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Abstract: Vegetation is a basic component of urban-suburban environments with 
significant area coverage. As a major vegetation type in US cities, urban turfgrass provides 
a range of important ecological services. This study examined the biological carbon 
fixation of turfgrass in a typical residential neighborhood by linking ground-based 
measurements, high resolution satellite remote sensing, and ecological modeling. The 
spatial distribution of turfgrass and its vegetative conditions were mapped with QuickBird 
satellite imagery. The significant amount of shadows existing in the imagery were detected 
and removed by taking advantage of the high radiometric resolution of the data. A remote 
sensing-driven production efficiency model was developed and parameterized with field 
biophysical measurements to estimate annual net primary production of turfgrass. The 
results indicated that turfgrass accounted for 38% of land cover in the study area. Turfgrass 
assimilated 0–1,301 g·C·m−2·yr−1 depending on vegetative conditions and management 
intensity. The average annual net primary production per unit turfgrass cover by golf course 
grass (1,100.5 g·C·m−2) was much higher than that by regular lawn grass (771.2 g·C·m−2). 
However, lawn grass contributed more to the total net primary production than golf course 
grass due to its larger area coverage, although with higher spatial variability. 
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1. Introduction 

Half of the global population now lives in urban areas and the world urban population is expected to 
double by 2050 [1]. As a major component of land transformation processes, urbanization driven by 
population growth is apparent in many parts of the world. Urban areas continue to expand at 
unprecedented rates with a projected increase of 22 million hectares in the US between 2003 and 
2030 [2]. As a matter of fact, the urban expansion has outpaced population growth across the US [2,3]. 
However, the consequences of urban and suburban development for human health and ecosystem 
functions remain largely elusive [4]. 

Vegetation is a basic component of urban-suburban environments with significant area coverage. It 
was estimated that urban forest in the US contains approximately 3.8 billion trees with an average tree 
canopy cover of 27% [5], and turfgrass in the continental US occupies 163,800 km2, an area three 
times larger than the surface of any irrigated crop [6]. Urban trees and grass provide a full range of 
ecosystem services that are vital to human health [7] and environmental quality [8]. Urban vegetation 
has the potential to affect local climate [9], reduce air pollution [10], mitigate storm-water runoff and 
improve ground water quality [11], as well as provide habitat for wildlife [12]. 

Another ecosystem service that is increasingly important is the biological carbon uptake of urban 
vegetation in relation to climate change mitigation policies. Terrestrial vegetation acts as one of the 
potential carbon sinks through photosynthesis. Considerable research has been directed in recent years at 
terrestrial carbon balance of forests, grasslands, and agricultural lands, but only a few studies have 
included urban and suburban landscapes to quantify and map carbon budget of urban vegetation [13−15]. 
This is likely due to the perception that urban areas are relatively small in size compared with other 
terrestrial surfaces [16] and play an insignificant role in the global carbon cycle. 

Although urban areas occupy a relatively small fraction (<3%) of Earth’s terrestrial surface, the size 
of urban carbon reservoirs appears to be substantial [4]. One study estimated that carbon storage by 
urban trees in US cities is equivalent to the amount of carbon emitted by Americans in about 5.5 
months [17]. Quantification of the contribution of urban vegetation to regional carbon budget is 
important for understanding and mitigating many aspects of carbon sinks and sources and global 
climate change [18,19]. Studies have shown that low density suburban areas, which are prevalent 
around many metropolitan regions and characterized by large proportions of vegetation, can be more 
productive than non-urban forest, native grasslands, and cultivated lands; thus at regional scale, carbon 
uptake from the atmosphere may be strengthened as a result of the rural land conversion [17,20,21] 
though urban development may have largely reduced the productivity of the land surface at continental 
scale [22]. Reliable methods and high resolution data are needed to help local agencies to facilitate the 
development of successful carbon management programs for monitoring and reducing urban carbon 
emission.  

Ecological studies of carbon cycling in urban plants have only begun with the majority of effort on 
carbon storage by urban vegetation [17,23–25]. Most of these studies have been restricted to 
inventories of urban vegetation on public lands. The estimated average carbon storage by urban trees 
in 10 US cities was 2.51 kg·C·m−2 of urban area based on the national urban tree inventory data and 
allometric equations [17]. This approach has provided a wealth of valuable data, but only a small fraction 
of the area of interest can be surveyed since field measurements are labor intensive and expensive, and 
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not all patches of vegetation within an urban landscape can be accounted for. Additionally, it is difficult 
to strictly adhere to a specific sampling design in landscape level inventory studies (e.g., permission to 
access private properties) and the methods used are not always consistent [20]. Therefore, it is difficult 
to compare the estimates generated from different studies. The estimates become more uncertain when 
extrapolating from individual field plots to assess urban carbon at the state, regional, and national 
levels [17]. 

Although much effort has been directed to the carbon storage of urban vegetation, only a few 
studies have attempted to estimate the temporal dynamics of carbon fixation. In the limited studies 
available, the estimated annual net primary production (NPP) of turfgrass varies greatly although it is 
generally agreed that turfgrass acts as a carbon sink [6,20,26,27].  

The key to successful estimation of carbon budgets of urban-suburban ecosystems is determining 
the composition of landscapes in terms of land use and land cover and vegetation conditions. Remotely 
sensed imagery provides a unique synoptic view of the Earth’s environment without labor intensive 
and exhaustive field surveys. It has been widely recognized that satellite observations of the Earth’s 
surface can be used to document land use and land cover over large areas. The estimation of carbon 
budgets with remotely sensed imagery, however, becomes difficult in urban-suburban areas because of 
increased spatial heterogeneity and the relatively low resolution of imagery data [6]. Given the high 
spatial heterogeneity of urban landscapes, land cover can change in short distances and all can occur in 
a small area. Traditional urban land use and land cover schemes, which include categories such as 
residential, commercial, and transportation, do not adequately resolve landscapes to include detailed 
vegetation information [28]. The accuracy of turfgrass NPP estimates is therefore limited by the 
uncertainty in mapping the area coverage. 

High spatial resolution remote sensing provides significant opportunities to detect fine details on the 
ground. With high resolution imagery, all turfgrass in residential, institutional, and commercial lawns, 
parks, athletic fields, and golf courses, etc. can be accounted for. The information derived from high 
resolution imagery is at the scale and resolution most pertinent for urban landscape planning and 
management [29]. However, extensive shadows also exist in high resolution images and create 
problems in directly applying imagery data to urban land use and land cover classification [30]. 
Shadowed areas are traditionally left unclassified or simply classified as shadows. As a result, a 
significant portion of land cover including vegetation coverage is lost in the classification, and thus the 
vegetative carbon fixation by turfgrass is most likely underestimated. 

Considerable remote sensing based ecological carbon studies have employed production efficiency 
models (PEM) in quantifying carbon budgets of natural ecosystems and croplands [31–35]. PEMs are 
often driven by a relatively constant relationship between photosynthetic carbon fixation and radiation 
received at the canopy level. The radiation received at the canopy level is commonly estimated through 
the fraction of absorbed photosynthetically active radiation (fAPAR), which is the fraction of incoming 
solar radiation in the PAR spectral region that is absorbed by photosynthetic organisms. However, 
these models cannot be directly applied to urban turfgrass because of its unique canopy structure and 
biophysical characteristics. Additionally, considering the canopy height of turfgrass (<15 cm), it 
remains difficult to measure fAPAR of turfgrass canopies with traditionally used PAR ceptometers.  

The objectives of this study were (1) to map and estimate the spatial distribution and vegetative 
condition of turfgrass at local scale by resolving shadows in QuickBird satellite images, (2) to develop 
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a remote sensing-driven PEM and parameterize the fAPAR for turfgrass canopies with field 
biophysical measurements, and (3) to quantify the annual NPP of turfgrass with the PEM under 
different management practices, such as varying nitrogen fertilization regimes. 

2. Methods 

2.1. Study Area and Data Collection  

The study area is a suburban residential neighborhood (15.5 km2, northwest corner: 45°0′40″N, 
93°12′40″W; southeast corner: 44°58′32″N, 93°9′42″W), located in Falcon Heights and Roseville, 
MN, USA. Land use and land cover of the study area is dominated by high-density residential 
development, but also includes commercial and institutional land development such as industrial 
buildings, parking lots, highways, trees, and turfgrass. Agricultural research fields of the University of 
Minnesota are also located in the study area but were masked because the land use is not typical of 
those in urban-suburban environments. 

QuickBird satellite images were acquired for the study area. A set of biophysical variables, 
including canopy multispectral reflectance, and incoming and reflected PAR, were measured in the 
field experiments to investigate the dynamics of turf ecosystems with different nutrient conditions. 
Spectral reflectances were also measured for shadowed surfaces to investigate whether shadows were 
spectroradiometrically different. Weather and soil conditions were recorded simultaneously.  

2.1.1. Satellite Image Acquisition 

Two QuickBird multispectral images were acquired on 18 August 2003 and 26 July 2006 
under clear sky conditions. The images, with 11-bit radiometric resolution, have three visible bands  
(0.45–0.52 µm, 0.52–0.60 µm, and 0.63–0.69 µm) and one near infrared band (0.76–0.90 µm). The 
spatial resolution of the 2003 image was 2.8 m, taken at a sun elevation angle of 54.5°, an off-nadir 
view angle of 12.1°, and a target azimuth of 111°, while that of the 2006 image was 2.4 m, taken at a 
sun elevation angle of 62.6°, an off-nadir view angle of 18.2°, and a target azimuth of 90°. The 
different illumination and viewing geometry at acquisition led to different shadows in the two images. 
The land use and land cover classification was conducted on the 2006 image, while the 2003 image 
was used as ancillary data to aid in the classification of shadows when labeling shadow classes. The 
images were geometrically rectified and radiometrically and atmospherically corrected to obtain 
surface reflectance [36]. 

2.1.2. Spectral Reflectance Measurement 

Surface spectral reflectances were measured for turfgrass canopies and shadowed surfaces with a 
16-band multispectral radiometer (CROPSCAN MSR-16R, 0.46–1.72 µm). The band widths of the 
spectroradiometer vary from 6.8 nm to 12 nm in the visible and from 11 nm to 13 nm in the near 
infrared. Both irradiance and radiance were measured simultaneously to derive surface reflectance. The 
four multispectral bands of QuickBird data were simulated with appropriate CROPSCAN bands as 
weighted averages (Table 1) [36]. The view angle of the spectroradiometer was constant by looking 
vertically downward with a 28° field of view (FOV). Measurements were made at 1 m above either 
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grass canopies or shadowed surfaces, which resulted in a projected view area with a 0.5 m diameter. 
All reflectance measurements were taken within one hour of solar noon to minimize the effect of 
diurnal changes in solar zenith angle. 

Table 1. QuickBird spectral bands and the corresponding bands of CROPSCAN MSR-16R 
radiometer. 

QuickBird 
CROPSCAN Bands (μm) 

Bands λ (μm) 
Blue 0.45–0.52 0.4566–0.4634, 0.5062–0.5139 

Green 0.52–0.60 0.5553–0.5647 
Red 0.63–0.69 0.6540–0.6660 

Near IR 0.76–0.90 0.7545–0.7655, 0.8045–0.8155, 0.8640–0.8760, 0.8935–0.9065 

The turfgrass canopy reflectance measurements were conducted in the experimental plots at the 
University of Minnesota Turfgrass Research, Outreach, and Education Center (44°59′N, 93°11′W), 
located in the study area. The 24 experimental plots consisted of eight nitrogen, phosphate, potassium, 
and clipping treatments (Table 2). Randomized complete blocks with three replications were used for 
the experiments. Each plot was 2.44 × 7.32 m and planted with Kentucky bluegrass, a common 
turfgrass in the United States, on the Waukegan silt loamy soil (fine-silty over sandy mixed Typic 
Hapludolls) with 3.6% organic matter for the top 15 cm. Six measurement campaigns were carried out 
in the growing season of 2006. Three random sampling areas were measured within each treatment 
plot. Measurements were then averaged for each plot. 

Table 2. Data collection of multispectral reflectance measured with CROPSCAN MSR-16R 
and photosynthetically active radiation (PAR) measured with ACCUPAR LP-80. 

  No. Plots
Readings  
Per Plot 

Readings Per  
Measurement Campaign 

No. Measurement 
Campaigns 

Reflectance (%) 
Turfgrass Canopies 24 3 72 6 
Shadowed Surfaces 37 3 111 1 

PAR  
(µmol·m−2·s−1) 

Turfgrass Canopies 24 
1 (upward) 

3 (downward)
96 6 

Shadowed surface reflectances were measured on 26 September 2006 for both shadows on 
impervious surfaces (SOI) and shadows on grass (SOG). Thirty seven shadowed plots were selected in 
the study area, in which 18 were SOI plots and 19 were SOG plots. Each type of shadow (i.e., SOI and 
SOG) was further divided into shadows cast by buildings (8 for SOI and 7 for SOG) and shadows cast 
by trees (10 for SOI and 12 for SOG), respectively. Three random sampling areas were selected within 
each shadowed plot. Measurements were then averaged for each plot to estimate multispectral 
reflectance values for each type of shadow.  

2.1.3. Photosynthetically Active Radiation Measurement 

fAPAR was estimated indirectly through incoming and reflected PAR; both were measured with an 
ACCUPAR LP-80, a linear PAR ceptometer consisting of an integrated probe that contains 80 PAR 
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photodiodes and a microcontroller. PAR measurements were conducted simultaneously in the same 
turfgrass experimental plots as the canopy reflectance measurements (Table 2). For each of the 24 
plots, PAR measurements consisted of one upward looking (i.e., incoming PAR) and three downward 
looking acquisitions (i.e., reflected PAR), with the ceptometer being placed at 1 m height. 
Measurements were averaged for each plot. The PAR measurements were repeated six times in the 
growing season of 2006. 

2.1.4. Meteorological Data 

Meteorological data were taken from the University of Minnesota Climatological Observatory’s 
daily observations; it is also located within the study area. Climate normals were also obtained from the 
same dataset. The data include solar radiation, maximum and minimum air temperature, precipitation, 
and soil temperature at 5 cm depth. The climate of the study area is continental with large seasonal 
temperature variations. The coldest month is January when the average monthly minimum temperature 
can decrease to −14 °C, while in July, the warmest month, the average monthly maximum temperature 
can rise to 28 °C. The major period of the growing season is from late April to early October with a 
median growing season of 160 days. The average daily air temperature during this period of time is 
about 17 °C while the maximum air temperature can be above 30 °C. Approximately 70% of annual 
precipitation (about 820 mm) occurs during the growing season.  

2.2. Shadow Detection and Removal in the Land Use and Land Cover Classification Map  

A multi-stage image classification scheme was developed. To reduce the spectral confusion 
between water and shadows, water cover in the QuickBird image was masked with the Ramsey County 
open water outlines, which were derived from 2003 aerial orthophotography utilizing stereo processing 
techniques. Unsupervised ISODATA clustering was then initially used to map major land use and land 
cover types including impervious surfaces, water, bare soil, crops, trees, and turfgrass. However, one 
of the spectral classes was inevitably shadows. Measured spectral reflectances of different types of 
shadow were analyzed to investigate whether shadows were spectroradiometrically different, 
particularly, in the QuickBird spectral bands. For the purpose of this study, we were more interested in 
the land cover shaded by shadows than the land cover that casts the shadows. Thus, shadows were 
grouped into two types: SOI and SOG, regardless of being cast by buildings or by trees. Shadow pixels 
were also extracted from the QuickBird images to compare spectroradiometric differences between 
SOI and SOG. Based on these differences, shadow pixels were reclassified to different information 
classes, i.e., impervious surfaces or grass. 

To assess the accuracy of shadow detection and overall classification, Ramsey County color aerial 
orthophotography (collected on 9 April 2006, spatial resolution, 0.15 m) was used as the reference 
image. Three hundred points were selected using stratified random sampling with a minimum 30 
points for each class. The overall accuracy and producer’s and user’s accuracies of each class were 
computed as well as Kappa statistics. 
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2.3. Shadow Detection and Removal in the QuickBird Images  

For the estimation of vegetation conditions and quantification of NPP, it is necessary to restore the 
spectral information of shadow areas in the original QuickBird imagery. Shadow pixels in the satellite 
images were first identified by overlaying with the shadow-free classification map. To restore spectral 
information of shadow areas in the QuickBird imagery, the k-nearest neighbor algorithm (k = 1) was 
applied to resample digital numbers for all shadow pixels [37]. The neighborhood of the shadow pixels 
was confined to the corresponding information classes, i.e., either grass or impervious surfaces. 
Through this process, the digital number of the closest pixel within the confined neighborhood was 
used to replace the original value of the corresponding shadow pixel. The shadow detection and 
removal were conducted separately for each of the four spectral bands of the QuickBird images.  

2.4. Net Primary Production Modeling 

A remote sensing-driven PEM model was developed to estimate NPP of turfgrass:  

PARfAPARNPP ××= ε  (1) 

bNDVIafAPAR +×=  (2)

)(),( NTTf maxsa εε ×=  (3)

݂(ܶܽ , (ݏܶ = ቐ0                                   ܶܽ ≤ 0℃, ܶܽ ≥ 40℃, or ܶݏ ≤ 0℃(ܶܽ − ܶ݉ ݅݊ )(ܶܽ − ܶ݉ ݔܽ )(ܶܽ − ܶ݉ ݅݊ )(ܶܽ − ܶ݉ ݔܽ ) − ൫ܶܽ − ݐܶ ൯2 0℃ < ܶܽ < 40℃ and ܶݏ > 0℃ 
(4)

where NPP is the net primary production, i.e., the total amount of carbon fixed by turfgrass through the 
process of photosynthesis after the costs of plant respiration (g·C·m−2); ε is the light use efficiency 
(g·C·MJ−1); εmax(N) is the maximum light use efficiency under optimal growth conditions (g·C·MJ−1) at 
a certain nitrogen level; it was derived from in situ measurements of net canopy photosynthesis and 
light and nitrogen conditions [38,39]. a and b are the slope and intercept of the regression line between 
fAPAR and normalized difference vegetation index (NDVI), respectively. f(Ta,Ts) is a scale factor 
controlled by environmental stresses for air temperature (Ta), soil temperature at 5 cm (Ts), and the 
maximum (Tmax), minimum (Tmin), and optimal temperature (Topt) for Kentucky bluegrass to grow. 

Biophysical measurements in the controlled experimental plots were used to parameterize fAPAR. 
As mentioned before, it is difficult to measure fAPAR of turfgrass canopies directly because of the 
short and tight canopies. We developed a simplified coupled leaf/canopy radiative transfer model and 
inverted it to estimate turfgrass canopy fAPAR with field-measured incoming and canopy reflected 
PAR, and leaf and soil reflectances in the PAR spectral region. The model was simplified by 
considering only two layers of turfgrass leaves and one layer of soil and assuming turfgrass canopies 
are horizontally homogeneous and laterally infinite. NDVI values were computed with weighted 
average canopy reflectance measurements in corresponding wavelengths (Table 1) [40].  

The scale factor was determined by a piecewise function on the basis of Ta and Ts. If Ta and Ts were 
within the acceptable temperature range, f(Ta,Ts) was calculated with a scale normalization function by 
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comparing Ts with the three threshold temperatures for turfgrass growth. Otherwise, f(Ta,Ts) was given 
a value of zero, meaning that no carbon would be assimilated under this environmental condition. 

Turfgrass in the study area is generally well-watered. Three nitrogen levels were considered to 
indicate the intensity of management: high (εmax(N) = 1.08 g·C·MJ−1), medium (εmax(N) = 0.84 g·C·MJ−1), 
and low (εmax(N) = 0.65 g·C·MJ−1). High nitrogen level denotes multiple fertilizer applications 
throughout the year; medium nitrogen level represents use of fertilizers only once or twice per year; 
and low nitrogen level has no fertilizer application. Three NDVI threshold values were selected to 
correspond with each nitrogen level based on the examination of the histogram of the NDVI imagery 
and field survey. High or low nitrogen level was denoted if NDVI value was greater than 0.8 or less 
than 0.5, respectively. Medium nitrogen level was denoted if NDVI was between 0.5 and 0.8. The 
calculations were based on the simplified assumption that, under a given nitrogen scenario, turfgrass 
within the corresponding NDVI range was fertilized with the same amount of nitrogen. This way, the 
PEM model responds to both the spatial heterogeneity of turfgrass implicit in the satellite data and 
management practices.  

Using the shadow-free high resolution land use and land cover map, the shadow-free QuickBird 
images, and the local climate and soil data as the inputs, the parameterized PEM was implemented to 
estimate turfgrass NPP for the entire study area. We implemented the PEM for other times of the 
growing season when satellite images were not available under the assumption that the vegetation 
properties derived from the acquired satellite data represented the typical turfgrass condition 
throughout the growing season. The modeled results were integrated over the whole growing season to 
provide a map of the total annual NPP at 2.4 m spatial resolution.  

3. Results  

3.1. Land Use and Land Cover 

A high resolution (2.4 m) land use and land cover map was derived from the classification of 
QuickBird imagery when shadow pixels were reclassified to different information classes (Figure 1). 
Golf course grass was spectrally significantly different from regular lawn grass, and thus was classified 
separately. The QuickBird image classification indicated that shadows accounted for about 7% of total 
land cover in the study area (Figure 2). Different types of shadow (i.e., SOI and SOG) had distinct 
spectral characteristics, particularly in the near infrared wavelengths (Figure 3). Based on these 
differences, the SOI and SOG were successfully separated (Figure 3), and the shadow areas were 
reclassified to the corresponding information classes (Figure 2). 

The overall classification accuracy was 84% with overall Kappa statistics of 0.81 (Table 3). The 
producer’s and user’s accuracies of vegetation classes were in the range of 80–85%, which were 
slightly lower than the 84–89% accuracy achieved for the impervious surfaces. SOG was detected with 
the highest producer’s accuracy (90%) while SOI was detected with the highest user’s accuracy (94%) 
among all classes. However, SOI was defined more accurately than SOG after accounting for chance 
agreement, probably due to the low spatial variation of SOI (Figure 3). 

The shadow-free classification showed that urban vegetation accounted for about 60% of the land 
surface in this residential neighborhood, with about 38% being turfgrass (Figure 2). Spectral information 
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was also correspondingly restored for shadow areas in the original QuickBird images. Figure 4 
illustrates the results of shadow removal in the original QuickBird images covering the same area as 
shown in the land cover maps (Figure 5). 

Figure 1. The location of the study area within the state of Minnesota and its land use and 
land cover types derived from QuickBird imagery and aerial orthophotography after 
shadow areas were reclassified to information classes. 

 

Figure 2. Percentages of land use and land cover by type classified with QuickBird 
imagery before and after the shadows in the images were detected and removed. 
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Figure 3. Multispectral reflectances of shadows measured with CROPSCAN radiometer on 
grass (SOG) (n = 57) and on impervious surfaces (SOI) (n = 54), cast either by buildings or 
trees (left). The spectroradiometric differences between SOG and SOI are also shown in the 
digital numbers of sampled shadow pixels in the QuickBird images (n = 65) (right). The 
vertical lines indicate the range of variability in each spectral band of QuickBird imagery. 
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Table 3. Accuracy assessment of shadow detection and land use and land cover 
classification. SOG and SOI refer to shadows on turfgrass and shadows on impervious 
surfaces, respectively. 

Class Producer’s Accuracy User’s Accuracy Kappa 
Turfgrass 82.1 79.7 0.76 

Trees 80.7 85.2 0.81 
Impervious Surfaces 84.4 88.5 0.85 

Bare Soil 87.5 75.0 0.78 
SOG 90.0 73.0 0.75 
SOI 78.4 93.6 0.93 

Figure 4. QuickBird false color images before shadows were removed (left) and after 
spectral information was restored for shadow pixels (right).  
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Figure 5. Land use and land cover maps before (left) and after (right) shadow areas were 
removed. Areas in gray are shadows on grass (SOG) while areas in black are shadows on 
impervious surfaces (SOI). SOG and SOI were reclassified to grass (green) and impervious 
surfaces (white), respectively. Dark green and brown colors represent areas covered by 
trees and bare soil, respectively.  

                      
 

3.2. Turfgrass Net Primary Production 

The relationship between fAPAR and NDVI parameterized in this study (Figure 6) performed better 
than many other fAPAR-NDVI relationships found in the literature [31–33,41,42]. With this 
relationship, we found that fAPAR will reasonably not exceed 1.0 when NDVI approaches large 
values. Additionally, the NDVI value for soil surfaces (when fAPAR = 0) derived from this 
relationship (i.e., 0.22) was closer to that estimated with measured soil reflectances (i.e., 0.31) than if 
using relationships in the literature (e.g., 0.048 [32]; 0.087 [41]). This also suggests that it may not be 
appropriate to assign model parameters defined for other vegetation types (e.g., irrigated agricultural 
crops) to suburban turfgrass or other urban vegetation [43]. 

Management of turfgrass is highly variable. While turfgrass in some areas such as roadsides receive 
little attention, golf courses and athletic fields often receive excess water and fertilizer to overcome 
key growth constraints. Most residential and commercial lawns receive medium amounts of irrigation 
and fertilization. As a result, the NPP of turfgrass varied significantly across the study area due to 
different management practices (Figure 7). The annual NPP ranged as low as almost 0 g·C·m−2 to as 
high as 1,301 g·C·m−2. High input turfgrass (e.g., golf course grass) constantly had high productivity 
and contributed considerably to NPP (>1,000 g·C·m−2·yr−1) while the productivity of low input 
turfgrass (e.g., roadside turfgrass) was relatively low. The average carbon density (NPP per unit 
turfgrass cover) on golf course grass (1,100.5 g·C·m−2) was 43% higher than that on regular lawn grass 
(771.2 g·C·m−2) (Table 4). 
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Figure 6. The relationship of fraction of absorbed photosynthetically active radiation 
(fAPAR) to normalized difference vegetation index (NDVI) derived from field biophysical 
measurements and turfgrass canopy radiation transfer modeling. 
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Figure 7. Annual net primary production (NPP) of turfgrass in the study area. Areas in 
white were not turfgrass and thus were masked. 
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Table 4. Turfgrass (divided into golf course grass and lawn grass) area coverage and 
estimated average net primary production (NPP) per unit cover and total annual NPP.  

 
Area 
(%) 

Average NPP per 
Unit Cover 

(g·C·m−2·yr−1) 

Range  
(g·C·m−2·yr−1) 

Standard 
Deviation 

(g·C·m−2·yr−1) 

Annual NPP 
(Tons) 

Golf course grass 2.3 1,100.5 225.7–1,301.9 57.2 450 
Lawn grass 35.7 771.2 0–1,301.9 324.8 4,250 

Total 38.0 796.4 0–1,301.9 330.0 4,700 

In addition to the relatively low productivity of lawn grass, the spatial variability of NPP was also 
greater than that of golf course grass. The standard deviation of the annual NPP of regular lawn grass 
(324.8 g·C·m−2·yr−1) was five times more than that of golf course grass (57.2 g·C·m−2·yr−1). However, 
regular lawn grass still contributed more to the total NPP of the study area because of the larger area 
coverage of lawn grass (~36% compared with 2% for golf course grass) (Figure 2). Of the total 
estimated 4,700 tons of carbon absorbed by turfgrass across the study area, 4,250 tons (~90%) were 
assimilated by lawn grass and 450 tons (~10%) by golf course grass (Table 4). 

A sensitivity analysis was also conducted to examine the response of the PEM model to light use 
efficiencies corresponding to three nitrogen management intensity levels We found that the PEM 
model was quite sensitive to εmax(N) values. The average annual NPP would increase by 14.7% or 
decrease by 30.9% if a constant high εmax(N) (i.e., 1.08 g·C·MJ−1) or low εmax(N) (i.e., 0.65 g·C·MJ−1) 
was used in the simulation, respectively. The average annual NPP would decrease by 9.6% if a 
constant medium εmax(N) (i.e., 0.84 g·C·MJ−1) was used. This indicated that differences in nitrogen 
supplies could cause significant variations of NPP. Thus it was necessary to separate light use 
efficiency according to nitrogen fertilization levels in estimating turfgrass NPP. 

4. Discussion 

The analysis indicated a marked high increase in biological carbon fixation of turfgrass compared 
with native grasslands in the same region (~200 g·C·m−2·yr−1 in monoculture) [44], which may be 
explained by the enhanced management practices such as irrigation and fertilization, and the 
stimulating effect of clipping on turfgrass [26]. The results are consistent with several other previous 
studies suggesting that the carbon cycling rate of urban turfgrass is usually higher than other vegetation 
types. For instance, field measurements of both above-ground and below-ground biomass during a 
growing season indicated that turfgrass ecosystems were extremely productive with an average NPP of 
489 g·C·m−2·yr−1 and 792 g·C·m−2·yr−1 in separate studies [26,27]. The lab analysis of carbon 
concentrations of lawn clippings indicated that the collected aboveground biomass ranged from 
35 g·C·m−2·yr−1 to 540 g·C·m−2·yr−1 with an average of 200 g·C·m−2·yr−1 [20]. This is equivalent to an 
average 660 g·C·m−2·yr−1 (115–1,800 g·C·m−2·yr−1) of annual NPP assuming that clippings remove 
30% of total production [6] or an average 1,000 g·C·m−2·yr−1 (175–2,700 g·C·m−2·yr−1) of annual NPP 
assuming that clippings remove 20% of total production [27]. The simulation with the Biome-BGC 
ecosystem model showed that NPP ranged from 22 to 1,063 g·C·m−2·yr−1 with an average of 
400 g·C·m−2·yr−1 [6]. 
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Given the popular hypothesis that biological carbon density is often assumed to be zero or largely 
neglected once land is considered to be urban [45], the significant NPP of turfgrass found in this study 
and the high carbon storage of urban trees shown in previous studies [17] reveal an important 
implication for future land use and land cover change studies. All land use and land cover change, 
including the conversion of land through the process of urbanization should be accounted for to 
balance the global carbon budget.  

The amount of carbon fixed by turfgrass, however, has to be discounted for potential carbon release 
in order to fully quantify the carbon balance of urban turfgrass. The potential carbon losses may 
include soil respiration loss [46] and fossil fuel consumption related to management activities (e.g., 
through the use of lawn mowers) [23,47]. Carbon sequestration in turf soils occurs at a significant rate, 
comparable to that of the land placed in the US Conservation Reserve Program [48]. To fully account 
for the net ecosystem production or NEP of turfgrass, the respiration by soil microbes must be 
subtracted from the current estimates. The carbon emission in various maintenance activities via fossil 
fuel combustion may offset some of the biological carbon uptake by turfgrass. Therefore, a complete 
carbon balance of the whole urban turfgrass ecosystem is needed to include both drivers of fossil fuel 
emissions and carbon cycling in plants and soils [49]. 

This study is part of a large project to quantify carbon budget in the urban-suburban ecosystems with 
two different approaches: satellite remote sensing and eddy covariance flux measurements [50]. While 
our remote sensing-based estimate of the annual NPP of turfgrass (796.4 g·C·m−2·yr−1) falls well within 
the range reported by other studies of biomass production in lawns (400–1,000 g·C·m−2·yr−1) [6,20], we 
will further compare the result of this study with that of the eddy covariance measurement conducted 
at the same study site in the future. We caution that the PEM modeling is semi-empirical and will need 
to be adapted individually to each site.  

The accuracy of NPP estimates was also limited by the simplifying assumptions made in the PEM 
modeling. The results of this study provided a first-order approximation of turfgrass NPP by assuming 
that the satellite imagery acquired in mid-summer could be used to derive the typical turfgrass canopy 
conditions throughout the growing season. While we believe this simplification is useful to estimate 
the overall variation of carbon uptake, the assumption should be used with caution if turfgrass stays in 
a dormant state for an extended period of time. For intensively managed ecosystems like turfgrass, 
changes in vegetation surface conditions can be inconsistent and unpredictable. The eddy covariance 
technique may arguably be the only way that can be used to accurately quantify the temporal dynamic 
of carbon exchange. However, it has its own challenges in heterogeneous urban landscapes [50]. It is 
also expensive to operate and mathematically complex. Since these limitations often restrict the 
effective use of this technique in practice, the method we proposed can provide information to local 
agencies in developing carbon management programs. 

5. Conclusions  

We examined the quantities and spatial patterns of the annual NPP of turfgrass in a typical 
residential neighborhood in the US with a remote sensing-driven PEM approach. A multi-stage image 
classification scheme was developed to map major land cover types with high resolution QuickBird 
satellite imagery. Shadows in the remote sensing images, which accounted for about 7% of total land 
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cover in the study area, were detected and removed by taking advantage of the high radiometric 
resolution of QuickBird data. The results showed that urban vegetation including turfgrass is an 
important component of urban-suburban landscapes with significant area coverage. In this suburban 
neighborhood, urban vegetation accounted for about 60% of the land surface, with about 38% being 
turfgrass. 

As a major vegetation type in US cities, turfgrass can play an important role in helping reduce 
atmospheric carbon dioxide. The results indicated that, depending on vegetative conditions and 
management intensity, the productivity of turfgrass was high but with large spatial variability. The 
greatest NPP was associated with turfgrass in golf courses which received intensive irrigation and 
fertilization. The average annual NPP of golf course grass (1,100.5 g·C·m−2) was 43% higher than that 
of regular lawn grass (771.2 g·C·m−2). But regular lawn grass contributed more to the total NPP due to 
the larger area coverage, although with higher spatial variability. Only 2% of the land cover was 
occupied by golf course grass compared with 36% by regular lawn grass. The standard deviation of the 
annual NPP of regular lawn grass was five times more than that of golf course grass.   
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