
Remote Sens. 2013, 5, 6026-6042; doi:10.3390/rs5116026 
 

Remote Sensing 
ISSN 2072-4292 

www.mdpi.com/journal/remotesensing 

Article 

Exploring the Use of Google Earth Imagery and Object-Based 
Methods in Land Use/Cover Mapping 

Qiong Hu 1,2, Wenbin Wu 1,2,*, Tian Xia 1,2, Qiangyi Yu 1,2, Peng Yang 1,2, Zhengguo Li 1,2 

and Qian Song 1,2 

1 Key Laboratory of Agri-informatics, Ministry of Agriculture, Beijing 100081, China;  

E-Mails: huqiong02@caas.cn (Q.H.); xiatianhau@gmail.com (T.X.); yuqiangyi@caas.cn (Q.Y.); 

yangpeng@caas.cn (P.Y.); lizhengguo@caas.cn (Z.L.); songqiannky@163.com (Q.S.) 
2 Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural 

Sciences, Beijing 100081, China 

* Author to whom correspondence should be addressed; E-Mail: wuwenbin@caas.cn;  

Tel.: +86-10-8210-5070; Fax: +86-10-8210-5070. 

Received: 9 September 2013; in revised form: 10 November 2013 / Accepted: 11 November 2013 /  
Published: 15 November 2013 
 

Abstract: Google Earth (GE) releases free images in high spatial resolution that may 

provide some potential for regional land use/cover mapping, especially for those regions 

with high heterogeneous landscapes. In order to test such practicability, the GE imagery 

was selected for a case study in Wuhan City to perform an object-based land use/cover 

classification. The classification accuracy was assessed by using 570 validation points 

generated by a random sampling scheme and compared with a parallel classification of 

QuickBird (QB) imagery based on an object-based classification method. The results 

showed that GE has an overall classification accuracy of 78.07%, which is slightly lower 

than that of QB. No significant difference was found between these two classification 

results by the adoption of Z-test, which strongly proved the potentials of GE in land 

use/cover mapping. Moreover, GE has different discriminating capacity for specific land 

use/cover types. It possesses some advantages for mapping those types with good spatial 

characteristics in terms of geometric, shape and context. The object-based method is 

recommended for imagery classification when using GE imagery for mapping land 

use/cover. However, GE has some limitations for those types classified by using only 

spectral characteristics largely due to its poor spectral characteristics. 
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1. Introduction 

As the physical material of the earth’s surface, land use/cover and its dynamics have significant 

impacts on the structure and functioning of terrestrial ecosystems [1,2]. Remote sensing plays an 

important role in generating land use/cover information from regional to global scales, not only due  

to its spatially-explicit representation of the earth surface, but also due to its frequent temporal 

coverage and relatively low observation costs [3,4]. The improved data availability from new sensors 

and improved computing resources and data analysis tools have resulted in a number of studies 

conducted to unravel the geographic distribution of land use/cover and its dynamic changes over time, 

space and scale [5,6]. 

By consulting the published literature, most previous studies on land use/cover mapping at large 

scale commonly used the low and medium spatial resolution imagery, such as NOAA/AVHRR, 

TERRA/MODIS and Landsat TM or ETM+ [7,8]. As a result, several global and regional land 

use/cover products such as FROM-GLC [9], GLC2000 [10], GlobCover [11] and NLCD-China [12], 

were derived from remotely sensed data and made available to the public. These products have 

certainly improved our understanding of regional and global land cover distribution and their change 

status. Unfortunately, due to the relatively low spatial resolution, they are insufficient for detailed land 

cover mapping for those areas with complex and high heterogeneous landscapes such as the urban 

environment, which is featured by its small-sized elements (e.g., buildings, roads and lawns) combined 

with complicated spatial patterns [13,14]. This limitation greatly hinders researchers and policy makers 

from taking full advantage of these maps to support their various and particular applications. It thus 

calls for a high spatial resolution land use/cover mapping. 

In the past decade, with the development of new satellite sensors, a variety of high spatial resolution 

imageries, i.e., QuickBird, IKONOS and RapidEye, have been made possible. These satellite imageries 

provide rich landscape characteristics, detailed information about the size and shape of surface targets, 

as well as clear spatial relationships among the neighboring objects. This provides new opportunities 

for highly accurate and detailed land use/cover mapping at regional scales [15,16]. However, it should 

be noted that, because of the narrow spatial coverage and high economic costs, these high spatial 

resolution imageries are generally utilized in mapping land use/cover for a specific small region, and 

hardly applied to large regions. 

More recently, the Google Earth (GE, hereafter) tool has developed quickly and has been widely 

used in many sectors. The high spatial resolution images released from GE, as a free and open data 

source, have provided great supports for the traditional land use/cover mapping [17,18]. They have 

been either treated as ancillary data to collect the training or testing samples for land use/cover 

classification and validation or used as a visualization tool for land use/cover maps [19,20]. However, 

very few studies have been undertaken to use GE images as the direct data source for land use/cover 

mapping. If GE images can achieve relatively satisfactory classification, it may provide some 

opportunities for detailed land use/cover mapping by costing little [21,22]. 
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Some challenges exist for land use/cover mapping by using GE image as it has a relatively poor 

spectral information due to three bands (i.e., Red, Green and Blue) [20]. Moreover, the richness in 

texture, tone and geometric characteristics makes the spectral characteristics of GE image more 

complex and variable [23], indicating that the selection of classification method for land use/cover 

mapping is a technical difficulty. As so much at stake, the purpose of present study is to perform a land 

use/cover classification by using GE images as direct data sources and to examine their suitability in 

mapping land use/cover at regional scales. To meet the objective, the Wuhan city in China with a 

typical urban landscape was selected as the case study: Firstly, an object-based method was employed 

for land use/cover classification. The object-based method can make full use of the spectral, texture, 

geometry and other characteristics of GE images, which is supposed to compensate the limitation of 

poor spectral characteristics of GE images. Secondly, the accuracy was assessed by using a random 

sampling scheme and compared with the parallel QuickBird (QB, hereafter) classification results. 

Finally, some conclusions about the performance of the GE images in regional land use/cover mapping 

were presented. 

2. Study Area and Data 

2.1. Study Area 

The study area for this case study is situated in Wuhan City at Hubei Province, Central China 

(Figure 1). Wuhan City is regarded as a Water City as many rivers and lakes can be found in and 

around [24,25]. Two large rivers, the Yangtze River and the Han River, flow through the study area and 

geographically divide the city into three towns: Wuchang, Hankou and Hanyang. The selected site is 

located in the downtown of Wuchang district, with the longitude ranging from 114°15′N to 114°23′N 

and the latitude ranging from 30°30′E to 30°37′E. Land use/cover elements are typical of those in 

urban environments, including rivers, lakes, buildings, roads, woodlands, grasslands, bare land and 

shadow. In general, rivers and lakes are distributed regularly, grasslands and woodlands are mixed 

seriously due to the overly fragmented surface of the whole study area, and buildings and roads present 

different forms. The relatively large coverage, variety of land cover types, combined with fragmented 

landscape make the site ideal for this study. 

2.2. Data Collection and Processing 

The Software GEtScreen (http://www.godeyes.cn/html/2007/04/09/download_643.html) specialized 

for Google Earth was used in this study to download four GE images from Google Earth 5.0. These 

GE images, acquired on 27 March 2003, were originally taken from the QB and have red, green and 

blue bands with a spatial resolution of 1 m. In order to evaluate the performance of GE images in land 

use/cover mapping, a real QB image acquired on 19 March 2003, was collected and used for 

classification accuracy comparison. The QB image has four multi-spectral bands (red, green, blue and 

near infrared) and one panchromatic band, with a resolution of 2.44 m and 1 m, respectively. The four 

individual GE images were firstly mosaicked using the ENVI 4.7 software and the mosaicked GE 

image (Figure 2a) was then registered to the same geographic projection as QB image (Figure 2b) by 

using 35 ground control points. 
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Figure 1. Location of the study area in Hubei, China. 

 

Figure 2. Satellite images used in this study (a): Google Earth (GE) image, (b): QuickBird 

(QB) image. 

 

To further compare their spectral differences, both QB and GE images were conducted a 

normalization process by using the formula [26]: 
max

( )
( )

( )

DN iDN i
DN i

= , where ( )DN i  is the normalized 

digital number ranging from 0 to 1; DN(i) is the original digital number of i band; DN(i)max is the 

maximum of original digital number of i band. Based on the normalized images, the coefficient of 

variation (CV) was calculated and used to describe the spectral consistency and stability for major land 

cover types in GE and QB images. The comparison of CV for major land cover types between GE and 
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QB images is shown in Figure 3. The GE image generally has a higher CV than QB image, in 

particular for woodland and shadow classes. This indicates that spectral signatures in one category 

overlap with other categories in GE image and their pixel homogeneity is significantly lower, resulting 

in a poor spectral discrimination for land use/cover mapping. An object-based method, which can 

make full use of the texture, geometry and other characteristics of GE images except for the spectral 

information, was thus used in this study and described in more detail later. 

Figure 3. Comparison of the coefficient of variation (CV) between GE and QB image for 

major land cover types. 

 

3. Object-Based Classification Method 

Traditional pixel-based classification approach was widely used in land use/cover mapping [27,28]. 

Yet, with the increase in spatial resolution, single pixel does not capture well the characteristics of 

targeted objects. The increase in intra-class spectral variability causes a reduction of statistical 

separability between classes, which is critical to the pixel-based classification methods. Moreover, the 

pixel-based method is always unable to take advantage of the rich amount of texture characteristics and 

other detailed spatial information present in the high spatial resolution images. Consequently, 

classification accuracy is reduced and the classified maps show serious salt-and-pepper effects [29]. 

For these reasons, an object-based method was used in this study to perform GE classification. The 

minimum mapping unit of object-based approach is not a pixel but the object composed by groups of 

adjacent pixels containing specific semantic information. Additionally, except for spectral features, the 

geometric and texture features of a single object, as well as the topological relationships between 

different image objects can be frequently utilized in image classification [30]. In this study, the 

classification process was implemented using the software Defines Developer 8.0 (formerly known as 

eCognition). It comprises three steps: image segmentation, selection of appropriate features or rules for 

conducting classification, and classification accuracy assessment and comparison. 
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3.1. Multi-Scale Image Segmentation 

Image segmentation aims to create different image objects that represent meaningful entities  

(e.g., roofs or vegetation patches) through grouping adjacent pixels with similar characteristics. This is 

the foundation of subsequent classification because all object features are dependent on the segmented 

objects [31,32]. It is thus important to develop an appropriate segmentation scheme. In this study, a 

multi-scale segmentation algorithm embedded in Defines Developer was adopted. It is a bottom-up 

clustering technique and has been proved to be particularly suitable to high spatial resolution image 

segmentation [13,33]. 

Scale factor and heterogeneity criterion are the most important two parameters for image 

segmentation. The scale factor is indirectly related to the average size of the detected objects while the 

heterogeneity criterion, determined by mutually exclusive two parameters (i.e., color and shape), 

controls the clustering decision process [34]. The shape is composed of smoothness and compactness 

properties. Since land use/cover types differ in spectral and spatial characteristics, if land use/cover types 

can be segmented at appropriate segmentation scales, the subsequent classification process can be greatly 

simplified and the mapping accuracy can be significantly improved [23]. Since there is no universally 

accepted rule to determine the optimal segmentation scale [35], the conventional trial-and-error 

approach was used here for image segmentation. This method tends to be more reliable and practical in 

finding the appropriate scale for individual land use/cover types. To do so, we firstly set the different 

segmentation scales ranging from 20 to 100 with an increment rate of 5. Secondly, the segmentation 

results were visually analyzed to examine whether the image objects matched the feature boundaries 

well. By this iteration, the relatively optimal scale for a certain land cover type can be finally 

determined. As a result, a three-level segmentation scheme was achieved. The first level targeted at 

larger land use/cover types and the third level optimized for the smaller ones. The appropriate 

segmentation scales and the parameters associated with heterogeneity criterion of the three-level 

segmentation scheme were shown in Table 1. 

Table 1. Parameter settings for multi-scale segmentation of GE imagery. 

Level Land Use/Cover Types Segmentation Scale Shape Compactness 

1 River, Lake 80 0.2 0.5 

2 Bare land, Shadow, Building, Road 50 0.2 0.5 

3 Grassland, Woodland 30 0.2 0.5 

3.2. Feature Selection and Classification Rule 

Object features include the spectral, shape, size, texture, and context characteristics. Features 

usually define the upper and lower limits of a range of measurable characteristics of objects. Image 

objects within the defined limits are assigned to a specific class, while those outside of the ranges are 

assigned to other classes [36]. The feature selection is thus to search out the most relevant features for 

each class so as to help efficiently perform an image classification with a high accuracy [32]. 

In this study, a total of nine features, including brightness, mean DN, standard deviation of DN, 

length, ratio of length and width, area, neighborhood relationships between classes, inclusive 

relationships between classes, and the customized green band ratio (DN of green band/(DN of red band 
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+ DN of green band)), were selected by combining the literature review, expert knowledge and visual 

examination [37,38]. The threshold values of the selected feature were then determined according to 

the mean and standard deviation of the features [39]. Table 2 listed the hierarchical features and rules 

developed for GE classification in this study. It is worthwhile to note that if only the spectral feature of 

GE imagery was adopted to identify the specific classes, it can cause some confusion between different 

classes, such as shadow and woodland, river and lake. When spatial features such as area, 

neighborhood relationships of objects were included, better classification results could be achieved. 

Table 2. Variables and rules used for GE imagery classification. 

3.3. Classification Accuracy Assessment and Comparison 

To evaluate the GE classification performance, one QB image was used in this study and performed 

the same object-based classification. A complete description on QB image processing and 

classification has been documented in Hu et al. [40]. The GE-based and QB-based classification 

accuracies were individually assessed by using a number of independent validation points generated by 

a random sampling scheme. The accuracy results were then compared to check their difference. This 

method was widely used in existing studies [27,41,42] as it can minimize the statistical and human bias 

in the process of validation sample selections [43]. It was implemented in three steps in this study. 

The first step was to calculate the total number of validation points based on the following 

polynomial distribution formula [26]: 

Level Parent Class  Child Class Rule Sets 

1 The whole imagery 

Land 

River 

Lake 

 

1. Brightness and mean DN of spectral bands were used to classify the 

three classes based on the nearest neighbor classifier. 

2. “relborder to river > 0.3” was employed to remove the river objects 

from the lake objects and “rel_border to river > 0.02” was utilized to 

remove the lake objects from the river objects. 

3. “area < 150,000” was used to correct the misclassified river objects to 

lake objects. 

4. The inclusion relationships between building and river objects were 

taken to remove the building objects from river objects. 

2 Land 

Vegetation 

Shadow 

(buildings) 

Others: road 

Bare land 

Buildings1 

 

5. The features including brightness, mean DN of each layer and standard 

deviation were adopted to classify the vegetation, shadow and the 

remaining class based on the nearest neighbor classifier. 

6. “Length/width > 3” was used to classify road objects and  

“length < 100” was employed to correct misclassifed road  

objects to building objects. 

7. “105 < brightness < 140” and “0.32 < green band ratio < 0.329”  

were utilized to identify the bareland objects. 

8. The remaining objects were classified into building objects. 

3 
Vegetation 

Shadow(buildings) 

Grassland 

Woodland 

Buildings2 

9. “Brightness ≥ 55” was employed for grassland objects. 

10. “Brightness ˂ 55” was used for woodland objects. 

11. “area > 400000” and “brightness > 70” were taken to correct 

misclassifed shadow objects to building objects. 
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(1)

where b presents the expecting accuracy for a specific class, n is the degree freedom of chi-square 

distribution, is the confidence level, and is the total number of land cover types. In this study, 

was set to 8 as there are 8 land use/cover types, was set to 85% and b was 5%. Using the above 

formula, there are totally 570 validation points needed in this study. 

The second step aimed to reasonably assign the 570 validation points to individual classes in  

GE-based and QB-based classification. An average of 50 points was preliminarily distributed to each 

land use/cover type to ensure that each class, disregarding its area, can gain enough sampling points 

for accuracy assessment. The remaining points were then proportionally assigned to the related classes 

by considering their total number of pixels, that is, the larger area the class is, the more sampling 

points it has. By doing this, it can generate a statistically reasonable number of validation points for 

individual classes, which were later used to make an accuracy assessment for GE-based and QB-based 

classification, respectively. Some statistics including overall accuracy, Kappa coefficient, user 

accuracy and producer accuracy were computed for each thematic map and then compared between 

them. This procedure was iterated three times to make the assessment objectively and adequately. 

Finally, a Z-test between GE-based and QB-based classification accuracy was performed to 

investigate their differences in significance using the following formula [44]: 

 

(2)

where  and  refer to the total number of sampling points,  and  represent the total number 

of points that was correctly classified, and  is calculated by 1 2 1 2( ) / ( )X X N N+ + . The derived Z 

value is subsequently compared against tabulated Z values at the widely used 5% level of significance 

to indicate its statistical significance of the differences between the compared thematic maps. Thus if 

|Z| calculated from Equation (2) is  1.96, there is statistically significant difference between GE and 

QB classification results. 

4. Results and Discussions 

4.1. GE-Based Classification Map 

Figure 4 shows the thematic map of land use/cover derived from GE imagery. The statistics of 

individual land cover types are listed in the Table 3. It can be seen that the largest land clover type in 

this study area is the built-up area with a total area of 45.06 km2, accounting for about 39.33% of the 

totals of the study area. The roads, lakes and rivers share the similar area proportion with a value of 

12.38%, 10.93% and 13.72%, respectively. By contrast, other land cover types, including woodland, 

grassland and shadow, have a relatively lower area proportion, which is less than 7%. 
  

2

2

1
( ,1 )

4*

n
N

b

α
κ
−χ −

=

α κ κ
α

1 2

1 2

1 2

1 1
(1 )( )

X X
N NZ

N N
ρ ρ

−
=

− +

1N 2N 1X 2X
ρ

≥



Remote Sens. 2013, 5 6034 

 

 

Figure 4. Land use/cover map derived from GE imagery. 

 

Table 3. The statistics of eight land use/cover types. 

 Road Bare Land Shadow Grassland Woodland Building Lake River 

Area ( ) 14.186 7.36 6.183 7.62 5.927 45.064 12.52 15.717 

Area proportion (%) 12.38 6.42 5.4 6.65 5.17 39.33 10.93 13.72 

When looking at the spatial distribution of individual classes, it was found that water bodies 

(including rivers and lakes) in this study area are more convergent in comparison with other classes. 

Yangtze River flows from the north to the south, dividing the entire study area into two parts, i.e., the 

east and the west. The two major lakes (Sha Lake and Dong Lake) are obviously distributed in the 

eastern part due to their large areas. The spatial characteristics of other land use/cover types are more 

complicated. The woodland is mixed with the grassland, the bare land is fragmented, and the roads are 

inter-linked and unregularly located everywhere in the study area. In addition, most of the shadow 

exists between buildings, mainly due to the shelter of the tall buildings. 

4.2. Assessment of Classification Accuracy 

Figure 5 is the land use/cover map derived from QB imagery. The comparison of classification 

accuracy between QB and GE imagery was implemented and shown in Table 4. No surprisingly, it can 

be found that the overall accuracy of GE imagery (78.07% with a Kappa coefficient of 0.74), in 

general, is slightly lower than that of QB imagery (81.27% with a Kappa coefficient of 0.78). 
  

2km
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Figure 5. Land use/cover map derived from QB imagery. 

 

Table 4. Comparison of classification accuracy between GE and QB images. 

 GE Image QB Image 

 User’s Accuracy (%) Producer’s Accuracy (%) User’s Accuracy (%) Producer’s Accuracy (%) 

River 98.72 99.35 99.46 99.25 

Lake 88.89 91.18 98.39 93.06 

Buildings 79.04 70.28 77.26 75.69 

Shadow 80.15 79.46 75.19 88.56 

Woodland 58.98 72.02 80.55 79.96 

Road 66.78 79.19 77.86 72.76 

Bare land 64.21 64.34 62.50 62.64 

Grassland 68.26 59.60 76.65 76.64 

Overall accuracy(%): QB=81.27, GE=78.07 

Kappa statistic: QB=0.78, GE=0.74 

With respect to individual classes, both GE and QB-based classifications show higher producer’s 

and user’s accuracy (more than 88.0%) for lakes and rivers, but the lower producer’s and user’s 

accuracy for bare land (less than 65.0%). The accuracy for buildings and shadow are generally similar 

in both QB and GE-based classifications (more than 70%), but producer’s accuracy in GE 

classification is slightly lower than that of QB classification. The classification accuracy of woodland 

and grassland by using GE imagery are significantly lower than those by using QB imagery, and their 

average difference is more than 10%. In contrast, the producer’s accuracy of road from GE-based 

classification is relatively higher than that of QB classification.  
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Based on the formula 2, |Z| was calculated and equal to 1.34. This suggests that there is no 

statistical difference between these two classification based on different imagery at the confidence 

level of 95%, which, in other words, indicates that the classification result of GE imagery is not 

significantly weaker than that of QB imagery. 

4.3. Potentials Analysis of GE Imagery for Land Use/Cover Mapping 

The objective of this study was to perform a land use/cover classification by using GE images as 

main data sources and to examine their suitability in mapping land use/cover at regional scales. The 

classification results show that in general, a combination of GE imagery and object-based 

classification method can achieve an overall accuracy of 78.07%, which is close to the QB 

classification accuracy (81.27%). Much detailed information for the sub-classes, i.e., roads, buildings 

and even shadows, which are hardly available in the existing coarse resolution land cover products 

such as FROM-GLC, GLC2000 and GlobCover, was well recorded in this experiment. This suggests 

the great potentials of GE imagery in regional land use/cover mapping. 

It was found that GE imagery has different discrimination capacity for different land cover types, 

which is mostly attributed to the characteristics of GE imagery and individual objects. The category of 

water bodies like rivers and lakes is featured by their relatively better pixel homogeneity and good 

spectral discrimination. This can be easily captured by GE imagery although it has only three visible 

bands, resulting in a higher accuracy in these classes than other classes. The GE-based classification 

for roads has higher producer’s accuracy than that of QB-based classification. This may be explained 

by the proposal that road classification mainly relies on its shape features, as shown in Table 2, this 

information can be well derived from GE imagery. Similarly, shadow presents a relatively higher 

accuracy in comparison with woodland, grassland and bare land as its area characteristics was used for 

classification (Table 2). This suggests that when using GE imagery for land use/cover mapping, more 

attention should be given to its spatial characteristics (such as shape, texture and context of objects) in 

the classification algorithm as these are well described in GE imagery. This conclusion agrees well 

with the study by Huang et al., which showed that the QB classification based on spatial features  

(i.e., shape index, length-width ratio) is significantly better than that based on spectral bands [45]. 

Yet, when comparing with QB imagery, GE imagery has a lower discrimination for grassland and 

woodland types. This is due to the fact that rather than geometric features, spectral features such as 

brightness and DN were utilized in identification of grassland and woodland (shown in Table 2). This 

highlights that the nature of poor spectral information in GE imagery hinders its mapping accuracy to 

those land cover types, which are classified only by using spectral characteristics. Therefore, the sole 

spectral-based supervision and unsupervised methods may not be well suited for GE imagery 

classification [40]. 

It can be found in Table 4 that both GE and QB-based classifications have the lowest accuracy for 

bare lands. This is mostly because co-existing of different objects in bare lands results in poor intra-class 

spectral stability (Figure 3), which makes the spectral signatures overlap with other categories and the 

spatial characteristics of satellite imagery more heterogenic and complex. This emphasizes that the 

landscape structure can influence the accuracy of land cover mapping by using satellite data, and the 
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mixed unit problem seems to be a major challenge for land cover mapping efforts because the 

heterogeneity of the landscape structure is more detailed than the resolution of the satellite sensor [46]. 

This study also shows that the object-based classification method proved to be an appropriate 

alternative when using GE imagery for mapping land use/cover. Except for its spectral characteristics, 

it can make full use of the spatial features of objects, which can, to some degrees, strengthen the 

advantages of GE imagery for its high spatial resolution and compensate its limitation of poor spectral 

information. This is consistent with some previous studies, which underlined the specific superiority of 

object-based methods over traditional pixel-based classifiers for mapping land use/cover [47–49]. 

Therefore, the spatial features of objects in target need to be utilized as more as possible when 

performing an object-based classification on GE imagery, in particular when the spectral features 

cannot identify the targets accurately. In the case that both spectral and spatial characteristics of objects 

are quite vague in GE imagery, other ancillary data such as DEM, slope and aspect could be taken into 

consideration and may improve the classification accuracy [50,51]. It is expected that the inclusion of 

DEM data into the future list could improve the identification capacity between woodland and 

grassland types, as well as between buildings and shadows, which are significantly confused in this 

study [42,52]. 

4.4. Uncertainty Analysis of GE Imagery for Land Use/Cover Mapping 

Cropland was not considered as an independent land cover type in this study due to its small area 

proportion. Instead, land units with green crops were identified as grassland, which may result in a 

slight overestimation of total grassland area. In addition, we distinguished shadow as an independent 

type out of the regular human-made impervious surfaces (e.g., building), because of its large area 

proportion. This could underestimate the area of buildings as most of the shadow area is interrelated 

and overlaid with building area. 

Another factor that contributes to the overall uncertainty is the parameters used in the object-based 

classification. The proposed segmentation scales and rule-sets were moderately appropriate but may 

not be the most optimal for this study. This indicates that it is difficult to guarantee the comparisons 

between the QB and GE imagery performed at their best state, and the potential of GE imagery for 

land use/cover mapping cannot be assessed completely. Moreover, the trial-and-error approach used 

for image segmentation in this study is time-consuming and subject to some human influence. A more 

specific algorithm for image segmentation in future studies would be worthy of consideration for 

reducing the time of visual interpretation and for determining the relatively “optimal scale” for 

subsequent analysis. 

Possible limitations are also due to the site-specific landscape structure which varies from one place 

to another and may have some impacts on the classification accuracy. Thus, in the future some more 

regions and GE images from different satellites or sensors (e.g., IKONOS, SPOT, and RapidEye) need 

to be tested in a broad scale to make the research findings in this study more robust. Additionally,  

GE imagery is limited for presenting the dynamic changes in land use/cover as they are inconsistently 

acquired and have different temporal frequencies [20]. The problem of how to make the best use of the 

free and high-resolution data for mapping dynamics of land use/cover should be discussed in more 

detail in the future (e.g., land change monitoring and modeling [53]). 
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5. Conclusion 

The freely accessible GE images were used here as direct data resources (rather than being used as 

“pictures” for visualization) to perform a classification so as to investigate their potential suitability for 

mapping complex land use/cover. To do so, the Wuhan city with high heterogeneous landscape was 

selected for a case study and an object-based classification method was employed to identify the eight 

targeted land use/cover types. By comparing the GE-based classification result with a reference  

QB-based classification, it proved that GE imagery possesses some potential for land use/cover 

mapping as there was no general statistical difference existing between these two classification results. 

However, due to the unique characteristics of GE imagery (i.e., rich spatial features with low spectral 

discrimination), the classification accuracy varied greatly according to individual objects: GE imagery 

has great advantages for mapping land use/cover types with good spatial characteristics in terms of 

geometric, shape and context (e.g., road and river), but it performs a little worse for mapping land 

use/cover types that requires high spectral signature (e.g., grassland and woodland). Considering this 

limitation, other ancillary data is suggested to be included to improve its classification accuracy. To 

conclude, the object-based method is recommended for image classification when using GE imagery 

for mapping land use/cover, because it can simultaneously make the best use of spatial characteristics 

and eliminate the limitations of poor spectral characteristics of GE imagery. Future studies should 

consider the cross-site comparisons of method application, selection of optimal segmentation scale, 

and elimination of limitations brought by the inconsistent and multi-temporal data acquisition scheme 

of GE imagery. 
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