accumulation within various organisms. Pesticides can induce
acute and chronic health effects, ranging from immune system disruption to improper
endocrine function [337]. Moreover, there has been significant attention paid to the po-
tential carcinogenicity of pesticides [338]. Like dyes and pharmaceuticals, traditional
wastewater treatment approaches are unable to thoroughly eliminate pesticides, resulting
in the potential accumulation of noxious substances in various organisms within the envi-
ronment [339]. Nevertheless, titanium dioxide has exhibited remarkable effectiveness in
degrading pesticides, both in its pure form and when doped.

For instance, chlorpyrifos, a phosphate-based pesticide, underwent photocatalytic
degradation utilizing TiO2 nanoparticles. Approximately 80% of the pesticide was decom-
posed within 24 h, while the photocatalyst proved effective whether bacteria were present
or not, although bacterial presence slightly reduced the degradation rate of the examined
pesticide. The as-mentioned photocatalytic procedure necessitated UV light irradiation, as
visible irradiation lacked sufficient energy for the utilization of the reaction [340]. Similarly,
profenofos and quinalphos have been reduced by TiO2 nanoparticles using a comparable
mechanism upon UV light irradiation. The photocatalyst displayed promising reusability
potential under multiple cycles without substantial activity decrease. Its performance
was influenced by various factors, such as TiO2 concentration, radiation duration, and
system pH [341]. Additionally, titanium dioxide has demonstrated effectiveness in treating
a stream, including a pesticide combination (diuron, alachlor, isoproturon and atrazine).

The efficiency of TiO2 as a photocatalyst was observed in treating pure, as well as
ordinary, water. However, when additional pollutants in normal water were present,
there was a notable decline in TiO2

′s effectiveness, attributed to the hindrance of radical
formation that accelerates the photocatalytic reaction [342]. The exceptional efficacy of TiO2
nanowires in atrazine degradation has been evidenced because of their significant specific
surface area, as well as pore volume. These nanowires also present advantages such as
cost-effectiveness in synthesis and potential reusability across multiple cycles [343].

Imidacloprid degradation by nano-TiO2 particles within a cylindrical reactor has been
reported as highly effective. The reactor’s structure, featuring coaxial cylinders, facilitated en-
hanced contact among the photocatalyst and polluted water, thereby enhancing photocatalytic
performance. Additionally, the reactor demonstrated applicability in both batch and continu-
ous modes, underscoring its adaptability and effectiveness [344]. TiO2 P25 has been widely
recognized as a photocatalyst for pesticide elimination. In one research project, typically found
pesticides and insecticides, such as malathion, fenitrothion, quinalphos, vinclozolin, dimethoate
and fenarimol, have been decomposed utilizing TiO2 P25 under solar light irradiation. Another
commercially available form, Kronos VLP 7000, was examined but proved to be less efficient
than P25, because of inferior specific surface area and pore volume attributes [345]. Additionally,
TiO2 P25 has demonstrated increased efficacy in removing diazinon from water, achieving >99%
pesticide decomposition at a pH value equal to 6.
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The reaction primarily depended on the supplied UV amount and reaction time.
Additionally, TiO2 concentration and aeration have been identified as improving the photo-
catalytic process [346]. Altering the structure of titanium dioxide nanotubes significantly
improved the elimination effectiveness of simazine pesticide. The proposed approach
involved structural modification by varying the anodization time, with a time equal to 10
min yielding the optimal outcomes [347].

Incorporating Fe into TiO2 demonstrated exceptional performance in diazinon de-
composition, achieving an optimal decomposition efficiency of ≈85%. The presence of
Fe notably accelerated the reaction under UV light and ultrasonic irradiation. Ultrasonic
irradiation demonstrated better degradation efficacy when used individually. However, the
highest efficiency was achieved when both UV and ultrasonic irradiation were combined
with Fe-TiO2 [348]. Introducing cerium (Ce) doping yielded excellent outcomes in remov-
ing metolachlor, a typically used pesticide. The magnetic properties of Ce facilitated the
dopant–TiO2 separation. Cerium doping enhanced porosity and decreased charge carrier
recombination, significantly enhancing effectiveness [349]. Ce dopant also proved effec-
tive in removing another common pesticide, glyphosate. A Ce loading of 0.45 wt.% was
determined as optimal. In addition, Mn and La were studied as potential dopants towards
glyphosate elimination. Among the three, Mn exhibited the optimal performance, followed
by Ce and then La, all with an optimal loading of the order of 0.45 wt.%. Concentrations
surpassing the optimum value led to a great efficiency loss [350].

Ce has been utilized as a dopant in the photocatalytic elimination of dicamba pesticide
under visible light irradiation. An optimal loading of Ce equal to 1 wt.% led to complete
degradation within 2 h, particularly effective in conditions where pH values were greater than 7,
generating non-toxic by-products easily removable from water. Ce aggregation increased specific
surface area and pore volume, enhancing the photocatalytic effectiveness of Ce-TiO2 compared
to the bare photocatalyst [351]. Boron (B) doping exhibited superior degradation of various
pesticides compared to the undoped photocatalyst, significantly enhancing robustness and
reusability. The presence of B atoms within the TiO2 lattice contributed to improved functionality
and stability of the doped photocatalyst. Combining photocatalysis with ozonation accelerated
pesticide elimination [352]. Furthermore, doping TiO2 with non-metals, like C, N, and F,
enhanced its degradation capability, notably preventing electron and hole pair recombination
under visible light. Thiamethoxam and imidacloprid insecticides were completely degraded
using doped photocatalysts under different wavelengths, showing stability across multiple
cycles, promising for industrial applications [353].

Finally, the method of TiO2 photo-electrocatalysis has proven effective in eliminating
the herbicide atrazine from water samples. Almost total elimination of the contaminant
occurred within 30 min reaction time, displaying a first-order kinetics trend [354]. Atrazine
removal from groundwater has been also accomplished through employing TiO2-graphite
photo-electrocatalysts, exhibiting an impressive reduction effectiveness of up to 99.7% [355],
slightly surpassing the efficacy observed in the earlier study.

5.5. TiO2-Based Photocatalysts for Effective Elimination of Microbes from Water and Wastewater

TiO2 has been studied extensively for its anti-microbial activity [356]. It can be used
on surfaces or to disinfect water. When the bacteria E. coli suffers membrane damage,
malondialdehyde is produced, due to lipid peroxidation. Bactericidal activity can be
measured in this way. TiO2 activated by light, can cause cell death after a short time (30 min),
by damaging the cell membranes. The creation of radicals causes lipid peroxidation. The
by-product malondialdehyde is also oxidated further facilitating the easy cell access [357].
Cancer cells are also vulnerable to this type of damage [358].

The efficiency of bactericidal methods depends on their effective disinfection time
(EDT), representing the duration needed for complete bacterial inactivation in the absence
of irradiation, and without the possibility of regrowth. In the case of TiO2, no regrowth
is observed within the subsequent 60 h in the absence of irradiation, as the bacterial
concentration continues to decrease in the dark [359].
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Photo-induced bactericidal methods have attracted research attention. TiO2 nanoparti-
cles are very effective, due to their decreased size [360]. In order for the nanoparticles to
be reused, they need to be recovered. Immobilizing them on a matrix is a good solution,
but decreases their efficiency. Enhanced permeability of ions through cell membranes has
been proposed as a potential disinfection method. TiO2 has also been shown to degrade
the toxins that are released from the dying bacterial cells [361].

Various harmful microorganisms, including Escherichia coli, constitute a threat to
water bodies worldwide. In general, these microbes produce noxious substances upon
entering the human body [362]. Temperature, water turbidity, pH, and the presence of
competing microorganisms affect their lifespan [363]. While sunlight has been found
efficient in inactivating a plethora of microorganisms, scaling up this method for industrial
use presents significant challenges. Alternative approaches, like chlorine treatment, have
been explored; however, impracticality arises from the production of noxious substances
associated with these approaches [364].

Microbes in aquatic bodies, can negatively affect the fish population [365]. Infected
water has also been a major factor for the spread of diseases throughout history, like cholera
caused by Vibrio cholerae, and typhoid caused by Salmonella typhi [366].

In this context, it is essential to research and develop photocatalysts that are efficient
and environmentally friendly. Utilizing thin films consisting of TiO2 nanoparticles has
demonstrated remarkable efficacy in the elimination of E. coli from water through pho-
tocatalysis. The swift and efficient inactivation of cells is attributed to the expansion of
the cell membrane upon adsorption by titanium dioxide and illumination. The potential
effects include the loss of protoplasm, speculated to result from membrane expansion and
cell distortion. Additionally, acids’ fast degradation further contributes to the membrane’s
expansion [367]. TiO2 nanotubes have also demonstrated comparable anti-microbial appli-
cations in water purification, targeting organisms such as E. coli and Staphylococcus aureus.
Exposure to UV irradiation for 24 h in the presence of the photocatalyst resulted in the
degradation of both organisms by more than 97%. The effect was greater than that exhibited
by simple TiO2 P25 nanoparticles. The shape of the nanomaterial seems to be an important
factor for anti-microbial capabilities [368].

Nevertheless, TiO2 P25 has proven exceptionally efficient against microbes under
specific parameters. Salmonella typhimurium and Listeria monocytogenes were both inactivated
by the photocatalyst when exposed to UV irradiation. Listeria was proven to be more
resistant than Salmonella. The mechanism seems to be membrane damage, as in other cases.
The catalytic reaction was significantly influenced by the concentration of the nanoparticles,
with the most favorable results obtained at a concentration equal to 1 g/L [369].

Doping of the nanoparticles has also been extensively studied. Nitrogen doping is an
easy and effective way to increase the bactericidal properties. Different nitrogen containing
compounds have been used and, depending on the target microorganism, the optimal
chemical can differ. For example, the removal of B. cereus was achieved completely when
triethyl amine was used. In other cases, urea was better [370]. Nitrogen doping lowers the
band-gap, making the photocatalyst more effective even when irradiated with visible light.
Doping with fluorine has also bene investigated, yielding a comparable outcome in terms of
the Eg. However, a distinction was observed in the distribution of atoms. More specifically,
N atoms were detected in the interstices, while F atoms were observed surficially [371].

Research has demonstrated that TiO2 doped with Fe, Mn and Mg is an extremely effective
method for eliminating the virus H1N1 from water. The catalytic process proved viable even
in the presence of a weak source of visible light irradiation, achieving over 99% elimination
effectiveness within 30 min. Additionally, elimination utilizing UV irradiation was also fea-
sible, but it is considered less practical, since the reaction can be conducted utilizing visible
irradiation [372]. Likewise, TiO2 nanofibers doped with Cu exhibited impressive capabilities
in removing the f2 virus and E. coli. The concurrent elimination of both microorganisms was
demonstrated upon visible light irradiation and the reaction proved to be unaffected by pH
variations. The elimination of the virus was directly correlated with the photocatalyst’s con-
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centration, as well as the light’s intensity, showing an inverse relationship with the quantity of
the virus. Nevertheless, it was observed that the elimination of the virus was more enhanced
when present alone, compared to its presence alongside bacteria, indicating competition for
adsorption spaces as a contributing factor [373].

Silver, which itself is considered to have anti-microbial properties, can be used to greatly
enhance the TiO2 efficiency. Nanowires doped with silver demonstrated superior performance
to other doping elements against the bacteria E. coli. The processed water was determined as
safe to drink, therefore this nanomaterial has potential for large scale applications [374].

Other doping agents that lower the band-gap of TiO2 and make it efficient for visible
light photocatalysis are manganese and cobalt. The best results were produced by co-
doping, which resulted in a 99% concentration reduction for the viruses that were tested,
within 20 min. Sunlight contains the UV spectrum and is superior to artificial light [375].

In general, the mode of toxicity of TiO2 nanoparticles towards harmful microorganisms
is depicted in Figure 12.
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nano-particles through electrostatic interaction with the cell wall, (B) disruption of the cytoplasmic
flow, due to nanoparticle hindrance of nutrient carriers, leading to (C) photocatalytic decomposition
of biological macromolecules, and (D) impairment of intracellular organelles [376].

5.6. TiO2-Based Photocatalysts for Effective Elimination of Hormones and Endocrine Disrupting
Compounds (EDCs) from Water and Wastewater

Endocrine-disrupting chemicals (EDCs) are natural or human-made chemicals that
may mimic, block, or interfere with the body’s hormones, which are part of the endocrine
system. These chemicals are associated with a wide array of health issues. They are found
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in wastewater from some industries and from households. Drugs, pesticides and cosmetics
can be a source of these chemicals, as well as living organisms [377]. They can have
significant negative effects on humans, especially on the development of children [378]. It
is also possible to affect the fetus in pregnant women [379]. Negative effects have also been
found on aquatic life. An example of this is the feminization of fish, from high estrogen
levels in their environment [380].

Hormones and some drugs are endocrine disrupting compounds. Hormones, even
in very small amounts, can affect humans and other organisms [381]. Heavy metals can
also affect the endocrine system. Some common chemicals found in the wastes of certain
industries are phthalates, which are considered carcinogenic [382], and bisphenol, which is
linked to sexual dysfunction in males [383].

It is difficult to completely remove these compounds from water, which means they
often end up in the aquatic environment. It is very important to find ways to degrade these
chemicals during wastewater treatment. TiO2 has shown promise as a viable and clean
method to remove endocrine disrupting compounds from wastewater [384].

TiO2 nanomaterials have been used for the degradation of many hormones and other
similar compounds. The use of TiO2 thin films was very effective for the removal of steroidal
hormones after light irradiation. Faster degradation was achieved with the addition of
hydrogen peroxide [385].

Pure TiO2 nanoparticles have been used successfully for the removal of estrogens
(female hormones: estrone, estradiol, estriol, estetrol) and mimic chemicals, like bisphenol
A. UV light is required for efficient degradation and acidic conditions are favorable [386].
The photodegradation often has more than one stage. By-products, like hydroxylated
estrones, are produced first and then they are further degraded [387]. From this class
of hormones, estradiol seems to be easier to remove with pure TiO2 nanoparticles [388],
while estriol and estrone require higher concentrations of the catalyst to be efficiently
removed [389]. Compounds that belong to this class of chemicals have also been degraded
with the use of stacked TiO2 thin films in reactors where the wastewater flows through.
The removal of Bisphenol A in comparison to the other chemicals was the most challenging
when using this method. The by-products produced are not as similar to estrogens, which
means they are much safer [390].

Testosterone, which is a male hormone, can also be degraded be TiO2 nanoparticles.
A study found that the resulting by-products are similar to those produced by natural
metabolism [391]. The nanoparticles, under irradiation, can transfer electrons and also
cause the formation of hydroxyl radicals in the solution. Both mechanisms are responsible
for the degradation of the hormone.

Doping the nanoparticles with silver and adding hydrogen peroxide in the solution
during photodegradation resulted in good performance under visible light irradiation. The
test was carried out with dexamethasone as a pollutant [392].

TiO2 has also been used in conjunction with phytoremediation. Phytoremediation is
a technique that uses plants to clean polluted ground. By combining these two methods,
researchers were able to remove the pollutant decabromodiphenyl ether. The byproducts
were nontoxic. The TiO2 increased its efficiency by helping uptake by the plants [393].

Titanium dioxide has also been used in hybrid composites in an effort to synthesize a
more efficient catalyst. Porphyrins are a class of organic compounds that are often used
in photodynamic therapy. Researchers used cardanols, a toxic byproduct of the cashew
industry, to synthesize porphyrins, that were then impregnated with TiO2 nanoparticles.
Metals such as zinc and iron were also used to create metallo-porphyrins. This conjugate
was used to degrade 4-nitrophenol [394].

In general, an effective way to use TiO2 nanoparticles is to immobilize them into a
matrix. In this way, they can easily be used inside a recirculation reactor. TiO2-coated clay
beads were used in this way, to degrade the pollutant monocrotophos [395].

Other TiO2 nanomaterials that have been tested, are nanotubes, doped with C3N4.
Using electro-photocatalysis, the researchers reported that the degradation of phenolic com-
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pounds was much faster compared to pure TiO2. The doping lowered the band-gap [396].
Other complex nano-structures that have been synthesized are hydrogels with graphene
and TiO2. The tests showed outstanding performance during photo-electrocatalysis for
the degradation of bisphenol A and no significant decline in performance after 10 cy-
cles [309,310]. The method of photo-electrocatalysis has also been used to degrade propyl
paraben using TiO2 nanotubes doped with WO3 [397].

6. TiO2 Nanoparticles’ Fate in the Atmosphere, Aqueous Environments, and Sediments

Due to advancements in nanotechnology, the environmental impact of nanoparticles
has become significant. With their increased usage and production, there is a heightened
exposure of nanoparticles to the environment, encompassing the atmosphere, aqueous
environments and sediments [398] (Figure 13). Sunscreens, comprising roughly a quarter
of TiO2 nanoparticles, represent a prominent source of these particles entering aquatic
environments [399]. Upon entering water post-sunscreen application, TiO2 nanoparticles
are released into the surroundings, accounting for approximately 10–40% of the initially
applied sunscreen, varying based on formulation viscosity [400]. In wastewater treatment
plants, about 34% and 87% of TiO2 nanoparticles are estimated to be removed from pri-
mary and secondary settling tanks, respectively [401]. Nevertheless, these particles may
contaminate agricultural sediments and potentially seep into groundwater, because of the
common use of sewage sludge as a sediment fertilizer.
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Understanding the interaction between nanoparticles and sediments remains insuffi-
cient due to the complex nature of soil. When nanoparticles encounter sediments, they can
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either be physically retained or chemically adsorbed onto the surfaces of the sediments’
particles [402]. These interactions, influenced by the sediments’ chemical and physical
properties along with their texture, can either decrease or enhance the toxicity and avail-
ability of nanoparticles. Various parameters, like natural organic matter, salinity, ionic
strength, pH values, clay content, and microbial population, impact the behavior of TiO2
nanoparticles in sediments. The fate and behavior of these nanoparticles in sediments
involve hetero-aggregation, homo-aggregation, and straining mechanisms [403].

7. Potential Toxicity of TiO2 Nanoparticles

In recent times, there has been a surge in interest surrounding nanotechnology appli-
cations across diverse domains, including agriculture, medicine, pharmacy, and materials
science. The utilization of TiO2 nanoparticles is inevitable due to their crystal structure, size,
and coating. These nanoparticles’ surface charge, agglomeration, and sedimentation are
influenced by their particle size, crystalline structure and coating, rendering TiO2 nanopar-
ticles highly noxious to human cells. Existing studies indicate that these nanoparticles
disrupt glucose and lipid balance in mice and rats [398]. However, available data on TiO2
nanoparticles’ toxicity to humans remain limited, thus raising doubts about potential risks.
Consequently, researchers are employing various toxicological models, like human cells,
animals, and aquatic organisms, for gathering crucial information, in order to mitigate
toxicity concerns (Figure 14).
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Past experiments, both in laboratory settings and living organisms, have verified the
detrimental effects of TiO2 nanoparticles on the human body, leading to alterations in the
cell cycle, nuclear constriction, and apoptosis [404,405]. Moreover, these nanoparticles
have been linked to DNA damage and disruption of the small intestine epithelium, crucial
for nutrient absorption [406]. Such harm can occur through multiple routes, primarily
inhalation, injection, skin contact, as well as digestion and absorption [407]. Instances



Reactions 2024, 5 173

in print plant facilities revealed workers experiencing respiratory issues due to exposure
to polyacrylate nanoparticles combined with TiO2 nanoparticles, lacking adequate pro-
tective measures [408]. Other reported clinical manifestations of TiO2 toxicity include
facial, hand, and forearm rashes [409], pleural effusion [410], pericardial effusions [411],
hypoxemia [408], and even cases of cancer [412–414]. Studies conducting in vivo exposure
tests have highlighted the accumulation of TiO2 nanoparticles in various bodily organs,
such as liver, heart, spleen, lungs, kidneys, digestive tract, and cardiac muscle [415,416].

7.1. Biodistribution and Systemic Toxicity

Nanomaterials exhibit substantial variations in composition, charge, structure and
specific surface area, all impacting various organs (Figure 15) [417], and could be potentially
present in organs like lungs, kidney, lymph nodes, liver, and spleen [418]. TiO2 nanopar-
ticles can move from the digestive tract to other organs or tissues, potentially causing
damage to the liver and myocardium [419].
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Concerning lung toxicity, investigations suggest that the surface area might serve as
the most suitable dosage indicator for TiO2 nanoparticles [407]. Ultrafine TiO2 nanoparti-
cles, possessing increased quality or decreased volatility, can cause lung damage even at
trace doses [420]. In experiments involving rats treated with TiO2 nanoparticles, height-
ened inflammatory reactions have been observed, because of an enhanced surface area
of the nanoparticles, in comparison to particles with a larger surface area. A few studies
indicate that TiO2 nanoparticles induce more substantial pulmonary inflammation than
larger TiO2 particles when introduced at similar mass doses [421,422]. Nevertheless, when
the dosage is standardized based on surface area, the lung’s response remains comparable
between nanosized and fine TiO2 particles. Therefore, investigations into lung toxicity
demonstrate that particles of the same chemistry, but of varying sizes, are more insightful.
Additionally, other studies propose that inflammatory reactions might be more intense
when nanoparticles possess a larger surface area [423]. Nevertheless, numerous studies
have indicated more adverse effects associated with TiO2 nanoparticles [424]. These par-
ticles can lead to immunological and pathological alterations upon accumulation [425],
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while, depending on their size and quantity, they can stimulate hepatic injury through
changing serum biochemical factors (ALT, LDH, and BUN) [419].

Brain injury can be triggered by TiO2 nanoparticles, due to their heightened suscepti-
bility to oxidative stress [426,427]. When introduced via the nasal route, these nanoparticles
can impact olfactory nerve and hippocampal neurons, leading to reduced spatial recog-
nition memory in mice under oxidative stress conditions [428]. Additionally, disruption
in the equilibrium of neurotransmitters, trace elements, and enzymes caused by TiO2
nanoparticles can further impair spatial recognition memory. Various studies have demon-
strated the toxic effects of these nanoparticles, which vary based on exposure duration
and dosage [429–432]. TiO2 nanoparticles prompt apoptosis and are able to accumulate
within the brain, leading to increased levels of malondialdehyde, superoxide, 8-hydroxy-
2′-deoxyguanosine, and carbonyl protein [433]. Moreover, alterations in associated genes’
expression have been observed, stimulating brain microglia to disrupt mitochondrial en-
ergy production, resulting in ROS production [434,435]. Furthermore, these particles exert
a noxious influence on glial cells, instigating alterations in the morphology and elevating
mitochondrial membrane potential [436].

7.2. TiO2 Nanoparticle-Induced Oxidative Stress

Oxidative stress stands as a principal mechanism behind the adverse biological im-
pacts caused by nanoparticles [437]. This mechanism is evident through the escalation in
reactive oxygen species generation, oxidative by-products, and the reduction of cellular
antioxidants [438]. In the context of TiO2 nanoparticles, oxidative stress is widely acknowl-
edged as a significant mechanism, attributed to hydroxyl production, DNA damage [439],
as well as elevated levels of glutathione and malondialdehyde in the liver [440]. TiO2
triggers oxidative stress, generating varying quantities of hydroxyl radicals, either in the
presence or absence of UV irradiation [441]. The as-mentioned •OH radicals, recognized
as primary destructive agents, amplify the damage of DNA [439]. After initial exposure
to UV irradiation, anatase TiO2 nanoparticle sizes diminish cell viability in rats, leading
to the breakage of the DNA strand and oxidative damage to the DNA [442]. This pivotal
finding highlights that photo-activated TiO2 nanoparticles preserve heightened cytotoxic
and genotoxic potential, irrespective of the size of the nanoparticles, even if UV irradiation
ceases, owing to the critical role of ROS as a signal regulator [442]. Cells’ exposure to
nanoparticles can disrupt cellular signaling cascades governing processes like cell prolifera-
tion, inflammation, and cell death by escalating ROS production [443]. The generation of
reactive oxygen species is contingent on triggering inflammatory cascades, including the
phosphorylation of Extracellular Signal-Regulated Kinase ERK1/2, Tumor Necrosis Factor
alpha (TNFα), and macrophage generation. Elevated TiO2 nanoparticles-induced stress
results in cellular damage linked to oxidative stress and inflammatory signaling pathways’
modulation [435].

7.3. TiO2 Nanoparticles’ Cellular Uptake

From a toxicological perspective, the primary attributes defining TiO2 nanoparticles
include their surface area, size, chemical traits, solubility, crystalline structure, and particle
accumulation [444]. The uptake by cells, subcellular positioning, and ensuing toxicity are
contingent upon these nanoparticle characteristics [444]. Two primary methods govern
nanoparticles cell absorption: (a) active intake via endocytosis and (b) passive absorp-
tion through free diffusion [445]. When inhaled, TiO2 nanoparticles can prompt alveolar
macrophages towards elimination of µm-sized particles (3–6 µm), but struggle to remove
TiO2 nanoparticles due to their diminutive size (20 nm) [445]. Typically, phagocytosis han-
dles particles >500 nm, while smaller particles remain in the tissue, perpetually stressing
other tissues due to limitations in endocytosis [446,447]. Studies show that the uptake
of TiO2 nanoparticles (50 nm) through endocytosis with alveolar A549 epithelial cells is
mostly confined to aggregated particles [447]. In an in vitro airway wall model, Rothen-
Rutishauser and colleagues [448] observed membrane-bound aggregates (>200 nm) and



Reactions 2024, 5 175

unbound aggregates within the cytoplasm. These researchers noted exceptionally high
aggregated nanoparticles in both late and early endosomes. TiO2 nanoparticle aggregates
<200 nm could penetrate red blood cells, while larger particles remained affixed surficial to
the cell [448].

7.4. Potential Approaches for Addressing the Potential Toxicity of TiO2 Nanoparticles

Industrial and wastewater treatment plants’ (WWTPs) effluents are considered the
main source of nano-TiO2 entering the aquatic systems [449], thus posing a severe risk to
all living biota in rivers [450], estuarine and coastal regions [451], as well as human health.
For instance, Shi and his team [452] observed that the active sludge process effectively
eliminated the majority of nano-TiO2 from WWTPs, although the levels of Ti in the effluent
remained relatively high at 27–43 µg/L. The researchers also noted total Ti concentrations
in receiving waters ranging from 52 to 86 µg/L. This investigation additionally affirmed a
substantial contribution from alternative sources, such as urban runoff from external paint.
Westerhoff and co-researchers [453] documented nano-TiO2 levels in raw sewage waters
within WWTPs, ranging from 181 to 1233 µg/L. Furthermore, Sun and his team [454] dis-
closed nano-TiO2 levels of 16 µg/L in WWTP effluents post-treatment, 170 µg/g in WWTP
sludge, and 12 µg/g in solid waste. Finally, Kunhikrishnan and colleagues [455] estimated
potential nano-TiO2 levels of 21 ng/L in surface waters and 4 µg/L for WWTP effluents
post-treatment. As a result, there is an urgent need to develop alternative approaches
for water and wastewater effluents’ treatment, so as to minimize, or even eliminate, the
presence of nano-TiO2 particles.

Photocatalytic slurry (in suspension) systems have been widely studied at labora-
tory scale for treatment of urban and industrial wastewaters towards the degradation of
emerging organic pollutants [456]. Despite the simplicity and relevantly high efficiency
of photocatalysts used in the form of dispersed powder, the practical applications of pho-
tocatalytic slurry systems are limited. This can be mainly attributed to various technical
challenges, such as the potential toxicity arising from the release of some nanoparticles to
water and the generation of sludge, containing nanoparticles of photocatalysts [457].

Therefore, in order to avoid the numerous drawbacks associated with the use of nano-
TiO2 in suspension, immobilization of photocatalyst on inert supports/substrates, such as
glass, organic polymers or ceramic plates [458], in the form of thin films could significantly
simplify the separation procedure and enhance applicability of the photocatalytic process.
Immobilization of photocatalysts allows avoidance of the possible release of nanoparticles in
water, sludge generation, and significant decrease in the cost of treatment by eliminating the
photocatalyst recovery step. In a study by Valério and co-researchers [456], the relationships
between photocatalysis, catalyst release and associated potential environmental hazards were
assessed using zebrafish embryonic development as a proxy. Based on the acquired result,
immobilized nanoparticles demonstrated the safest approach for the environment, as the process
eliminated remnant additives, while preventing the release of nanoparticles.

Coating of nano-TiO2 particles with ligands of different natures, like organic or inor-
ganic species, polymers, etc., could also comprise another potential approach for preventing
their release into the environment during the photocatalytic wastewater treatment. Such
surface modifications of nano-TiO2 have been proposed as a safer approach for the pro-
duction of paints towards the photo-degradation of VOCs, in order to avoid the release of
aerosolized particles and undesired organic compounds from oxidized or partially oxidized
VOCs in the air [459].

8. Conclusions and Future Remarks

The extensive use of water in households and diverse industries has led to the per-
vasive contamination of available water sources and ecosystems. Numerous well-known
water pollutants have been identified, highlighting their adverse impacts on both hu-
man health and aquatic life. In addition, the mechanisms employed in the photocatalytic
degradation of each type of pollutant utilizing TiO2 have been thoroughly reviewed. The
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available synthetic approaches for the production of nano-TiO2 have been also extensively
studied and compared regarding their advantages and limitations. Given the toxicity-
related issues that accompany the usage of nanomaterials and are attributed to their size
range (1–100 nm), the toxicity of nano-TiO2 structures has also been thoroughly discussed.

As an overview, it is evident from the numerous research attempts discussed within
the present review that TiO2-based nanomaterials have emerged as promising and versa-
tile candidates for addressing water and wastewater treatment challenges. Their unique
photocatalytic properties, high surface area, stability, and low cost have propelled their
utilization in various treatment processes. The ability of TiO2 nanoparticles to efficiently
degrade organic and inorganic pollutants, disinfect water from harmful pathogens, and
remove heavy metal ions showcases their potential in mitigating water contamination
issues. However, challenges, such as optimizing the photocatalytic efficiency under dif-
ferent environmental conditions, ensuring minimal nanoparticle leaching, and scaling up
production for practical applications, need further research and development.

The continual advancements in nanotechnology and materials science hold immense
promise for enhancing the performance and application of TiO2-based nanomaterials in
water treatment. Future research directions could focus on tailoring the properties of
TiO2 nanoparticles, exploring novel composite materials, and assessing their long-term
environmental impact to foster sustainable and efficient water treatment solutions. With
concerted efforts in addressing these challenges, TiO2-based nanomaterials are poised to
play a pivotal role in ensuring access to clean and safe water, contributing significantly to
global water sustainability efforts.
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