
Remote Sens. 2013, 5, 5530-5549; doi:10.3390/rs5115530 
 

Remote Sensing 
ISSN 2072-4292 

www.mdpi.com/journal/remotesensing 

Article 

A Comparison of Land Surface Water Mapping Using the 
Normalized Difference Water Index from TM, ETM+ and ALI 

Wenbo Li 1, Zhiqiang Du 2,*, Feng Ling 3, Dongbo Zhou 4, Hailei Wang 1, Yuanmiao Gui 1, 

Bingyu Sun 1 and Xiaoming Zhang 1 

1 Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei 230031, China;  

E-Mails: wbli@iim.ac.cn (W.L.); hailei@mail.ustc.edu.cn (H.W.); smalltalkman@foxmail.com (Y.G.); 

bysun@iim.ac.cn (B.S.); xmzhang@iim.ac.cn (X.Z.) 
2 State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, 

Wuhan University, Wuhan 430079, China 
3 Institute of Geodesy and Geophysics, Chinese Academy of Sciences, Wuhan 430077, China;  

E-Mail: lingf@whigg.ac.cn 
4 National Engineering Research Center for E-Learning, Central China Normal University,  

Wuhan 430079, China; E-Mail: dongbozhou@gmail.com 

* Author to whom correspondence should be addressed; E-Mail: duzhiqiang@whu.edu.cn;  

Tel.: +86-27-6877-8779; Fax: +86-27-6877-8229. 

Received: 5 August 2013; in revised form: 15 October 2013 / Accepted: 16 October 2013 /  

Published: 28 October 2013 

 

Abstract: Remote sensing has more advantages than the traditional methods of land 

surface water (LSW) mapping because it is a low-cost, reliable information source that is 

capable of making high-frequency and repeatable observations. The normalized difference 

water indexes (NDWIs), calculated from various band combinations (green, near-infrared 

(NIR), or shortwave-infrared (SWIR)), have been successfully applied to LSW mapping.  

In fact, new NDWIs will become available when Advanced Land Imager (ALI) data are 

used as the ALI sensor provides one green band (Band 4), two NIR bands (Bands 6 and 7), 

and three SWIR bands (Bands 8, 9, and 10). Thus, selecting the optimal band or 

combination of bands is critical when ALI data are employed to map LSW using NDWI. 

The purpose of this paper is to find the best performing NDWI model of the ALI data in 

LSW map. In this study, eleven NDWI models based on ALI, Thematic Mapper (TM), and 

Enhanced Thematic Mapper Plus (ETM+) data were compared to assess the performance 

of ALI data in LSW mapping, at three different study sites in the Yangtze River Basin, 

China. The contrast method, Otsu method, and confusion matrix were calculated to 
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evaluate the accuracies of the LSW maps. The accuracies of LSW maps derived from 

eleven NDWI models showed that five NDWI models of the ALI sensor have more than an 

overall accuracy of 91% with a Kappa coefficient of 0.78 of LSW maps at three test sites. In 

addition, the NDWI model, calculated from the green (Band 4: 0.525–0.605 μm) and SWIR 

(Band 9: 1.550–1.750 μm) bands of the ALI sensor, namely NDWIA4,9, was shown to have 

the highest LSW mapping accuracy, more than the other NDWI models. Therefore, the 

NDWIA4,9 is the best indicator for LSW mapping of the ALI sensor. It can be used for 

mapping LSW with high accuracy. 

Keywords: remote sensing; image segmentation; land surface water mapping; Advanced 

Land Imager (ALI); normalized difference water index; Landsat 

 

1. Introduction 

Water resources are one of the irreplaceable strategic resources for human survival. Land surface 

water (LSW) is an important part of the water cycle. LSW mapping, using remote sensing techniques, 

plays an important role in wetland monitoring [1–3], flood monitoring [4–6], flood disaster  

assessment [7–10], surface water area estimation [11–14], and water resources management [15–17]. 

Over three decades, multi-resource remote sensing data, such as data from the Advanced Very  

High Resolution Radiometer (AVHRR) [5,6,18], Moderate-resolution Imaging Spectroradiometer  

(MODIS) [16,19], Small Satellite Constellation For Environment and Disaster Monitoring And 

Forecasting A/B Satellites (HJ-1A/B) [12,20], Multispectral Scanner System (MSS) [6,11], Thematic 

Mapper (TM) [13,20,21], and Enhanced Thematic Mapper Plus (ETM+) [7,11] have been employed to 

extract information on land surface water bodies. One widely used remote sensing dataset for LSW 

mapping are the TM and ETM+ images provided by the Landsat series satellites [11]. The Landsat-7 

mission was flawless until May, 2003, when a hardware component failure left wedge-shaped spaces 

of missing data on either side of ETM+ images. The U.S. Geological Survey (USGS) stopped 

acquiring images from the 27-year-old Landsat-5 satellite in November 2011, due to a rapidly 

degrading electronic component that threatened to end the Landsat-5 mission. Fortunately, the 

National Aeronautics and Space Administration (NASA) launched the eighth Landsat satellite 

(Landsat-8) on 11 February 2013. NASA also launched a technology validation and demonstration 

mission satellite called Earth Observation-1 (EO-1). The Advanced Land Imager (ALI) instrument 

onboard EO-1 was used to validate and demonstrate technology for Landsat-8. The primary focus of 

EO-1 is to develop and test a set of advanced technology land-imaging instruments. EO-1 has been 

inserted into the same orbit as the Landsat-7 satellite, and is taking a series of the same images. 

Operating in a pushing broom pattern, at an altitude of 705 km, the ALI sensor provides panchromatic 

images at 10 m spatial resolution and nine bands of multispectral images at 30 m resolution. These 

nine multispectral bands have been designed to simulate the six Landsat-7 bands, with the three 

additional bands covering 0.433–0.453 µm, 0.845–0.890 µm, and 1.20–1.30 µm. ALI remote sensing 

images are potentially useful in various applications related to land cover mapping [22], vegetation 

mapping [23,24], forest classification [25], and the evaluation of dissolved organic matter in lake  
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water [26]. Many studies have also examined the potential comparison of the ALI sensor to the TM and 

ETM+ sensors [24,27–29]. However, inadequate attention has been paid to examining ALI’s capability 

of delineating water bodies and mapping LSW, particularly in comparison to other sensors. The 

purpose of this study is to assess the potential of the ALI data for LSW mapping so that EO-1 and the 

series of Landsat satellite data can be clearly used to delineate water body information and to map 

LSW in the future. 

Surface water body information detection is of great significance to very related research in remote 

sensing [11]. Various surface water body information extracting algorithms [1–3,11–13,18–21,30–38] 

have been developed as they are the key points for transferring remotely sensed images into 

information for practical applications, such as LSW mapping [36]. In brief, these algorithms identify 

water in two broad ways: the general feature classification method [2,3,30,31,35,39] and the thematic 

water body information detection method [1,11–13,18–21,32–34,36]. The general classification methods 

can be realized by maximum likelihood supervised classification [35], decision tree classification [3,16], 

support vector machine classification [31], artificial neural network classification [30,37], etc. The 

thematic water body information extraction methods can be generally divided into two categories 

according to the number of bands used: the single-band method and the multi-band method. The 

single-band method usually involves choosing a characteristic band of water from a multispectral image, 

then determining a threshold at which to discriminate water from other surfaces [33]. The  

multi-band methods, which are based on the spectral water index [32,34,38], are better at the detection 

of LSW body information than the single-band method is because they take advantage of reflectivity 

differences of each involved band and extract water-body information based on the analysis of 

signature differences between water and other surfaces [36]. 

General feature classification methods are common methods for extracting water bodies and 

mapping LSW. However, general classification method is based on the assumption that the pixel is 

pure. When multiple features are present within a single pixel, the accuracy of such classification 

methods will depend on the complexity of the landscape and the thoroughness of an extended training 

process [39]. In addition, most of these approaches are highly reliant on human expertise and 

knowledge of the local area. They will meet difficulties when the aim is to perform a rapid and 

reproducible extraction of water-body information because water bodies, such as floods, tides, and 

storm surges, can be fast-moving [40]. Spectral water index methods, such as the normalized 

difference water index, namely, McFeeters’s NDWI [32], which is calculated from one green-band 

image and one NIR-band image, and modification of the normalized difference water index, namely, 

Xu’s NDWI or MNDWI [34], which is calculated from one green-band image and one SWIR-band 

image, can extract water body information more accurately, quickly, and easily than general feature 

classification methods. Moreover, McFeeters’s NDWI and Xu’s NDWI have been successfully used to 

extract water information from remotely sensed data [18,20,21,41,42]. Therefore, we used McFeeters’s 

NDWI and Xu’s NDWI as the primary tools for this work on LSW mapping from ALI remotely sensed 

images. McFeeters’s NDWI forms two models and Xu’s NDWI forms three models as the ALI sensor 

can supply one green band (Band 4), two NIR bands (Bands 6 and 7), and three SWIR bands  

(Bands 8, 9, and 10) data. We found that these five water body information detection models produce 

different LSW mapping results. Hence, we need to know which NDWI model among these spectral 

water indices performs best for LSW mapping of the ALI sensor. In other words, we need to 
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understand which band (green, NIR, and SWIR) or band combination is the best indicator of LSW 

mapping from ALI remote sensing images. Thus, we employed McFeeters’s and Xu’s NDWIs to 

determine which model is the best indicator for LSW mapping when ALI data are used. We analyzed 

the performance of LSW mapping based on TM, ETM+, and ALI data using different NDWI models 

in three regions within the Yangtze River Basin, China. 

2. Study Area and Materials 

2.1. Study Area 

The portion of the Yangtze River Basin inside Hubei province, China, was selected as the study 

area (Figure 1). It is located between 30°13′–30°50′N and 110°56′–111°52′E. The terrain of the study 

area includes mountains, foothills, and plains, from the northwest to the southeast. The highest 

elevation, 2,399 m, occurs in the western mountainous area, and the lowest elevation, approximately  

36 m, is found in the southeast plain area. The study area has many types of water features, including 

rivers (e.g., the Yangtze River and the Qingjiang River), lakes, reservoirs (e.g., the Three Gorges 

Reservoir formed by the Three Gorges Dam and the Gaobazhou Reservoir formed by the Gaobazhou 

Dam), ponds, and ditches. The land cover types of the study area include vegetation (trees, bushes, 

fields, and lawns), soil, rock, building (hydraulic structures, roads), and water bodies (rivers, lakes, 

reservoirs, ponds, wetlands, and ditches) [11]. The terrains and land cover types of the study area can 

be used to verify the validity of LSW mapping from EO-1 ALI remotely sensed images. 

Figure 1. Location of the study area. 
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To find which NDWI model of the ALI data is the best indicator for LSW mapping, three study 

sites (Figure 1), each sized 300 × 240 pixels and having different water features (e.g., rivers, 

reservoirs, and lakes) and background features (non-water land cover types) were selected as sample 

areas for detailed analysis. The Three Gorges Reservoir and the Yangtze River were selected as the 

main water features of Region I. The main background features of Region I are the Three Gorges Dam 

and the vegetation features. In Region II, the main water bodies are the Baifengxi Reservoir and the 

Gaobazhou Reservoir, and the background features are vegetation features. In Region III, the main 

water bodies are the Yangtze River and Dong Lake, and the background features include vegetation, 

sandbank, and buildings [12]. 

Table 1. Specifications of the Thematic Mapper (TM), Enhanced Thematic Mapper Plus 

(ETM+), and Advanced Land Imager (ALI) data used in this study. 

Satellite Sensor 
Path/ 

Row 

Acquisition 

Date 

Resolution 

(m) 

File 

Format 
Producer Wavelength (μm) 

Landsat-5 TM 125/39 
2005-09-09 

2010-05-02 

30 GeoTiff USGS 

Band1(Blue): 0.450–0.520 

Band2 (Green): 0.520–0.600 

Band3 (Red): 0.630–0.690 

Band4 (NIR): 0.760–0.900 

Band5 (SWIR): 1.550–1.750 

120 GeoTiff USGS Band6 (TIR): 10.400–12.500 

30 GeoTiff USGS Band7 (SWIR): 2.080–2.350 

Landsat-7  ETM+ 124/39 2003-03-29 

30 GeoTiff USGS 

Band1(Blue): 0.450–0.515 

Band2 (Green): 0.525–0.605 

Band3 (Red): 0.630–0.690 

Band4 (NIR): 0.750–0.900 

Band5 (SWIR): 1.550–1.750 

60 GeoTiff USGS Band6 (TIR): 10.400–12.500 

30 GeoTiff USGS Band7 (SWIR): 2.090–2.350 

15 GeoTiff USGS Band8 (PAN): 0.520–0.900 

EO-1  ALI 

124/39 

125/39 

125/38 

2003-03-29 

2005-10-21 

2010-09-03 

10 GeoTiff USGS Band1(PAN): 0.480–0.690 

30 GeoTiff USGS 

Band2(Blue): 0.433–0.453 

Band3 (Blue): 0.450–0.515 

Band4 (Green): 0.525–0.605 

Band5 (Red): 0.630–0.690 

Band6 (NIR): 0.775–0.805 

Band7 (NIR):0.845–0.890 

Band8 (SWIR): 1.200–1.300 

Band9 (SWIR): 1.550–1.750 

Band10 (SWIR): 2.080–2.350 

2.2. Materials 

Six satellite images from EO-1 and Landsat archived on USGS server (http://earthexplorer.usgs.gov/) 

were used in this study (Table 1). Three ALI images were separately acquired on 29 March 2003 

(path/row 124/39), 21 October 2005 (path/row 125/39), and 3 September 2010 (path/row 125/38). The 
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selected ETM+ images were acquired on 29 March 2003 (path/row 124/39). Two TM datasets were 

separately acquired on 9 September 2005, and 2 May 2010 (path/row 125/39). The ALI, TM and ETM+ 

data have six bands with similar spectral ranges (e.g., blue: 0.450–0.520 μm, green: 0.520–0.600 μm, 

red: 0.630–0.690 μm, NIR: 0.750–0.900 μm, and SWIR: 1.550–1.750 μm and 2.080–2.350 μm). All 

images employed in the present study are level-1 products of USGS, referenced in the World Geodetic 

System (WGS84) datum, in GeoTiff format, and are projected using the Universal Transverse 

Mercator system (zone UTM 49 North). Further information about the specifications of the remote 

sensing data used in this study is given in Table 1. 

3. Methodology 

3.1. Data Pre-Processing 

The parameters used in McFeeters’s NDWI and Xu’s NDWI require physical units, such as  

at-sensor radiance or top-of-atmosphere (TOA) reflectance, rather than the raw quantized calibrated 

pixel value (DN). There are three advantages to using TOA reflectance instead of at-sensor spectral 

radiance when comparing images from different sensors [42,43]. First, TOA reflectance removes the 

cosine effect at different solar zenith angles due to the time difference between data acquisitions. 

Second, TOA reflectance compensates for different values of the exo-atmospheric solar irradiance 

arising from spectral band differences. Third, TOA reflectance corrects for the variation in the earth-sun 

distance between different data acquisition dates. Therefore, we used the TOA reflectance of the ALI, 

TM, and ETM+ data to be used in this study. TOA reflectance can be obtained from the quantized 

calibrated pixel value, as given by [43]: 

 (1)

where ρλ is the TOA reflectance of wavelength λ [unitless], d is the earth-sun distance [astronomical 

units], ESUNλ is mean exo-atmospheric solar irradiance [W/(m2·μm)], θS is the solar zenith angle 

[degrees], and Lλ is the spectral radiance at wavelength λ at the sensor's aperture [W/(m2·sr·μm)]. Lλ 

can be obtained from the quantized calibrated pixel value also as given by [43]: 

 (2)

where LMAXλ is the spectral at-sensor radiance that is scaled to Qcalmax [W/(m2 sr μm)], LMINλ 
 
is 

spectral at-sensor radiance that is scaled to Qcalmin [W/(m2·sr·μm)], Qcalmax is the maximum quantized 

calibrated pixel value corresponding to LMAXλ [DN], Qcalmin is the minimum quantized calibrated pixel 

value corresponding to LMINλ [DN], and Qcal is the quantized calibrated pixel value [DN]. 

The parameters in Equations (1) and (2) can be read from the header files of the ALI, TM, and 

ETM+ datasets or be retrieved from the USGS website (http://earthexplorer.usgs.gov/). 

3.2. Spectral Water Index Methods 

We employed two spectral water index methods, McFeeters’s NDWI and Xu’s NDWI, to find 

which NDWI model of the ALI data is the best indicator of LSW mapping. The foundation of the 

spectral water index method is that a water body has a strong absorbability and low radiation from 
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visible wavelengths to infrared wavelengths. The division of operations of the spectral water index 

method not only enhances the spectral signals by contrasting the reflectance between different 

wavelengths but also cancels out a large portion of the noise components that are common in different 

wavelength regions [38]. 

McFeeters’s NDWI [32] is defined as 

 (3)

where ρGreen and ρNIR are the reflectance of the green and NIR bands, respectively.  

McFeeters’s NDWI is designed to (1) maximize the reflectance of a water body by using green 

wavelengths, (2) minimize the low reflectance in NIR of water bodies, and (3) take advantage of the 

high reflectance in NIR of vegetation and soil features [42]. As a result, the water body information 

will be enhanced and the background (vegetation and soil features) information will be restricted in 

McFeeters’s NDWI images. This means that the water bodies can be identified by applying a threshold 

to McFeeters’s NDWI images. 

McFeeters’s NDWI can enhance information about water bodies and restrict information about 

vegetation and soil features, but it cannot completely distinguish built-up features from water bodies. 

Xu’s NDWI [34] was developed to address this problem; it is defined as 

 
(4)

where ρSWIR is the reflectance in the SWIR band. 

Xu’s NDWI can enhance open-water features while efficiently suppressing and even removing 

built-up features as well as vegetation and soil features. 

Table 2. Normalized difference water index equations and associated sensors (T: TM,  

E: ETM+, A: ALI). 

Sensor NDWI Equation Symbol and Notation 

TM 

NDWIT2,4 = (BT2 − BT4)/(BT2 + BT4) 

NDWIT2,5 = (BT2 − BT5)/(BT2 + BT5) 

NDWIT2,7 = (BT2 − BT7)/(BT2 + BT7) 

NDWIT2,4 is the McFeeters’s NDWI for the TM sensor; NDWIT2,5 

and NDWIT2,7 are the Xu’s NDWIs for the TM sensor; BT2, BT4, 

BT5 and BT7 are Bands 2, 4, 5, and 7 of the TM sensor, respectively. 

ETM+ 

NDWIE2,4 = (BE2 − BE4)/(BE2 + BE4) 

NDWIE2,5 = (BE2 − BE5)/(BE2 + BE5) 

NDWIE2,7 = (BE2 − BE7)/(BE2 + BE7) 

NDWIE2,4 is the McFeeters’s NDWI for the ETM+ sensor; 

NDWIE2,5 and NDWIE2,7 are the Xu’s NDWIs for the ETM+ 

sensor; BE2, BE4, BE5 and BE7 are Bands 2, 4, 5, and 7 of the 

ETM+ sensor, respectively. 

ALI 

NDWIA4,6 = (BA4 − BA6)/(BA4 + BA6) 

NDWIA4,7 = (BA4 − BA7)/(BA4 + BA7) 

NDWIA4,8 = (BA4 − BA8)/(BA4 + BA8) 

NDWIA4,9 = (BA4 − BA9)/(BA4 + BA9) 

NDWIA4,10 = (BA4 − BA10)/(BA4 + BA10) 

NDWIA4,6 and NDWIA4,7 are the McFeeters’s NDWIs for the ALI 

sensor; NDWIA4,8, NDWIA4,9 and NDWIA4,10 are the Xu’s NDWIs 

for the ALI sensor; BA4, BA6, BA7, BA8, BA9, and BA10 are Bands 4, 

6, 7, 8, 9, and 10 of the ALI sensor, respectively. 

In this study, Bands 4, 6, and 7 of the ALI sensor were selected to form two NDWI models, namely, 

NDWIA4,6 and NDWIA4,7, based on McFeeters’s NDWI (Equation (3)). Bands 2 and 4 of the TM and 

ETM+ sensors were used to form two NDWI models, namely, NDWIT2,4 and NDWIE2,4, using 

McFeeters’s NDWI. For Xu’s NDWI (Equation (4)), Bands 4, 8, 9, and 10 of the ALI sensor were 
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employed to form three NDWI models, namely, NDWIA4,8, NDWIA4,9, and NDWIA4,10. Similarly, 

Bands 2, 5, and 7 of the TM and ETM+ sensors were used to form four NDWI models, namely, 

NDWIT2,5, NDWIT2,7, NDWIE2,5, and NDWIE2,7 (Table 2). 

3.3. Image Threshold Segmentation 

Threshold selection is a key step in defining McFeeters’s or Xu’s NDWIs. The threshold values for 

McFeeters’s and Xu’s NDWIs were set to zero [32,34], but threshold adjustment in individual 

situations can achieve a more accurate delineation of water bodies [38]. Hence, dynamic or variational 

thresholds are needed when different regions or different phases of remote sensing data are employed to 

detect water body information [11]. The maximum between-class variance method (the Otsu method) is 

one such dynamic threshold method [44]. In this study, the Otsu method was used to determine the 

threshold for separating water bodies from the background features. 

Now, assume that the NDWI pixels range from [a, ⋅⋅⋅, b], where −1 ≤ a < b ≤ 1. Using the Otsu 

method, the pixels can be divided into two classes: a non-water class ranging from [a, ⋅⋅⋅, t] and a water 

class ranging from [t, ⋅⋅⋅, b], where t is the threshold value. Then, the probabilities of a pixel being in 

the non-water class (Pnw) and the water class (Pw) and the mean pixel values of the non-water class 

(Mnw) and the water class (Mw) can be obtained by statistical analysis. The between-class variance of 

the non-water class and water class can be obtained by 

 (5)

where σ is the between-class variance of the non-water class and the water class, and M is the mean 

value of the NDWI image. 

Obviously, the parameters in the Equation (5) are functions of the threshold value t. The optimal 

threshold t* can be determined by the between-class variance of the non-water class and the water 

class using the following equation: 

 (6)

Using Equation (6), the Otsu method selects the threshold by using the rule of maximum between-class 

variance of the background features (e.g., vegetation, soil, etc.) and water body features. When part of the 

water body feature is mistakenly classified as a background feature or part of the background feature is 

wrongly classified as a water body feature, the between-class variance decreases. Equivalently, the greater 

the variance, the more different the background features and the water body features. Therefore, 

maximizing the variance between water body features and background features minimizes the probability 

of misclassification. In other words, a spectral water index model is more suitable for enhancing and 

extracting water bodies when the NDWI image has high between-class variance. 

3.4. Validation of Land Surface Water Mapping 

The essence of McFeeters’s and Xu’s NDWIs is to produce water-body-enhanced images. Then, an 

LSW map can be obtained from these images using threshold image segmentation. Hence, the validity 
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of McFeeters’s and Xu’s NDWIs can be evaluated from an image segmentation perspective. To do 

this, the between-class variance (BCV), which is σ in Equation (5), and the contrast value were 

selected to evaluate the efficiency of water-body-information enhancement. The contrast value (CV) 

between water bodies and background features can be obtained by 

 (7)

On the other hand, a quantitative assessment of the accuracy was conducted for the entire area. The 

overall accuracy (OA) and the kappa coefficient (Kappa) on the basis of the error matrix [45] were 

employed to evaluate the accuracy of the LSW map. The kappa coefficient can be obtained by 

 (8)

where p is the total number of pixels in the reference data, pii is the total number of correct pixels of the 

ith category, pi+ is the total number of pixels for the ith category derived from the classified data, p+i is 

the total number of pixels for the ith category derived from the reference data, and N is the total 

number of categories. 

In this study, we first converted the digital number (DN) values of the selected ALI, TM, and 

ETM+ images to at-sensor radiance (Lλ) using Equation (2). We then converted the at-sensor spectral 

radiance (Lλ) to the TOA reflectance (ρλ) using Equation (1). Next, we used the TOA reflectance (ρλ) of 

the ALI, TM, and ETM+ data in three regions to form twenty-four water-body-enhanced images based 

on Equations (3) and (4). We then used Equations (5) and (6) to define different image segmentation 

thresholds and used them to obtain twenty-four LSW maps. Finally, we used the CV, BCV, OA, and 

Kappa to assess the performance of eleven NDWIs for the LSW maps. 

4. Results 

Eleven NDWI models (Table 2) were used to extract water body information and map LSW from 

the ALI, TM, and ETM+ data. The results of the water body information detection and LSW maps 

derived from the ALI remote sensing images were compared with those derived from TM and ETM+ 

data at the three study sites. In the following section, we focus on analyzing the efficiency of the water 

body information enhancement and assessing the accuracy of LSW maps derived from the various 

images of the three regions generated using different NDWI models. 

We used TM data acquired on 2 May 2010, and ALI data acquired on 30 September 2010, in the 

comparative analysis of Region I. The contrast between water body features, including the Three Gorges 

Reservoir and the Yangtze River, and the background features, such as the Three Gorges Dam and the 

vegetation, is clear (Figure 2a,h). The subset of data from EO-1 ALI and Landsat TM images were used to 

generate eight water-body-enhanced images (Figure 2b,d,f,I,k,m,o,q). We used various thresholds (Table 3) 

applied to eight NDWI images to obtain eight LSW binary maps (Figure 2c,e,g,j,l,n,p,r). Each binary map 

has two classes: water and non-water areas. Visual interpretation indicates that the eight NDWI images of 

Region I all clearly show bodies of open water as the result of enhancement. Visual comparison also shows 

that the main water bodies were detected in the LSW maps (Figure 2c,e,g,j,l,n,p,r) and the boundaries of 

nww MMCV −=



 

=
++

= =
++

×−

×−
=

n

i
ii

n

i

n

i
iiii

ppP

pppP
K

1

2

1 1

)(

)(
appa



Remote Sens. 2013, 5 5539 

 

the mapped water bodies match the actual boundaries of the water bodies in the images closely. However, 

some inaccuracies and omissions occurred, for example, in Figure 2g,j,l,p,r. 

Figure 2. Original images and the resulting LSW maps from Landsat TM imagery and  

EO-1 ALI imagery in Region I. (a) Landsat TM image (2 May 2010) false-color composite 

(RGB: 752); (b) NDWI calculated from TM Bands 2 and 4; (c) LSW map of NDWIT2,4;  

(d) NDWI calculated from TM Bands 2 and 5; (e) LSW map of NDWIT2,5; (f) NDWI 

calculated from TM Bands 2 and 7; (g) LSW map of NDWIT2,7; (h) EO-1 ALI image  

(30 September 2010) false-color composite (RGB: 1094); (i) NDWI calculated from ALI 

Bands 4 and 6; (j) LSW map of NDWIA4,6; (k) NDWI calculated from ALI Bands 4 and 7; 

(l) LSW map of NDWIA4,7; (m) NDWI calculated from ALI Bands 4 and 8; (n) LSW map 

of NDWIA4,8; (o) NDWI calculated from ALI Bands 4 and 9; (p) LSW map of NDWIA4,9; 

(q) NDWI calculated from ALI Bands 4 and 10; (r) LSW map of NDWIA4,10.  
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Table 3. NDWI forms, statistical results, associated sensors and bands of the three regions. 

Place Sensor Acquisition Date NDWI Threshold BCV CV 
OA 

(%) 
Kappa 

LSW Area 

(km2) 

Region I 

TM 2010-05-02 

NDWIT2,4 −0.052 0.047 0.456 93.19 0.8440 22.89 

NDWIT2,5 −0.013 0.083 0.618 96.33 0.9133 20.85 

NDWIT2,7 0.243 0.057 0.515 95.47 0.8939 20.77 

ALI 2010-09-30 

NDWIA4,6 −0.294 0.026 0.341 94.23 0.8673 22.43 

NDWIA4,7 −0.265 0.043 0.438 95.54 0.8962 21.57 

NDWIA4,8 0.166 0.090 0.638 95.89 0.9040 21.33 

NDWIA4,9 0.134 0.111 0.713 96.76 0.9235 20.73 

NDWIA4,10 0.289 0.078 0.592 95.86 0.9034 21.34 

Region II 

TM 2005-09-09 

NDWIT2,4 −0.093 0.031 0.522 95.18 0.7819 9.61 

NDWIT2,5 0.054 0.071 0.768 95.94 0.8097 9.00 

NDWIT2,7 0.406 0.036 0.531 95.43 0.7902 9.37 

ALI 2005-10-21 

NDWIA4,6 −0.201 0.005 0.197 96.19 0.8231 9.16 

NDWIA4,7 −0.173 0.008 0.240 96.49 0.8349 8.90 

NDWIA4,8 0.214 0.015 0.302 96.56 0.8372 8.84 

NDWIA4,9 0.243 0.018 0.325 97.73 0.8818 7.25 

NDWIA4,10 0.295 0.013 0.245 96.53 0.8337 8.61 

Region III 

ETM+ 2003-03-29 

NDWIE2,4 0.242 0.019 0.288 87.72 0.7050 22.21 

NDWIE2,5 0.256 0.030 0.378 91.60 0.7862 19.36 

NDWIE2,7 0.410 0.023 0.315 90.80 0.7671 19.60 

ALI 2003-03-29 

NDWIA4,6 −0.331 0.018 0.294 91.33 0.7752 19.53 

NDWIA4,7 −0.313 0.023 0.334 92.36 0.8042 19.03 

NDWIA4,8 0.122 0.033 0.393 93.62 0.8348 18.54 

NDWIA4,9 0.035 0.040 0.416 93.88 0.8432 19.03 

NDWIA4,10 0.188 0.031 0.367 93.12 0.8241 19.11 

We then used the CV and BCV to assess the potential of eight NDWI models for water body 

information enhancement and the adaptability of image segmentation. The indexes OA and Kappa 

were used to evaluate the performance of LSW maps based on the eight NDWI images in Region I. 

First, we used the CV index to analyze the water body information enhancement of the eight NDWI 

images. The results of this quantitative assessment of Region I (Table 3) show that the maximum  

CV value of the five NDWI images derived from the ALI sensor is 0.713 (NDWIA4,9), followed by  

0.638 (NDWIA4,8), 0.592 (NDWIA4,10), 0.438 (NDWIA4,7), and 0.341 (NDWIA4,6). According to the 

contrast method [34], the higher the CV value the better the enhancement of the water body features. 

These results mean that the combination of the green wavelength band (Band 4, 0.520–0.605 μm) and 

the SWIR wavelength band (Band 9, 1.550–1.750 μm) is the best indicator for water body information 

enhancement when the ALI data are employed to enhance water body information. Then, we used 

BCV to assess the image segmentation adaptability of the five NDWI images. Table 3 shows that the 

highest BCV value of the five ALI NDWI images was that of NDWIA4,9 (0.111), followed by 

NDWIA4,8 (0.090), NDWIA4,10 (0.078), NDWIA4,7 (0.043), and NDWIA4,6 (0.026). By the Otsu 
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criterion, we conclude that the NDWI model based on the 0.525–0.605μm green band and the  

1.550–1.750 μm SWIR band of the ALI sensor is most suitable for image segmentation. Hence, the 

NDWI model using the green band and the 1.550–1.750 μm SWIR band of the ALI sensor, namely, 

NDWIA4,9, is the best indicator for the delineation of water body information from a comprehensive 

view of water-body information enhancement and image segmentation. A secondary choice is 

NDWIA4,8, followed by NDWIA4,10, NDWIA4,7, and NDWIA4,6. For the TM sensor in Region I, Table 3 

indicates that the combination of the green channel (Band 2, 0.520–0.600 μm) and the SWIR channel 

(Band 5, 1.550–1.750 μm), namely, NDWIT2,5, is the best indicator for water-body information 

delineation, followed by NDWIT2,7 and NDWIT2,4. This is consistent with the results based on the 

analysis of laboratory spectral data [38]. 

We next used the OA and Kappa to quantitatively assess the accuracy of the eight NDWI LSW 

maps of Region I. This quantitative assessment was performed in three steps. First, the reference data 

were selected. As water bodies and the LSW distribution move and change over time [11,40], it is best 

to use high-spatial-resolution data or a multispectral image taken at the same time as the reference data 

to minimize any time-dependent effects. The acquisition dates of the ALI and TM data used in Region 

I were September 2010, and May 2010, respectively. Thus, we selected the ALI panchromatic image, 

which has 10 m spatial resolution and was acquired at the same time as the ALI multispectral images, 

as the reference data to assess the accuracy of the five LSW maps derived from the ALI sensor. We 

used the false-color composite image acquired at the same time as TM, i.e., RGB752, which best 

enhances the water body information [11], as the reference data to evaluate the accuracy of the three 

LSW maps resulting from the Landsat TM images. Second, the selected reference data were visually 

interpreted by one person and checked by two people to produce the reference data; all three people 

were familiar with the study area. Next, we used the pixel-by-pixel comparison method [34,46] to 

assess the accuracy of these LSW maps using the reference data. Then, error matrixes were created to 

obtain OA and Kappa. Table 3 shows that the accuracy is relatively stable among the five ALI LSW 

maps, with the maps of NDWIA4,6, NDWIA4,7, NDWIA4,8, NDWIA4,9, and NDWIA4,10 having OA of 

94.23%, 95.54%, 95.89%, 96.67%, and 95.86%, respectively, and Kappa of 0.8673, 0.8962, 0.9040, 

0.9235, and 0.9034, respectively. The quantitative assessment results (Table 3) show that NDWIA4,9 

had the highest OA and Kappa values; next highest were NDWIA4,8, NDWIA4,10, NDWIA4,7, and 

NDWIA4,6. The maximum values of OA and Kappa for the TM sensor come from NDWIT2,5, followed 

by NDWIT2,7, and NDWIT2,4. The accuracy of LSW maps as assessed using OA and Kappa are 

consistent with the results of the analysis based on CV and BCV. The areas of LSW in Region I 

identified from the TM data were 22.89 km2 (as measured by NDWIT2,4), 20.85 km2 (NDWIT2,5), or 

20.77 km2 (NDWIT2,7) (Table 3). The LSW areas derived from the ALI data were 22.43 km2 

(NDWIA4,6), 21.57 km2 (NDWIA4,7), 21.33 km2 (NDWIA4,8), 20.73 km2 (NDWIA4,9), or 21.34 km2 

(NDWIA4,10).  

Based on the above analyses, we conclude that the normalized difference water index based on the 

green band (i.e., Band 4 of ALI or Band 2 of TM) and the SWIR band (i.e., Band 9 of ALI or Band 5 

of TM) with the spectrum region of 1.550–1.750 μm, that is, Xu’s NDWI or MNDWI, is the optimal 

choice for water body information enhancement and LSW mapping. 
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Figure 3. Original images and the LSW map results from Landsat TM imagery and EO-1 

ALI imagery in Region II. (a) Landsat TM image (9 September 2005) false-color 

composite (RGB: 432); (b) NDWI calculated from TM Bands 2 and 4; (c) LSW map of 

NDWIT2,4; (d) NDWI calculated from TM Bands 2 and 5; (e) LSW map of NDWIT2,5;  

(f) NDWI calculated from TM Bands 2 and 7; (g) LSW map of NDWIT2,7; (h) EO-1 ALI 

image (21 October 2005) false-color composite (RGB: 965); (i) NDWI calculated from 

ALI Bands 4 and 6; (j) LSW map of NDWIA4,6; (k) NDWI calculated from ALI Bands 4 

and 7; (l) LSW map of NDWIA4,7; (m) NDWI calculated from ALI Bands 4 and 8;  

(n) LSW map of NDWIA4,8; (o) NDWI calculated from ALI Bands 4 and 9; (p) LSW map 

of NDWIA4,9; (q) NDWI calculated from ALI Bands 4 and 10; (r) LSW map of NDWIA4,10.  
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Figure 4. Original images and the LSW map results from Landsat ETM+ imagery and  

EO-1 ALI imagery in Region III. (a) Landsat ETM+ image (29 March 29 2003) false-color 

composite (RGB:753); (b) NDWI calculated from ETM+ Bands 2 and 4; (c) LSW map of 

NDWIE2,4; (d) NDWI calculated from ETM+ Bands 2 and 5; (e) LSW map of NDWIE2,5; 

(f) NDWI calculated from ETM+ Bands 2 and 7; (g) LSW map of NDWIE2,7; (h) EO-1 

ALI image (29 March 29 2003) false-color composite (RGB: 965); (i) NDWI calculated 

from ALI Bands 4 and 6; (j) LSW map of NDWIA4,6; (k) NDWI calculated from ALI 

Bands 4 and 7; (l) LSW map of NDWIA4,7; (m) NDWI calculated from ALI Bands 4 and 8;  

(n) LSW map of NDWIA4,8; (o) NDWI calculated from ALI Bands 4 and 9; (p) LSW map 

of NDWIA4,9; (q) NDWI calculated from ALI Bands 4 and 10; (r) LSW map of NDWIA4,10. 
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EO-1 ALI images from 21 October 2005, and Landsat TM images from 9 September 2005, were 

used in Region II. The contrast between water features such as the Baifengxi and Gaobazhou 

Reservoirs and vegetation features is clear (Figure 3a,h). Visual interpretation shows that the eight 

surface water maps (Figure 3c,e,g,j,l,n,p,r) matched the actual distribution of water closely. We also 

selected the ALI panchromatic image and the TM RGB752 image as the reference data to evaluate the 

accuracy of the LSW maps results because the acquisition dates of the selected ALI and TM data were 

different. The results of the quantitative assessment (Table 3) show that the NDWIA4,9 gives maximum 

values of CV, BCV, OA, and Kappa for the five ALI NDWIs in Region II; next best are NDWIA4,8, 

NDWIA4,10, NDWIA4,7, and NDWIA4,6. In the case of the TM sensor, the order of preference is 

NDWIT2,5, NDWIT2,7, and NDWIT2,4. The results of the quantitative analysis of Region II replicated the 

performance of the eight NDWI models in Region I. The LSW area in Region II was measured as 9.61 

km2 by NDWIT2,4, 9.00 km2 by NDWIT2,5, and 9.37 km2 by NDWIT2,7. Using ALI data, we obtained 

LSW areas of 9.16 km2 (NDWIA4,6), 8.92 km2 (NDWIA4,7), 8.84 km2 (NDWIA4,8), 7.25 km2 

(NDWIA4,9), and 8.61 km2 (NDWIA4,10) (Table 3). 

We used ALI and ETM+ data both acquired on 29 March 2003, for the comparative analysis in 

Region III. The contrast between the water features, including the Yangtze River and Dong Lake, and 

the background features, such as vegetation, sandbanks, cities and towns, is clear (Figure 4a,h). The 

EO-1 ALI data and Landsat ETM+ images were used to form eight different NDWI images  

(Figure 4b,d,f,i,k,m,o,q) of Region III. Visual interpretation indicates that the eight NDWI images all 

clearly show open water body features as the result of enhancement. The main LSW distributions were 

detected in all eight LSW maps (Figure 4c,e,g,j,l,n,p,r). We selected the panchromatic images of ALI 

and ETM+ as the reference data because the ALI and TM data were taken on the same day. The 

quantitative assessment results (Table 3) show that the highest CV, BCV, OA, and Kappa for the five 

ALI NDWIs in Region III also come from NDWIA4,9, followed by NDWIA4,8, NDWIA4,10, NDWIA4,7, 

and NDWIA4,6. The ETM+ sensor yielded results in the following order: NDWIE2,5, NDWIE2,7, and 

NDWIE2,4. The results of the quantitative analysis of Region III were the same as in Regions I and II. 

The total areas covered by water bodies in Region III derived from the ETM+ data were 22.21 km2 

(NDWIE2,4), 19.36 km2 (NDWIE2,5), and 19.60 km2 (NDWIE2,7), while those derived from the ALI data 

were 19.53 km2 (NDWIA4,6), 19.03 km2 (NDWIA4,7), 18.54 km2 (NDWIA4,8), 19.03 km2 (NDWIA4,9), 

and 19.11 km2 (NDWIA4,10) (Table 3). 

5. Discussions 

The results at the three test regions (Table 3) show that the overall accuracy of LSW maps is greater 

than 85% and the overall Kappa coefficient is greater than 0.70. This indicates that there were some 

misclassifications in the LSW maps (i.e., Figures 2g,j,p,r, 3g,n,r, and 4c,e,g,j,n,p,r). These 

misclassifications are caused by overestimating in small water bodies (e.g., farm ponds) and 

underestimating in the slender river channels with mixed pixels (e.g., a land-water border within one 

pixel). This can be address using spectral unmixing [47]. 

One factor that may significantly affect the efficiency of LSW maps using the normalized 

difference water index is the threshold selection. The threshold for LSW mapping will be influenced 

by the subjective judgment of the user [20]. To avoid the subjectivity of the threshold selection, Otsu’s 



Remote Sens. 2013, 5 5545 

 

threshold segmentation method was used to obtain the image partition thresholds in this paper. 

However, for large-scale regional LSW mapping, one threshold is not sufficient to extract all the water 

bodies from the background due to spatially varying spectral contrast. Therefore, a multi-threshold 

image segmentation method is required when the methods discussed in this paper are used in  

large-scale regional LSW mapping. Another major factor is that there is no ground-truth water body 

surface distribution and acreage information. To address this problem, we selected TM data  

(2 May 2010) and ALI data (30 September 2010) at dates during the wet (rainy) season of the study 

area to comparatively analyze in Region I. Importantly, the Three Gorges Reservoir water levels on  

2 May 2010 and 30 September 2010, were approximately equal. That means that the water body 

surface distribution and acreage information of the two times of selected data are also approximately 

equal. Therefore, we can select the panchromatic image with the higher spatial resolution or the 

multispectral false-color composite images acquired at the same time as the “true” water body surface 

distribution and acreage information for Region I. In Region II, we selected TM (9 September 2005) 

and ALI (21 October 2005). The Gaobazhou Reservoir downstream had similar water levels on  

9 September 2005 and 21 October 2005, which means that the water body surface distribution and 

acreage information at the two times of selected data are also similar. Therefore, we also can selected 

the panchromatic image or the multispectral false-color composite images as the “true” water body 

surface distribution and acreage information for Region II. In Region III, we selected ALI data and 

ETM+ data acquired on 29 March 2003. We also selected the panchromatic image with the higher 

spatial resolution as the “true” water body surface distribution and acreage information for Region III. 

Still, the true surface water distribution information is preferable to this estimate if that information 

can be obtained.  

We also noted that the TM, ETM+, and ALI sensors all have similar spectral range bands, such as 

Band 2 of TM/ETM+ vs. Band 4 of ALI, Band 5 of TM/ETM+ vs. Band 9 of ALI, and Band 7 of 

TM/ETM+ vs. Band 10 of ALI. These bands were all employed in different NDWI models (Table 2 

and Table 3). Consequently, it is necessary to analyze the performance of different NDWI models 

based on the similar spectral range bands of the TM, ETM+, and ALI sensors. The ALI and ETM+ 

data used in Region III acquired on the same time. For this purpose, we first compared two NDWI 

models, namely NDWIA4,9 and NDWIE2,5, based on the green channel and SWIR channel with the 

spectral range of 1.550–1.750 μm in Region III. The OA and Kappa of NDWIA4,9 are higher than those 

of NDWIE2,5 in Region III (Table 3). Then, we compared NDWIA4,10 and NDWIE2,7, using the green 

channel and the SWIR channel with the spectral range of 2.080–2.350 μm. The OA and Kappa of 

NDWIA4,10 are higher than those of NDWIE2,7 in Region III (Table 3). There were two reasons that the 

ALI data performed better on LSW mapping than did the ETM+ data, despite their common SWIR 

spectral range. First, the ALI data have higher signal-to-noise ratios (SNRs) than the ETM+ data: the 

SNRs of the ALI data range from 100 to 300, while the ETM+ manages SNRs of just 15–50 [48]. 

Second, the ALI data have higher inherent data precision than ETM+ data because the ALI  

push-broom system offers significant radiometric improvement over ETM+ [49]. This means that the 

ALI data will perform better in LSW mapping than ETM+ data when they are employed using the 

spectral water index with the similar spectral range. However, the coverage of the ALI data is only 

one-fifth of that of TM or ETM+, which means that the ALI data are not suitable for large-scale LSW 
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mapping. Research on the Landsat-8 Operational Land Imager (OLI) LSW mapping method based on 

the spectral water index method is an important direction for development. 

6. Conclusions 

We calculated eleven different normalized difference water indexes (NDWIs) based on the green, 

near-infrared (NIR), and shortwave-infrared (SWIR) bands of Earth Observation-1 (EO-1) Advanced 

Land Imager (ALI), Landsat Thematic Mapper (TM), and Landsat Enhanced Thematic Mapper Plus 

(ETM+) sensors. The results of this quantitative analysis show that (1) the NDWI model based on the 

green band (Band 4: 0.520–0.605 μm) and the SWIR band (Band 9: 1.550–1.750 μm) of the ALI 

sensor, namely NDWIA4,9, is the best indicator for land surface water (LSW) mapping; (2) using Bands 

4 and 9 of the ALI sensor to produce an LSW map will obtain the best effect, followed by Bands 4 and 

8 (1.200–1.300 μm), Bands 4 and 10 (2.080–2.350 μm), Bands 4 and 7 (0.845–0.890 μm), and Bands 4 

and 6 (0.775–0.805 μm).  

The results of this paper also show that Xu’s NDWI performs better than McFeeters’s NDWI on 

water body information enhancement and LSW mapping, confirming previous results [34,38]. The 

indexes using the green band (0.520–0.605 μm) and the SWIR band (1.550–1.750 μm), that is Xu’s 

NDWI, are the most efficient indices for detecting water body information and for mapping water 

bodies. Specifically for the EO-1 ALI sensors, we recommend NDWIA4,9, for detection of LSW body 

features, such as open water body information extracting, flood disaster monitoring, flood disaster risk 

assessing, wetland mapping, LSW mapping, and identification of other water body features. 
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