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Abstract: We present the development of a low-cost Unmanned Aerial Vehicle-Light
Detecting and Ranging (UAV-LiDAR) system and an accompanying workflow to produce
3D point clouds. UAV systems provide an unrivalled combination of high temporal and
spatial resolution datasets. The TerraLuma UAV-LiDAR system has been developed to take
advantage of these properties and in doing so overcome some of the current limitations of
the use of this technology within the forestry industry. A modified processing workflow
including a novel trajectory determination algorithm fusing observations from a GPS
receiver, an Inertial Measurement Unit (IMU) and a High Definition (HD) video camera
is presented. The advantages of this workflow are demonstrated using a rigorous assessment
of the spatial accuracy of the final point clouds. It is shown that due to the inclusion of video
the horizontal accuracy of the final point cloud improves from 0.61 m to 0.34 m (RMS error
assessed against ground control). The effect of the very high density point clouds (up to
62 points per m2) produced by the UAV-LiDAR system on the measurement of tree location,
height and crown width are also assessed by performing repeat surveys over individual
isolated trees. The standard deviation of tree height is shown to reduce from 0.26 m, when
using data with a density of 8 points per m2, to 0.15 m when the higher density data was used.
Improvements in the uncertainty of the measurement of tree location, 0.80 m to 0.53 m, and
crown width, 0.69 m to 0.61 m are also shown.



Remote Sens. 2012, 4 1520

Keywords: Unmanned Aerial Vehicles; LiDAR; MEMS IMU; Kalman Filter; sensor
integration; forestry

1. Introduction

1.1. Background

Airborne LiDAR remote sensing has become a powerful tool in the management of modern forest
inventories [1]. Ongoing research into the processing and analysis of LiDAR data has allowed for the
development of an extensive range of LiDAR data products from which a wide range of forest metrics can
be derived [2–4]. Stand metrics and tree-level statistics have provided forest managers with significantly
richer information about their forests [5,6]. It is, however, evident that the full potential of airborne
LiDAR technology for forest measurement and management is yet to be reached. Prohibitive factors,
including high survey costs and short flying seasons in many areas, have limited the ongoing application
of multi-temporal studies. As such, the assessment of factors such as forest health, defoliation, and rate of
canopy closure are not feasible from the current intermittent LiDAR surveys utilised by forest managers.

Recently, improvements in small-scale technology have enabled the use of Unmanned Aerial Vehicles
(UAVs) as an alternative remote sensing platform offering a distinctive combination of very high
resolution data capture at a significantly lower survey cost. Current research into the use of UAVs as
a 3D data-capture platform includes archaeological surveys [7,8] and vegetation monitoring [9–11], for
example. These studies use image matching and photogrammetric techniques, which allow high density
point clouds to be generated from the very high resolution imagery collected by UAVs. These point
clouds have also been evaluated for forest monitoring and management by Tao et al. [12] and Dandois
and Ellis [13], both showing the advantages of significantly higher densities point clouds in comparison
to those commonly collected with full-scale LiDAR platforms. The drawback of point clouds generated
from imagery is that few points will be measured from within the canopy and from the underlying surface
in densely vegetated areas. This within canopy information is vital for many of the techniques which
have been developed for deriving stand level and tree level metrics from point clouds, such as above
ground biomass.

Jaakkola et al. [14] provided the first example of the potential of UAV-borne LiDAR for use in the
forestry research. With the deployment of a rotor wing UAV equipped with a number of navigation
sensors, in combination with two on-board LiDAR sensors, high-resolution data sets were produced
offering improved individual tree level mapping. Jaakkola et al. [14], and more recently Lin et al. [15],
have shown that due to the improved density of a UAV LiDAR point cloud, several metrics can be
measured at a finer scale and with higher precision when compared to traditional LiDAR platforms.
Because of their high spatial and temporal resolution, together with low operational costs, UAVs can
provide a more targeted approach to forest monitoring and allow for the use of multi-temporal surveys
such as forest health and canopy closure monitoring. Studies such as these suggest that through the
combination of low-cost, high resolution data capture, UAV platforms are likely to be the next tool of
choice for optimising detailed small area surveys within forests.
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Several other UAV-platforms have also been developed for the purpose of collecting LiDAR
data [14,16–18]. The majority of these examples have been designed for government or military
purposes [16,17] or as proof of concept platforms to show that LiDAR data can be collected from
UAVs [18]. The drawback of such platforms is that the size and budget is significantly larger than
what could be considered useful as an operational tool in forest management. A key reason for this is
that the derivation of a spatially accurate point cloud requires careful consideration to be given to the
determination of aircraft position and orientation. Even small errors in the observation of orientation and
position result in substantial on ground displacements in point measurements [19]. The considerations
regarding the positioning and orientation payload for UAV systems are confounded by the payload
weight and size restrictions, and a trade-off between accuracy and weight must often be made. This has
resulted in the majority of UAV-borne LiDAR systems consisting of larger UAVs, capable of carrying
heavier payloads [16–18], making them difficult to deploy in forested environments. For example, the
platform outlined in Nagai et al. [17] has a take-off weight of 330 kg. The mini-UAV outlined by
Jaakkola et al. [14] uses a combination of a tactical grade IMU and laser scanner. This combination,
which weighs over 3 kg, pushes the payload limitations of most commercially available vertical take off
and landing (VTOL) UAV’s suitable for forest based research.

Micro-Electromechanical System (MEMS) based IMUs offer an alternative option for positioning
and orientation that is both lightweight and low-cost. These IMUs have been deployed for a variety of
positioning and orientation tasks, including navigation, obstacle avoidance and land-based mapping [20].
This technology can be used as the primary orientation sensor within a GPS/IMU sensor framework to
provide the high rate estimates of position and orientation required for LiDAR mapping. However,
due to the high levels of error within MEMS IMUs and based on reported errors of sensor fusion
algorithms using such sensors [21], it can be shown that estimates of orientation and position would
be of an inadequate accuracy for use on-board a UAV-borne LiDAR system [22]. Several innovative
algorithms fusing GPS and MEMS observations have been shown to improve the modelling of the large
stochastic drifts within MEMS IMUs and as a consequence the accuracy of orientation estimates [23–25].
Furthermore, the augmentation of techniques developed within the fields of photogrammetry and
computer vision have contributed to improving the accuracies of MEMS-based navigation systems when
used for direct georeferencing [26–28]. These developments suggest that a UAV system consisting of a
lightweight MEMS based IMU along with GPS and visual observations can provide estimates of position
and orientation with the accuracy required for mapping forest metrics using UAV-borne LiDAR.

1.2. Objectives

The aim of this paper is to present the development of a UAV-borne LiDAR system using lightweight
and low-cost sensors, and demonstrate its capability of collecting spatially dense, accurate, and
repeatable measurements for forestry inventory applications. This paper outlines and assesses the
accuracy of a modified workflow to produce a UAV-borne LiDAR point cloud. Within this workflow,
a technique for accurately georeferencing LiDAR points is presented, which includes a novel inclusion
of orientation estimates from HD-video using a modified version of the structure from motion (SfM)
algorithm outlined in Snavely et al. [29]. The fusion of these orientation observations with observations
from the GPS receiver and the MEMS-IMU within a Sigma Point Kalman Smoother is proposed in
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order to overcome the presence of large orientation errors which occur in GPS/MEMS-IMU based fusion
systems. We evaluate the system in terms of absolute spatial accuracy as well as the accuracy of derived
for forest metrics at the individual tree level.

2. Hardware

A multi-rotor UAV (OktoKopter Droidworx/Mikrokopter AD-8) currently being developed as a
remote sensing platform by the TerraLuma research group at the University of Tasmania is used for
this study (Figure 1). Multi-rotor UAVs offer increased stability and decreased vibration in comparison
to other platforms. This is a key consideration in the development of a mapping platform as any source of
vibration equates to a source of error within measurements of position and orientation. The OktoKopter
has 8 brushless motors which operate at different rotor speeds to achieve directional flight. There is
however a minimum rotor speed required to achieve flight which will induce vibration. We isolate this
vibration by ensuring the sensing payload is mounted in a rigid frame isolated from the OktoKopter
airframe through the use of 4 silicon mounts. These mounts have been selected based on the mass of the
payload and the minimum frequency vibration expected from the rotors.

Figure 1. The multi-rotor Oktocopter UAV platform with the vibration isolated sensor frame,
carrying the laser scanner, MEMS based IMU, GPS receiver and antenna and video camera.

The OktoKopter has a standalone control system including an on-board navigation and autopilot
system. This allows predefined flight paths to be followed ensuring maximum use of flight time
and repeat surveys to be easily performed. Furthermore, the use of a VTOL UAV within forested
environments is of high importance as cleared areas for use as runways are often not present. The
main limitation of this platform is the small payload capacity and subsequently the reduced flight time.
The electric OktoKopter is only capable of flight times between 3–5 min.

The sensor payload is mounted on the UAV through a custom-designed rigid sensor framework with
fixed lever arm offsets and boresight angles between all sensors. The framework also allows for an
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adequate sky-view for the accurate operation of both the GPS antennas and GPS enabled video camera.
The primary sensor on-board the UAV is an Ibeo LUX laser scanner. The scanner is designed for
automotive purposes and has a maximum range of 200 m and scans in 4 parallel layers with a transversal
beam divergence of 0.8◦ allowing complete coverage of the sensor’s field of view. The sensor was set
to have a scan frequency of 12.5 Hz and an angular resolution of 0.25◦. These settings were chosen
primarily due to the limitations of the data logging computer. The maximum scanning range of the Ibeo
LUX is 110◦, although this is restricted to±30◦ as large scan angles have been shown to have a significant
impact on the derivation of key metrics used for forest investigation [30]. The LUX records ranges and
intensities for up to three echoes per pulse, with a range repeatability of 10 cm and a resolution of 4 cm.
Although the attributes of the scanner such as the wide beam divergence and low range resolution do not
make it an ideal mapping sensor, its low power consumption and lightweight (approximately 1 kg) allow
its use on-board UAV platforms.

The remaining sensors contained within the sensing payload belong to the Positioning and Orientation
System (POS). The POS consists of a MEMS IMU (microstrain 3DM-GX3 35), a dual frequency GPS
receiver (Novatel OEMV1-df) and lightweight antenna (Novatel ANT-A72GA) and a high definition
GPS enabled video camera. The IMU contains orthogonal sets of accelerometers, gyroscopes, and
magnetometers as well as an internal GPS receiver allowing all observations to be synchronised to GPS
time. The IMU, which weighs only 50 g, is set to observe angular rate and acceleration at a rate of
100 Hz. The key properties of the gyroscopes and accelerometers are summarised in Table 1. The IMU
has been factory calibrated, however, to confirm the results the IMU was calibrated using the methods
outlined in [31]. The GPS observations, recorded at a rate of 5 Hz, are differentially post-processed
in order to achieve the highest possible accuracy. Finally, the HD video camera records 30 frames per
second and has a field of view of 110◦. The calibration parameters of this camera have been determined
using the method outlined in Bouget [32]. Data logging and time synchronisation is performed using an
on-board miniaturised computer (Gumstix Verdex pro). All other processing is performed offline. The
entire sensor payload weighs 2.4 kg meeting the requirements for use on-board the OktoKopter platform,
which a has maximum payload of 2.8 kg.

Table 1. Properties of the MEMS based Microstrain 3DM-GX3 35 IMU.

Gyroscopes Accelerometers

Range 50◦/s 1.7g
Non-linearity 0.2% 0.2%

Bias Stability 0.2◦/s 0.003g

3. Methodology

3.1. LiDAR Workflow

The use of airborne LiDAR has received significant research attention and operational use as a source
of information for forest scientist since its introduction in the mid-1990s. This has allowed a well
defined best practice data collection and processing workflow to be established by data providers. The
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end product of this workflow is a spatially accurate point cloud with each point given an appropriate
classification. The processing of LiDAR data captured using a UAV follows a similar workflow as shown
in Figure 2. However, considerations need to be given to the miniaturised sensors, reduced flying height
and time, as well as the increased point density during each of the stages of processing. For example,
during the data collection phase consideration needs to be given to the limited flight time of a UAV and
optimal mapping strategies need to be determined. An advantage of the platform used in this study is the
on-board autopilot allowing maximum coverage of the targeted area during each flight.

Figure 2. The modified LiDAR workflow to be used in producing a point cloud from
the UAV system. Signification modifications are highlighted in red to account for the
miniaturised sensors and increased resolution when using this workflow to produce a point
cloud from data captured from on-board a mini-UAV.
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Similarly, modifications need to be made within the trajectory determination and point cloud
generation stages due to the use of miniaturised sensors. The underlying requirement of these stages
is the determination of all the variables within the direct georeferencing LiDAR equation at the instance
of each pulse, given as follows: xy

z

 = pt +Rm
b [Rb

sr
s + ab] (1)

The determination of aircraft trajectory, including position, pt =
[
X Y Z

]T
, and the orientation matrix,

Rm
b , are crucial to the final spatial accuracy of the position of each measured LiDAR point

[
x y z

]T
measured in the mapping frame (North, East, Up). System calibration to determine the boresight
matrix Rb

s and lever arm ab is performed separately, as the reduced accuracy of the laser scanner means
traditional techniques such as strip adjustment are not feasible. Further discussion on these issue is
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provided in Sections 3.2 and 3.3. Furthermore, the four layer off-nadir scanning properties of the Ibeo
LUX laser scanner require the laser scanner observation matrix (rs) to be modified giving Equation (2).

rs =

cos ΘL − sin ΘL sin ΘE − sin ΘL cos ΘE

0 cos ΘE − sin ΘE

sin ΘL − cos ΘL sin ΘE cos ΘL cos ΘE


0

0

r

 (2)

This observation matrix includes the addition of a layer angle, ΘL, as well as the range r and the encoder
angle, ΘE , used within the common LiDAR equation.

3.2. Trajectory Determination

In order to resolve the UAV’s states (position and orientation) from the observation of the multiple on-
board sensors, a state based estimator is used. The aim of this estimator is to make use of all information
and optimally combine the results. The core algorithm of the state-based estimator used in this work is
the Square Root Unscented variant of the Sigma Point Kalman filter (SPKF) outlined in [33]. This variant
of the SPKF was chosen over the traditional Extended Kalman Filter (EKF) as it partially addresses the
issues of approximation present in the EKF [34]. Furthermore, the SPKF has been shown to converge
faster, thus allowing a greater section of each flight to be used for mapping [23]. This implementation
of a SPKF is a straightforward extension of the sigma-point approach to the recursive estimation of
a non-linear discrete time system. Error within the system is estimated by propagating sigma points
selected from within an a priori measurement noise distribution. These sigma points are applied to
the current augmented state through the kinematic model to determine a corresponding set of updated
sigma-points. A complete overview of the SPKF algorithm can be found in [33] and for brevity is not
included in this paper. The application of the SPKF to the determination of vehicle states does however
requires state-based process and observation models to be defined.

3.2.1. Process Model

As in most strap-down navigators, the observations of linear acceleration a =
[
ax ay az

]
and

rotational velocity ω =
[
ωp ωq ωr

]
are made in the body frame by the IMU. The biases and noise

within these observations are corrected for using the following models:

ā = a− ab − na (3)

ω̄ = ω − ωb − Cb
nωc − nω (4)

where ā and b̄ are the corrected observations and na and nω are estimated noise terms within the
measurements of acceleration (a) and angular rate (ω). ωc is the rotational velocity of the Earth for
a given longitude and latitude. The time varying noise terms ab and ωb model both the bias and
scale factor error terms of the IMU. These noise terms are modelled as a zero-mean Gaussian random
variable with the variance set according to manufacturers specifications. A quaternion representation
of orientation is used to avoid singularities which can occur in alternate representations of orientation,
following Shin [23], Van Der Merwe and Wan [33], Crassidis [35]. This results in a state vector with 16
elements as follows:

x =
[
pt vt et at ωt

]T
(5)
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where pt =
[
x y z

]T
and vt =

[
vx vy vz

]T
are the position and velocity within a fixed mapping

frame. et =
[
q0 q1 q2 q3

]T
is attitude quaternion representing the rotation between the body frame

and the mapping frame. at and ωt are the three element accelerometer and gyroscope bias vectors. The
mechanisation of the corrected IMU observations used as the kinematic process model to transform the
measurements made in the body frame into changes in position and attitude in the mapping frame follows
Van Der Merwe and Wan [33]. The discrete time kinematic equations are given as follows:

pt+1 = pt + ṗt · dt (6)

vt+1 = vt + v̇t · dt (7)

et+1 = exp(−1

2
Ω̃ · dt)et (8)

abt+1 = abt + rwt · dt (9)

ωbt+1 = ωbt + wbt · dt (10)

where rwt and wbt are zero mean Gaussian noise terms and the term exp(−1
2
Ω̃ · dt) is composed of a

skew symmetric matrix representing the effective rotations in the body frame:

Ω̃ =


0 ω̄p · dt ω̄q · dt ω̄r · dt

−ω̄p · dt 0 −ω̄r · dt ω̄q · dt
−ω̄q · dt ω̄r · dt 0 −ω̄p · dt
−ω̄r · dt ω̄q · dt ω̄r · dt 0

 (11)

Based on the proofs provided by Gavrilets [36] and Van Der Merwe [37], the matrix exponent and the
skew symmetric property can be used in forming a closed form solution as follows:

exp(−1

2
Ω̃ · dt) =

[
I(cos(s) + j · dtλ)− 1

2
Ω̃ sin(s)

s

]
ek (12)

where s = 1
2
||

[
ω̄p · dt ω̄q · dt ω̄r · dt

]
||. The term j · dtλ serves as a Lagrange multiplier to ensure the

unity norm constraint of the quaternion orientation representation, given λ = 1−|ek|2 and j is the factor
that determines the convergence speed of the numerical error.

3.2.2. Observation Models

The measurement update step of the Kalman Filter uses the current state of the kinematic system, the
independent observations from the GPS receiver and/or the video camera. A cascading filter structure is
used as both the GPS and video observations require some amount of preprocessing.

The GPS receiver measurements are post-processed in Novatel’s GrafNav software, which provides
position pGPSt and velocity vGPSt relative to the mapping frame. The antenna reference point is offset
from the origin of the body frame by a lever arm r̄GPS . This allows the GPS to also provide an
observation of orientation through the lever arm effect [33]. Compensating the GPS observations for
the lever arm offset gives the following mathematical model:

pGPSt = pt + Cn
b r̄GPS + npt (13)

vGPSt = vt + Cn
b .ωtr̄GPS + npt (14)
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where Cn
b represents the direction cosine matrix from the body frame to the mapping and is a function

of the current quaternion attitude. ωt is the true rotational rate of the vehicle and npt and nvt are the
stochastic measurement noise terms.

The observations of orientation provided by the video camera are determined using a modification
of the structure from motion (SfM) technique. The SfM technique allows the construction of the 3D
structure of imaged objects as well as the estimation of the exterior camera orientation by analysing
motion signals over time [38]. The technique can be applied to a set of overlapping images to obtain
a sparse point cloud for a wide range of objects [29]. In creating this sparse point cloud, the technique
optimally estimates the exterior orientation parameters of the camera in relative space through the use of
a bundle adjustment.

The 30 frames per second rate of the video camera, in conjunction with the flight dynamics of the
UAV, results in relatively short baselines between the capture of video frames. This is problematic for
the recovery of 3D structure within a bundle adjustment due to the poor geometry of the ray intersections
used. To include a more complete set of video observations, a modified SfM algorithm was developed
for use with this UAV platform. The algorithm first uses a standard SfM algorithm on key frames
automatically selected based on the GPS velocity observations such that there is a constant overlap
between key frames and a solution with strong geometry is achieved. Each frame is then trimmed
to remove a border of 200 pixels from the edge to reduce the effects of lens distortion present in the
consumer grade camera.

The first stage of the SfM algorithm is then used to identify projections of the same features in space
from two or more views using the Scale Invariant Feature Transform (SIFT) technique developed in [39].
SIFT key features are identified in each frame and then matched between frames using an approximate
nearest neighbour kd-Tree approach [29]. The approach used in the matching of SIFT key features allows
preliminary matches that are invariant to large changes in scale and rotation to be made [39]. This set
of feature matches is likely to contain several incorrect correspondences or outliers. An iterative global
RANSAC approach following Nistér [40] is used to identify and eliminate these outliers and at the same
time estimate the frame to frame homographies. The camera’s exterior orientation estimates can then be
derived from these homographies. The resulting set of feature correspondences and exterior orientation
estimates can then be used to predict the three-dimensional locations of each feature in relative space.
This information is then used along with initial camera locations within a global bundle adjustment to
provide optimal estimates of 3D point location and the camera’s exterior orientation within an arbitrary
mapping frame.

Once an initial sparse set of 3D points and exterior orientation estimates are known for each of the
key frames, the orientation of the non-key frames which are selected to create a 5 Hz dataset to match
the GPS observation rate can be determined. A reduced set of points with a strong spatial distribution is
selected from each non-key frame based on an initial estimate of that frames geometry. These points are
matched to points within the key frames and a spatial resection is performed to determine the exterior
orientation of the non-key frames. The initial alignment of the camera was determined based on ground
control targets placed near the take-off and landing area. A minimum of three targets was used for
this purpose, however, the use of four targets is preferable in order to provide redundancy and avoid
gross errors. If the boresight angles ecb between the camera and body frames are known, the orientation
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component of each exterior orientation estimate can be transformed into the body frame giving qc. This
provides the observation model used for each video frame. For consistency the orientation is calculated
in quaternion space as follows:

qc = eφ · (ecb · ek) (15)

where eφ is the estimate of camera orientation in the camera frame given by the SfM algorithm. ek is the
stochastic measurement noise term within the SfM estimates of orientation. This noise is weighted based
on the output of the bundle adjustment and non-key frame observations are attributed a higher noise than
the surrounding key frames.

3.2.3. Sigma Point Kalman Smoother

To further improve the accuracy of the system, a smoothing algorithm is used. By applying a
smoothing algorithm, an optimal solution is found for the position and orientation of the LiDAR
system based on the entire set of flight observations. The smoothing algorithm involves running two
independent filters forward and backward in time. The optimal state estimate, for each epoch, is then
found by optimally combining the forward and backward estimates and their error covariances. It is well
known that these smoothed estimates, which now incorporate all measurements, provide a significantly
improved estimate of the vehicles state, see Shin [23] for an example.

3.3. Calibration

The calibration of a LiDAR system is an important step in generating an accurate point cloud. The
determination of the calibration parameters is made particularly difficult by the use of a system made up
of off-the-shelf low cost component that introduces significantly large errors and has internal coordinate
systems not well-defined. The lever-arm offsets between the laser scanner and the navigation system
(ab) and between the GPS and the IMU (r̄GPS) have been manually measured to cm level accuracy. The
resolution of the boresight angles (Rs

b) between the laser scanner and the IMU are effectively hidden
by the resolution and accuracy of the laser scanner as well as the orientation errors of any determined
trajectory. A thorough literature search revealed no method which could repeatably resolve these angle,
as such they have been assumed to be zero.

The determination of the boresight angles (ecb) between the camera and the IMU require careful
attention as any error in these angles will introduce errors into the trajectory determination algorithm. A
technique, outlined by Hol et al. [41], which makes use of observations of the gravity vector made by
both sensors was employed for this task. This procedure was repeated on 15 separate occasions to ensure
that the correct boresight angles were found. Once the calibration parameters have been determined, the
repeatability of the individual mounts and the strap-down nature of the system suggest that they will
remain constant for future surveys.

3.4. Point Cloud generation and Accuracy Assessment

The University of Tasmania’s farm was used as the study area to assess the accuracy of the point cloud
generated by the UAV platform (Figure 3). The 100 × 100 m area provides significant variation in slope
as well as an area of significant canopy coverage in the south west. Furthermore, five different planar
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man-made features are present within the area. This area was surveyed using 8 different flight transects
during 4 different flights at an average flying height of 50 m and an approximate horizontal velocity of
3.3 m/s. As previously mentioned, only scan angles of between ±30◦ were used for mapping. Under
these conditions the resultant point cloud has a swath width of 57 m and a point density of approximately
50 points per m2. The laser footprint at nadir is 0.69 m along track and 0.07 m across track. This results
in significant overlap of laser footprints along the track and a gap of approximately 0.06 m across track.
The footprint size increases towards the edge of the swath depending on the range and the angle of
incidence with the terrain. Each of the four flights was flown using the OktoKopter’s on-board autopilot
and are summarised in Table 2. All flights were flown in very similar conditions, indicating the on-board
autopilot provides an adequate solution for following predefined flight paths.

Figure 3. The test field (red) used for both the calibration and the determination accuracy of
the UAV-platform showing the flight paths (yellow).
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Table 2. Summary of the four flights flown over the study area.

Flight
Flight

Time (s)
Mean

Height (m)
Mean Horizontal

Velocity (m/s)
Primary

Heading (deg)
Key Frames/s

1 161 48 3.77 180 2.3
2 137 54 3.27 90 1.8
3 130 46 3.16 135 1.9
4 195 44 3.33 225 1.8
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Each flight was processed twice to assess the effect of the inclusion or otherwise of SfM observations.
To achieve this assessment, 32 high reflectivity targets were placed across the study site. The
0.3 m2 target size allowed a minimum of 4 direct observations to be made of each target under the
targeted flying conditions. The design of these targets allowed them to be identified within the point cloud
based on the return pulse width, which is reported by the Ibeo LUX and can be considered analogous to
intensity for this study. A threshold at which these target could be identified was found by examining a
histogram of return pulse widths produced for each point cloud. As trees were the only other features
within the study producing pulse widths above this threshold, ground control strikes were identified as
ground points (see Section 3.5) with a pulse width above this threshold.

The location of ground control targets as measured by the laser scanner was determined to be the
mean of all identifiable strike positions. This location was compared to the location of the center point of
each target measured using dual frequency differential GPS (±0.02 m horizontal and ±0.05 m vertical)
to determine the accuracy of the UAV-borne LiDAR system. Only ground control with 5 or more
identifiable strikes were used in this comparison, resulting in a small number of target from the edge
of the scan being excluded. The mean difference and standard deviation in the North, East and up values
were calculated for each transect as well as the absolute horizontal error statistics. Finally, the points
obtained over planar surfaces (e.g., building roofs) were extracted from each of the 8 point clouds. After
applying a least squares fit of a plane to the extracted data, the standard deviation was calculated. This
standard deviation gives an indication of the measurement performance of the laser scanner and the
internal precision of the vertical measurements within the point cloud.

3.5. Individual Tree Metrics

Once generated the LAS point clouds were classified into ground and non-ground points using the
filtering technique available in LASTools [42]. The laser heights above the ground were then calculated
by subtracting the ground elevation from the absolute point height. Four individual trees (as shown in
Figure 4) were then manually extracted from each of the point clouds in which they were measured. For
each tree a height and location was determined to be at the location of the highest point above the ground.
Crown width was measured as the average of two perpendicular lines from the tree top location. These
lines were chosen as the set of two perpendicular cardinal directions that produced the largest value.
Using the largest value partially negates the effect of shadowing on the far side of the canopy induced
by the low flying height. Finally, crown area was measured as the area of a 2D convex hull around the
entire set of points comprising the tree crown. The standard deviation of this set of measurements was
then taken as a measure of repeatability in the measurements of individual tree metrics.

The point clouds were also decimated to 8 points per m2 to simulate the point densities of modern full
scale airborne discrete data as used in studies such as Shrestha and Wynne [43], Blanchard et al. [44],
Adams [45]. The decimation procedure is similar to the method outlined in Raber et al. [46]. This
involved selecting every second beam from the second and fourth layers of the Ibeo LUX laser scanner.
First, second and third returns were kept for every point. The same individual metrics were then
computed for each of the decimated point clouds for comparison. This comparison solely shows the
effect of variable point density and does not account for the effect of the larger footprint diameters
produced by full scale scanners.
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Figure 4. Locations of the individual trees manually delineated from the point cloud for use
in determining the repeatability of individual tree metric measurements using the UAV-borne
LiDAR data.
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4. Results and Discussion

4.1. Trajectory Generation

Observations of the on-board position and orientation sensors were made for the entirety of each
flight. The vibration isolation properties of the sensor mount allowed a high signal to noise ratio in
the IMU observations to be achieved. These observations did not exceed the maximum range of the
gyroscopes and accelerometers at any stage. GPS lock was also maintained by all receivers for each
flight. A minimum of 5 satellites was observed by the dual frequency receiver at all times during each
flight. This allowed accurate GPS position and velocity observations to be computed for each of the
four flights.

The camera to IMU calibration procedure produced results with 99% confidence intervals of 0.11◦,
0.17◦ and 0.18◦ for pitch, roll and heading. These results are consistent with the results presented
in Hol et al. [41] and can be considered to have been resolved to an accuracy suitable for this application.
The SfM algorithm was able to orient all of the frames from each of the four flights. However, the
accuracy of the observations from images dominated by the building in the middle of the study area
was reduced due to the relatively low number of SIFT features detected in these frames (Figure 5(a)).
Within a forested environment, areas of bare earth will produce a similar reduction in SIFT features.
The inclusion of these frames therefore represents a reasonable determination of the spatial accuracy of
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a point cloud generated in these environments. A high number of SIFT features were detected in frames
that included a significant area of vegetation cover, as demonstrated in Figure 5(b). These results suggest
that when used in densely vegetated environments, the SIFT algorithm should provide a reliable number
of features for the SfM technique to operate accurately.

Figure 5. The detection of SIFT features (yellow crosses) within (a) a frame dominated by
the building in the center of the study area, 1714 SIFT features were found and (b) a frame
dominated by natural features including trees, 2959 features were found.

(a)

(b)
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Figures 6(a) and 6(b) provide a comparison between the trajectory estimates from Flight 2 by the
SPKS with and without the inclusion of SfM observations. As it was not possible to determine the
true pose of the system, this comparison only allows the discrepancy between the two solutions to be
observed. In this case, the orientation is varied by the inclusion of the SfM solutions. Considering an
error of only 0.5◦ in an orientation angle can result in an on the ground error of 0.2 m, these differences
are highly significant and any improvement will be determined by examining the spatial accuracy of
the point cloud. There is only comparatively small differences in the estimation of position which is
governed by the GPS observations.

Figure 6. The differences in position (a) and orientation (b) as estimated by the Sigma Point
Kalman Smoother with and without the inclusion of observations of orientation generated
by the SfM algorithm. A difference in orientation 0.5◦ can result in a 0.2 m difference of a
measured point at the nominal flying height used in this trial.
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Figure 6. Cont.
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4.2. Point Cloud Properties

Figure 7 shows an example of the point cloud generated for Transect 2a. This point cloud has a point
density of 42.2 points per m2. Table 3 gives a summary of the point cloud properties for each of the
eight transects. The average point density including all three returns over every flight was 43.21 points
per m2. This density is significantly higher than the data that is currently used in forestry management
and research (8 points per m2) [43]. The number of second and third returns across the entire study area
was low, however, in the areas of dense vegetation the percentage of second returns increased up to 24%
and third returns to 4.2%. This increase along with visual inspection of the point clouds is sufficient to
suggest that points are being measured from within the canopy for use in the modelling of key forest
metrics such as leaf area index and above ground biomass. An average area of 11,288 m2 was mapped
in each flight, which allows multiple transects to be flown over individual forest plots in a single flight.

The internal precision of the point cloud is highlighted by the standard deviations across planar
surfaces. The standard deviation from a least squares best fit planes fitted to each surface was found to
be 0.04 m,which is within the measurement precision of the Ibeo LUX (0.1 m at 1 σ). This is consistent
with the results from [14] who reported a similar variation with a Ibeo LUX sensor.
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Figure 7. An example point cloud produced by the SfM trajectory determination algorithm.
This particular point cloud has an average point density of 40 points per m2and covers
4,877 m2.

Table 3. Properties of the eight generated point clouds.

Transect Area (m2) Point Density (ppm2) % 2nd Returns % 3rd Returns

1a 5, 931 38.7 4.09 0.35

1b 6, 288 37.2 5.88 0.53

2a 5, 586 62.6 3.46 0.54

2b 4, 922 42.2 13.90 2.05

3a 5, 459 35.9 15.01 2.02

3b 4, 986 36.5 15.41 2.37

4a 6, 176 40.6 2.92 0.25

4b 5, 811 52.0 2.63 0.17

4.3. Point Cloud Accuracy

The results from the point clouds generated from the IMU/GPS only trajectory were first evaluated
against the observed ground control targets. The method used to identify the number of points belonging
to ground control allowed an average of 14 points per target to be observed. Across the 8 point clouds
only 3 targets were rejected as they were observed with five or less points. All 3 of these rejected targets
were only partially observed at the edge of the swath. Table 4(a) shows that the errors are generally
within the expected values from the stochastic modelling outlined Wallace et al. [22]. The standard
deviation in both North and East measurements are similar. This suggests that they are not dominated by
the effect of the beam divergence properties of the Ibeo LUX laser scanner.
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Table 4. Mean, Standard Deviation and RMS error in the differences between the ground
control location measured by the LiDAR system without (a) and with (b) SfM observations
in comparison to the locations measured by a differential GPS survey. The expected values
as derived from stochastic modelling are also included as derived in Wallace et al. [22].

Flight No. Targets
East (m) North (m) Up (m) RMSE (m)

Mean (m) σ (m) Mean (m) σ (m) Mean (m) σ (m) Hor. (m) Vert. (m)

1a 16 −0.11 0.23 0.26 0.21 0.11 0.23 0.57 0.24
1b 14 0.22 0.40 −0.13 0.31 −0.02 0.07 0.62 0.07
2a 17 0.08 0.59 −0.06 0.33 0.09 0.22 0.66 0.23
2b 16 −0.13 0.42 −0.10 0.21 0.01 0.05 0.48 0.05
3a 16 −0.17 0.55 0.18 0.34 0.27 0.09 0.85 0.29
3b 17 −0.04 0.14 0.30 0.24 0.07 0.10 0.40 0.12
4a 15 −0.06 0.50 −0.05 0.54 0.00 0.17 0.70 0.16
4b 18 −0.13 0.37 0.15 0.42 −0.00 0.20 0.58 0.19
all 130 −0.03 0.41 0.07 0.42 0.06 0.18 0.60 0.19

Expected 0.54 0.16

(a)

Flight No. Targets
East (m) North (m) Up (m) RMSE (m)

Mean (m) σ (m) Mean (m) σ (m) Mean (m) σ (m) Hor. (m) Vert. (m)

1a 17 0.02 0.11 −0.12 0.27 −0.02 0.14 0.38 0.15
1b 14 0.13 0.15 −0.05 0.24 0.09 0.08 0.41 0.12
2a 17 −0.03 0.25 0.03 0.06 0.04 0.14 0.35 0.17
2b 16 −0.04 0.12 −0.06 0.07 −0.00 0.03 0.21 0.03
3a 16 −0.19 0.32 0.08 0.08 0.05 0.13 0.34 0.16
3b 17 0.09 0.12 0.17 0.22 0.11 0.14 0.31 0.17
4a 15 0.02 0.30 −0.17 0.24 −0.04 0.09 0.41 0.10
4b 18 −0.03 0.22 0.02 0.26 −0.06 0.15 0.33 0.16
all 130 0.01 0.17 −0.01 0.21 0.03 0.12 0.32 0.14

Expected 0.26 0.15

(b)

The results from the IMU/GPS/SfM solution shown in Table 4(b) are close to the expected values
from stochastic modelling [22]. The horizontal RMS error across all of the 130 measured ground control
locations is 0.34 m (expected 0.26 m) and the vertical error is 0.15 m (expected 0.14 m). One source of
error which is not included in stochastic modelling can be attributed to the use of large ground control
targets and the systematic sampling properties of the laser scanner. This target size is required in order to
ensure the ground control target is directly measured and to ensure that these measurements are found.
The use of an average position from all identified target strikes relies on either an even point sampling
across the target or a significant number of random strikes being recorded. This is potentially biased in
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the along track direction by the location of scan lines across. On average 19 points were used in the
calculation of each ground control target location.

Another effect of the averaging technique used is that the error due to beam divergence is not fully
represented in the final RMS errors. Beam divergence, which is high in Ibeo LUX laser scanner, affects
predominantly the horizontal accuracy of the point cloud in the along track direction. The standard
deviation in flights one (flown north-south) and two (flown east-west) suggest that some of this effect is
captured. The effects of these errors are more evident when examining the high intensity returns within
the point clouds, in which the footprints of each individual ground control points can measure up to
0.6 m in the across track direction. This averaging will not occur in measured trees for future surveys,
therefore, careful consideration will need to be given to tree metrics measured in the horizontal direction
such as canopy width. These measurements are likely to be exaggerated and may require adjustment
before being applied within any further modelling.

In comparison to the IMU/GPS only solution, the results with the inclusion of SfM observations
show significant improvement in the horizontal component. The RMS error for the total 130 ground
control targets dropped from 0.61 m without SfM observations to 0.34 m with SfM observations. This
improvement combined with the difference in orientation shown in Figure 6(b) suggests that the SfM
algorithm has resulted in an improvement in the estimation of orientation. As expected, the vertical errors
within the point clouds from both solutions are similar. These results suggest that both of the assessed
solutions are suitable for use in forest inventory assessment. However, the SfM observations allows
the accuracy to improve to a level comparable to that achieved by modern full-scale systems (based on
the values reported in [47]). This improvement will allow for direct comparison and integration of the
two datasets. Furthermore, the improvement in accuracy enhances the reliability and suitability of the
platform for use in multi-temporal surveys.

4.4. Individual Tree Metrics

At the point densities commonly used for the determination of forest metrics, area based approaches
have been shown to produce comparable results to individual tree methods [48]. Furthermore, any
increase in point density will likely improve the individual tree level results and allow for the derivation
of new metrics such as stem quality [45]. The improvement in the repeatability of tree height and tree
location derived through the comparison of the UAV point clouds and a set of decimated versions is
demonstrated in Figure 8. The results shown in Table 5 indicate, through lower standard deviations,
that increasing the sampling density of a tree crown results in an increased likelihood that the top of
a tree will be sampled. Furthermore, if the tree top is not directly observed there will be a significant
underestimation of the tree height.
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Figure 8. Example point clouds of Tree 1. Measurements of tree location and height from
each of the four flights are shown with the (a) profile and (b) footprint of the original point
cloud from flight 4 and the (c) profile and (d) footprint in the decimated point cloud from
flight 4, where flight 1a is blue, 1b is green, 2b is yellow, 3b is black, 4a is red, and 4b is
purple.
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Table 5. Mean and Standard deviations (σ) of individual tree metrics derived from the (a) full
density point clouds and (b) the point clouds decimated to 8 points per m2.

Tree Measurement Count
Location Height (m) Width (m)

σ (m) Mean (m) σ (m) Mean (m) σ (m)

1 6 0.44 10.94 0.05 8.26 0.25
2 4 0.59 11.49 0.13 11.53 0.35
3 3 0.55 12.71 0.11 12.93 1.02
4 5 0.56 14.65 0.25 14.39 0.54

(a)
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Table 5. Cont.

Tree Measurement Count
Location Height (m) Width (m)

σ (m) Mean (m) σ (m) Mean (m) σ (m)

1 6 0.47 10.85 0.10 7.77 0.32
2 4 0.73 11.25 0.25 11.21 0.54
3 3 0.74 12.56 0.35 12.92 1.18
4 5 1.14 14.47 0.31 14.10 0.36

(b)

There is some slight improvement also seen in the repeatability of the measurement of canopy width.
This measurement, however, is highly affected by the beam divergence as well as the low flying height
and the angle of incidence of the laser beam. The combination of low flying height and large angles of
incidence produces a shadowing effect which prevents the far edge of the canopy from being measured.
The effect of shadowing could be reduced by choosing a survey design that further reduces the angle of
incidence to within±15◦ over the targeted area. Furthermore, merging point clouds from multiple offset
transects will increase the likelihood the whole crown will be sampled. This reduces shadowing and will
significantly improve the crown width measurements.

5. Conclusions and Future Work

This paper has outlined the development of a low-cost Unmanned Aerial Vehicle-Light Detecting and
Ranging (UAV-LiDAR) system. This included the development of a Sigma Point Kalman Smoother
(SPKS) with the aim of optimally combining observations from a Micro-Electromechanical System
(MEMS)-based Inertial Measurement Unit (IMU), a GPS receiver and the observations of orientation
using High Definition (HD) video and a Structure from Motion (SfM) algorithm to determine an
accurate estimate of aircraft position and orientation. This system was assessed with application to
forest inventory to determine the spatial accuracy of the resultant point clouds and the repeatability in
the measurement of individual tree height, location and canopy width.

We demonstrated that with the inclusion of observations of orientation from video, this system is
capable of producing point clouds with RMS errors of 0.34 m horizontally and 0.14 m vertically for
a nominal flying height of 50 m. This represents a 68% reduction in variance within the horizontal
component when compared to point clouds generated with the same SPKS without video observations.
This accuracy combined with the very high resolution point clouds (with densities up to 62 points per m2)
allowed measurements of tree height, location, and canopy width to be made with standard deviations as
small as 0.05 m for height, 0.44 m for location and 0.25 m for canopy width.

Future research is aimed at performing forest surveys to further evaluate the UAV’s potential within
the forestry industry. These surveys will be designed to assess the UAV as a tool which allows forest
managers to make more informed decisions on pruning and thinning regimes, monitoring tree health
and defoliation, as well as improving the accuracy of allometric forest growth models. To achieve this
goal, further research is required to analyse the full effects of the reduced flying heights and increased
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point densities in comparison to full-scale LiDAR on the derivation of the metrics required to make
these assessments.

Although future developments of this system (including hardware and battery technology) will
increase flight endurance, the current system has been shown to be capable of flying multiple transects
over an individual forest plot in a single flight. These results have confirmed that our UAV-LiDAR system
is a suitable platform for the generation of high resolution point clouds for assessing forest structure at
the individual tree level.
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15. Lin, Y.; Hyyppä, J.; Jaakkola, A. Mini-UAV-borne LIDAR for fine-scale mapping. IEEE Geosci.
Remote S. 2011, 8, 426–430.

16. Choi, K.; Lee, I.; Hong, J.; Oh, T.; Shin, S. Developing a UAV-based rapid mapping system for
emergency response. Proc. SPIE 2009, 7332, 733209-733209-12.

17. Nagai, M.; Shibasaki, R.; Kumagai, H.; Ahmed, A. UAV-borne 3-D mapping system by
multisensor integration. IEEE T. Geosci. Remote. 2009, 47, 701–708.

18. Miller, R.; Amidi, O. 3-D Site Mapping with the CMU Autonomous Helicopter 3-D Site Mapping
with the CMU Autonomous Helicopter. In Proceedings of the 5th International Conference on
Intelligent Autonomous Systems, Sapparo, Japan, June 1998.

19. Glennie, C. Rigorous 3D error analysis of kinematic scanning LIDAR systems. J. Appl. Geodes.
2007, 1, 147–157.

20. Schwarz, K.; El-Sheimy, N. Mobile Mapping Systems State of the art and future trends. Int.
Arch. Photogr. Remote Sens. Spat. Inf. Sci. 2004, 35, 10.

21. El-sheimy, N. Emerging MEMS IMU and Its Impact on Mapping Applications; Photogrammetric
Week: Stuttgart, Germany, 7–11 September 2009; pp. 203–216.

22. Wallace, L.; Lucieer, A.; Turner, D.; Watson, C. Error assessment and mitigation for
hyper-temporal UAV-borne LiDAR surveys of forest inventory. In Proceedings of Silvilaser
2011, Hobart, Australia, 16–20 October 2011.

23. Shin, E. An Unscented Kalman Filter for In-Motion Alignment of Low-Cost IMUs. In
Proceedings of Position Location and Navigation Symposium, Huntsville, AL, USA, 26–29 April
2004; pp. 273 – 279.

24. El-Sheimy, N.; Chiang, K.W.; Noureldin, A. The Utilization of Artificial Neural Networks for
Multisensor System Integration in Navigation and Positioning Instruments. IEEE T. Instrum.
Meas. 2006, 55, 1606–1615.

25. Chiang, K.W.; Chang, H.W.; Li, C.Y.; Huang, Y.W. An artificial neural network embedded
position and orientation determination algorithm for low cost MEMS INS/GPS integrated
sensors. Sensors 2009, 9, 2586–2610.



Remote Sens. 2012, 4 1542

26. Bryson, M.; Sukkarieh, S. A Comparison of Feature and Pose-Based Mapping Using Vision,
Inertial and GPS on a UAV. In Proceedings of the 2011 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), San Francisco, CA, USA, 25–30 September 2011;
pp. 4256–4262.

27. Andersen, E.; Taylor, C. Improving MAV Pose Estimation Using Visual Information. In
Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, San
Diego, CA, USA, 29 October–2 November 2007; pp. 3745–3750.

28. Gajdamowicz, K.; Öhman, D.; Horemuz, M. Mapping and 3D Modelling of Urban Environment
Based on Lidar, Gps/Imu and Image Data. In Proceeding of 5th International Symposium on
Mobile Mapping Technology, Padova, Italy, 28–31 May 2007.

29. Snavely, N.; Seitz, S.M.; Szeliski, R. Photo tourism: exploring photo collections in 3D.
ACM Trans. Graph. 2006, 25, 835–846.
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