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Abstract: Automatic image registration (AIR) has been widely studied in the fields of 

medical imaging, computer vision, and remote sensing. In various cases, such as image 

fusion, high registration accuracy should be achieved to meet application requirements. For 

satellite images, the large image size and unstable positioning accuracy resulting from the 

limited manufacturing technology of charge-coupled device, focal plane distortion, and 

unrecorded spacecraft jitter lead to difficulty in obtaining agreeable corresponding points 

for registration using only area-based matching or feature-based matching. In this situation, 

a coarse-to-fine matching strategy integrating two types of algorithms is proven feasible 

and effective. In this paper, an AIR method for application to the fusion of ZY-1-02C 

satellite imagery is proposed. First, the images are geometrically corrected. Coarse 

matching, based on scale invariant feature transform, is performed for the subsampled 

corrected images, and a rough global estimation is made with the matching results. Harris 

feature points are then extracted, and the coordinates of the corresponding points are 

calculated according to the global estimation results. Precise matching is conducted, based 

on normalized cross correlation and least squares matching. As complex image distortion 

cannot be precisely estimated, a local estimation using the structure of triangulated 

irregular network is applied to eliminate the false matches. Finally, image resampling is 

conducted, based on local affine transformation, to achieve high-precision registration. 

Experiments with ZY-1-02C datasets demonstrate that the accuracy of the proposed 

method meets the requirements of fusion application, and its efficiency is also suitable for 

the commercial operation of the automatic satellite data process system. 
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1. Introduction 

Image registration is a fundamental image processing technique in the areas of medical imaging, 

computer vision, and remote sensing (RS). In the field of RS, automatic image registration (AIR) has 

been a widely studied problem for decades. AIR has been achieved in many different datasets, 

including multi-platform [1,2], multi-modal [3–6], multi-scale [7,8], and multi-angle [2,9] RS images. 

Considerable accuracy and efficiency have been obtained. A typical registration method can be divided 

into three steps: image matching, transformation model estimation, and image resampling. 

Image matching is a technique that identifies corresponding structures such as point, line, and 

surface through certain criteria. The algorithms of this technique can be broadly classified into two 

categories: area-based matching (ABM) and feature-based matching (FBM). ABM calculates a certain 

measurement using gray data in the fixed-size window from two images and treats the center points  

of windows as corresponding points when the measured value exceeds the threshold. The most 

commonly used algorithms are methods based on mutual information [10–12], frequency-domain 

correlation [13,14], and cross correlation [4,8,9,15,16]. The main disadvantage of ABM lies in the 

excessive computing time spent on searching for the corresponding point; a matching strategy based 

on the image pyramid is usually helpful in accelerating the processing speed [4,15]. In FBM 

algorithms, salient features are extracted from different images, and then corresponding features are 

determined by comparing the similarities of their descriptions. Matching methods based on point 

feature, such as scale invariant feature transform (SIFT) [17] and speeded up robust features  

(SURF) [18], are widely used in RS. Other methods based on features, including lines [7],  

edges [2,19], contours [20], and shapes [21], are also used in numerous applications. FBM based on 

SIFT is proven to have excellent performance [22] and has been successfully applied to various AIR 

cases of RS images [3,23–26]. However, for extremely large RS images, the direct use of SIFT-based 

matching faces difficulties in obtaining evenly distributed corresponding points. Another problem to 

consider is excessive memory consumption. To mitigate this problem, several researchers conducted 

SIFT matching based on image segmentation [27–29], but this approach always results in lower 

computational efficiency. To overcome these limitations, a coarse-to-fine matching strategy that 

integrates the two types of algorithms has been proposed [8,9,16]. In this strategy, FBM is first 

performed to accomplish coarse matching, and then ABM, as a process of precise matching, used  

the results of coarse matching to obtain the appropriate corresponding points. High accuracy and 

efficiency can be achieved through this strategy, particularly when processing extremely large  

RS images. 

The second step of image registration is to estimate the image transformation model with the results 

of image matching. The affine and polynomial transformation models are commonly adopted for RS 

image registration. However, under certain situations, such as when the image size is extremely large 

or when complex image distortion exists, the aforementioned two models can make only a rough 

estimation of the transformation, but the fitting precision is insufficient and usually uneven on the 
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image. To implement high-precision registration of images with significant distortions, some local 

fitting methods, such as B-spline functions [11], thin-plate splines [9,21,30], and local affine 

transformation based on triangulated irregular network (TIN) [4,8,15,29] have been applied. The 

experiment results of Arévalo et al. [31] demonstrate that local methods outperform global methods. 

The presence of noise and limitations of the algorithm inevitably cause false matches in the image 

matching results. To address this issue, certain criteria should be adopted to reject the false matches. 

Comparison of the residuals solved by least squares is a commonly used method. In addition, 

numerous algorithms that focused on removing false matches have been proposed and widely used in 

image registration, such as random sample consensus [32], maximum likelihood estimation sample 

consensus [33], and maximum distance sample consensus [34]. 

The final process of registration, that is, image resampling, can be conducted using the estimated 

parameters of the transformation model to warp the input image to the reference image. To achieve 

sub-pixel accuracy, image interpolation methods, such as bilinear interpolation and cubic convolution 

interpolation, are usually employed for resampling [35]. 

ZY-1-02C satellite, launched on 22 December 2011, is equipped with a multispectral (MUX) 

camera (10 m resolution, including infrared, red, and green bands), a panchromatic (PAN) camera (5 m 

resolution), and a panchromatic high-resolution (HR) camera (2.36 m resolution). As China’s first 

satellite that is customized specifically for the land resource department, an automatic satellite data 

processing system (ASDPS) was established on land to ensure its commercial operation. In accordance 

with the ASDPS design, the PAN and MUX images captured from the same area are geometrically 

corrected first, and then image fusion processing is performed to obtain color infrared images  

with higher resolution. Theoretically, the geographical coordinates of the corrected images from 

different sensors should be extremely close, and the images can be fused directly. However, the 

positioning accuracy of different images is influenced by the limited manufacturing technology of  

the charge-coupled device, focal plane distortion, and unrecorded spacecraft jitter [36]. In our  

actual data processing, the geometrically corrected images of ZY-1-02C still exhibit a significant 

accuracy difference, which indicates that the image registration process should be conducted before 

image fusion. 

An AIR method applied to the fusion of ZY-1-02C satellite imagery is proposed in this paper. First, 

the images are geometrically corrected with equivalent ground sampling distance (GSD), a coarse 

matching based on SIFT for the subsampled corrected images is performed, and a rough global 

estimation is made with the matching results. Feature points are then extracted using a Harris detector, 

and the coordinates of their corresponding points are calculated according to the results of the global 

estimation. Precise matching is conducted based on normalized cross correlation (NCC) and least 

squares matching (LSM). To fit the complex image distortion, which cannot be precisely estimated, a 

local estimation using the structure of TIN is applied to eliminate the false matches. Finally, using the 

optimized TIN generated in the process of error elimination, image resampling is conducted based on 

local affine transformation to achieve high-precision registration. Experiments with ZY-1-02C datasets 

demonstrate that the accuracy of the proposed method meets the requirements of fusion application, 

and its efficiency is also suitable for the commercial operation of ASDPS. 
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2. Methodology 

The proposed approach can be divided into six steps and each step is specified in Figure 1. 

Figure 1. Flowchart of the entire process. 

 

2.1. Geometric Correction 

Before the process of geometric correction, the long strip satellite images were segmented into 

scenes by ASDPS, and the rational polynomial coefficient parameters for each scene of the images 

were provided. Therefore, the rational function model (RFM) is adopted for geometric correction in 

our approach. As a result of the limited positioning accuracy of the satellite, the average elevation of 

the positioning range is used for image correction. SRTM-DEM [37], which is publicly available in 

our industry, is employed as the data sources of elevation. 

In the RFM, image pixel coordinates are defined as the ratios of polynomials of ground  

coordinates [38]:  
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where (rn, cn) and (Xn, Yn, Zn) are the normalized coordinates of the image space and ground space 

points, respectively. Pi(i = 1, 2, 3, 4) are the cubic polynomials that represent the rigorous geometric 

sensor model of satellite imagery. 

To eliminate the scale differences between images, the equivalent GSD is adopted for geometric 

correction so that precise matching can be implemented smoothly. Even after geometric correction, a 

significant accuracy difference remains between images of ZY-1-02C (see analysis in Section 3.1). In 

this situation, direct NCC matching results in a dramatic increase in time consumption and matching 

error. Therefore, a coarse matching for the subsampled corrected images is performed in advance. 

With the results of rough global estimation through coarse matching, the searching range of precise 

matching is sharply reduced, and precision and efficiency are evidently improved. 

2.2. SIFT Matching on Subsampled Images 

2.2.1. Image Subsampling 

In our related work, the coarse-to-fine matching strategy is generally applied using a multi-level 

image pyramid created by methods that can preserve more image information, such as the wavelet-based 

pyramid approach [8,16]. However, in our approach, as the image sizes become excessively large, 

multi-level image pyramid and complex subsampling method evidently reduce efficiency. Thus, we 

subsample the images only once to perform coarse matching, and the interval sampling method is used 

to generate the subsampled images. An appropriate size of the subsampled images can be calculated 

using the following equation: 
max{ceil( / ), ceil( / )}

floor( / )
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where interval is the sampling interval; w and h are the width and height of the full-size image, 

respectively; wsub and hsub are the width and height of the subsampled image, respectively; and N is the 

maximum acceptable size of the subsampled image. ceil() takes the number and rounds it to the nearest 

integer above its current value, whereas floor() rounds it to the nearest integer below its current value. 

The width and height calculated by Equation (2) is extremely close to but less than N. 

To avoid repeatable loading of the large image, interval sampling is conducted while saving the 

corrected images in the process of geometric correction. Aside from its use in coarse matching, the 

subsampled image can also be filed to ASDPS as a browse map of the corrected image. 

2.2.2. SIFT Matching 

SIFT matching is a highly successful FBM algorithm proposed by Lowe [17]. The corresponding 

points are determined by comparing their descriptors. Thus, region searching is not required in SIFT 

matching. After eliminating false matches, the matching results possess high reliability. Meanwhile, 

the consumption of memory and time also becomes acceptable because of the small size of the 

subsampled images. 

The subsampled MUX image has to be transformed to grayscale before SIFT matching. To 

minimize the information losses, principal component analysis (PCA), which was first proposed by 
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Hotelling [39], is performed, and the first principal component is used for matching. Moreover, 

because the low contrast of the image may result in the filtering of most feature points extracted by 

SIFT, histogram equalization is used to process the grayscale image in advance. Wang et al. [28] 

proved that histogram equalization improves the contrast sensitivity of the images and significantly 

enhances the possibility of extracting and matching features. Thereafter, SIFT is performed on the 

processed subsampled images. 

2.3. Global Estimation of Affine Transformation 

A number of corresponding points can be obtained via SIFT matching. Multiplying the coordinates 

of these points by the value of interval determines the positions of these points on the full-size images. 

The image size of the subsampled images is significantly less than that of full-size ones; thus, the 

precision of coarse matching is limited. However, affine transformation remains capable of estimating 

the accuracy difference between images to a certain extent. In this study, we consider an HR/PAN 

image as the reference image with the MUX image as the input image. The parameters of affine 

transformation can be solved through a least squares method. 

The matching results inevitably contain false matches, which can be eliminated by comparing the 

residual error of each point pair and the root mean square error (RMSE). The overall accuracy of the 

coarse matching points is not extremely high. Thus, point pairs with its residual error more than two 

times of RMSE are removed. The remaining matching points are used to calculate a new RMSE, and 

the iteration continues until the residual errors of all the remaining point pairs are less than twice  

the RMSE. 

2.4. Precise Matching Based on NCC and LSM 

Approximate parameters of image transformation are obtained through global estimation. With the 

parameters, the position of the corresponding points can be predicted, and the point should be searched 

out in a relatively small window around the position. Similar to the process of coarse matching, the 

full-size MUX image should be converted into grayscale through PCA before precise matching. In our 

approach, the process of precise matching is divided into two steps: feature extraction and matching 

based on NCC and LSM. 

2.4.1. Feature Extraction 

In the featureless and textureless area, determining a reliable matching result is difficult. This 

situation can be avoided by matching after feature extraction. 

The Harris detector adopted in our approach is widely known for its high speed and stable  

result [40]. To extract an appropriate number of feature points that are evenly distributed, the image  

is segmented into grids with a certain grid size. The features with strongest Harris value are then 

extracted from each grid. Precision of the Harris detector can be achieved only at the pixel level, 

whereas that of the Förstner operator can be achieved at the sub-pixel level [41]. As a result, using the 

method proposed by Zhang et al. [42], we employ the Harris detector to extract more apparent features 

and then refine the feature point to the sub-pixel level using the Förstner operator. As the resolution of 
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an MUX image is lower than that of an HR/PAN image, some detailed information existing in an 

HR/PAN image cannot be found in an MUX image. Thus, we decide to extract feature points from an 

MUX image and then search for the corresponding points on an HR/PAN image. 

2.4.2. Matching Based on NCC and LSM 

After extracting feature points from MUX images, the coordinates of the corresponding points on 

HR/PAN images can be estimated through affine transformation. Around the estimated position, a 

large searching window need not be set to find the corresponding points, which ensures the high 

efficiency and reliability of matching results when an NCC-based approach is used. 

NCC matching can only achieve pixel-level precision. To achieve sub-pixel matching precision, the 

coordinates of corresponding points obtained by NCC are used as initial values to be refined using 

LSM. Proposed by Ackermann [43], LSM uses adequate information in the image window for 

adjustment calculation, which can improve precision at the sub-pixel level. 

2.5. Error Elimination through Local Estimation 

Numerous corresponding points can be obtained through precise image matching. False matches 

must be eliminated from the corresponding points before use in image registration. The complicated 

image distortion in PAN/HR and MUX images causes difficulty in employing a mathematical model 

for the direct and precise description of image transformation. The model cannot, therefore, serve as a 

criterion to eliminate false matches. However, influences of distortions can be minimized in most cases 

when the judging area is reduced to a relatively small one [44]. In this case, local image transformation 

can be approximated accurately by a simple model, such as affine transformation, and the false 

matches can be eliminated effectively. 

Using a TIN structure, the adjacency between points can be determined simply and efficiently. 

Wang et al. [45,46] proposed a method of outlier detection using the TIN structure, which was 

successfully applied to automatic registration of terrestrial laser scanning point clouds. Similarly, in 

our approach, the TIN structure is used to calculate the adjacency between neighboring points, but our 

approach is based on affine invariance of local points while the Wang et al. [45,46] method is based on 

distance invariance. As shown in Figure 2, image distortion becomes subtle and regular when the 

judging area is limited within a small local part. In this situation, if estimation is conducted by using an 

affine transformation, the coordinate differences between correct matches can be fitted well  

with the transformation (Figure 2a), whereas residual errors of the false matches become evidently 

greater than those of the surrounding points (Figure 2b) and are then detected as gross errors to  

be eliminated. 

The divide-and-conquer approach proposed by Lee et al. [47] is a practical and commonly used 

algorithm to construct a Delaunay triangulation. However, the TIN structure may contain very long 

and narrow triangles at the border of the structure. These triangles will undermine the local estimation 

and registration accuracy. They are detected by comparing the perimeter of each triangle with the 

mean perimeter of all triangles in the TIN structure. Triangles at the border with perimeters that are 

larger than the mean perimeter by 3 times the variance of perimeters are removed iteratively. 
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Figure 2. Analysis of false match identification. (a) Correct match. (b) False match. 
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Based on the preceding analysis, the proposed gross error elimination method is demonstrated  

as follows: 

(1) A TIN is constructed using the coordinates of matching points, and the points in TIN are judged 

one by one in the following steps; 

(2) Several nearest neighboring points around the current judging point are collected based on the 

TIN structure. The neighboring points are determined by an iterative method: first, all the points 

adjacently connected to the judging point are collected; then, more points that are adjacently connected 

to the collected points are found and gathered continually. In our approach, the recommended number 

of iteration times is 2, as shown in Figure 2; 

(3) Based on the coordinates of the collected matching points, affine transformation parameters of 

the local distortion can be estimated; 

(4) The residual error of the judging point is calculated using the affine parameters obtained 

previously. If the error is greater than a certain threshold (which is twice the RMSE in our approach), 

the judging point and its corresponding point are eliminated as a false match. Otherwise, we go to  

step (2) to judge the next point; 

(5) After traversing all the points in the TIN, we return to step (1) to reconstruct a new TIN using the 

remaining points. The process continues until the residual errors of all points meet the requirements. 

2.6. Resample Image Based on Local Affine Transformation 

The accuracy of the geometrically corrected image of ZY-1-02C is influenced by numerous factors. 

Thus, transformation models, such as affine and geometric polynomials, cannot describe the distortions 

precisely. However, in the local areas of images, affine transformation is sufficient to estimate the 

distortion. Therefore, image resampling is implemented using local affine transformation based on TIN 

to achieve high precision. 

An optimized TIN has been obtained in the process of error elimination. For every triangle in the 

optimized TIN, the affine transformation is calculated. Based on the parameters of the transformation, 

the gray data of the triangle in the input image can be rectified to the reference image. When all the 

triangles have been rectified, image registration between the input image and reference image is 

achieved. To achieve registration precision at the sub-pixel level, the bilinear interpolation method is 

used to resample the input image. 
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3. Experiments and Results 

3.1. Description and Accuracy Analysis of Test Data 

To evaluate the performance of the proposed approach, three datasets from ZY-1-02C were used for 

the experiments. Among these datasets, two consist of a scene of a PAN image and a scene of an MUX 

image, whereas the third set consists of a scene of an HR image and a scene of an MUX image. The 

first dataset is in Mohe, a county in the northern border of China, with a mainly mountainous terrain. 

The second dataset is in Hangzhou, an eastern city of China, where the main terrain is urban and partly 

mountainous. The third dataset is in Tokyo, Japan, which consists of the main part of the city and a 

large sea area. Details of the datasets are described in Table 1. 

Table 1. Overview of test datasets. 

Dataset ID Location Track Number Lat/Long Date Sensor Resolution (m) 

1 Mohe 000589 121.8/53.3 1 February 2012 PAN/MUX 5.0/10.0 

2 Hangzhou 000847 120.1/30.3 12 February 2012 PAN/MUX 5.0/10.0 

3 Tokyo 000918 139.9/35.7 24 February 2012 HR/MUX 2.36/10.0 

Before image registration, geometric correction with equivalent GSD was applied to the images. 

Meanwhile, subsampled corrected images were generated. According to Equation (2), the sizes of the 

subsampled images were close to and less than 1,400 × 1,400 pixels. The corrected PAN/HR image 

was then used as the reference image and the corrected MUX image was used as the input image for 

registration. The information contained in the corrected images is described in Table 2. 

Table 2. Images after geometric correction. 

Dataset ID GSD (m) 
Reference Image Input Image 

Sensor Size Sensor Size 

1 5.0 PAN 15,119 × 14,318 MUX 15,136 × 14,505 

2 5.0 PAN 14,534 × 13,882 MUX 14,528 × 13,926 

3 2.5 HR 27,466 × 29,645 MUX 28,811 × 27,318 

To clarify the necessity of image coarse matching before precise matching, a number of checkpoints 

evenly distributed on the images were manually measured, and the coordinate differences between the 

input and reference images were analyzed. Generally, corresponding points can be determined by 

using the geographic information of the images. Therefore, we firstly obtained the geographic 

coordinates of the checkpoints, which are (Xref, Yref) and (Xinput, Yinput), and then calculated the 

differences ∆xgeo = |Xref − Xinput|/GSD and ∆ygeo = |Yref − Yinput|/GSD. The comparative results of the 

coordinates of checkpoints are shown in Figure 3 and Table 3. ∆xgeo and ∆ygeo are extremely high in all 

three datasets. Meanwhile, discrepancies exist between the values of different checkpoints. Camera 

distortion and platform instability are mainly responsible for the differences. Although indoor 

calibration for the cameras of ZY-1-02C was conducted, the in-orbit calibration was not done before 

the experiment. Under such conditions, a significantly large searching window has to be set if ABM is 

directly performed on the corrected ZY-1-02C images. However, this process results in considerably 

lower reliability of match results and more computing time. 
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Figure 3. Coordinate difference between observed values of checkpoints. For  

(a,b) Datasets 1 and 2, 16 pairs of checkpoints are measured; and for (c) Dataset 3, the 

scale of the image is larger and 36 pairs of checkpoints are measured.  

(a) (b) 

(c) 

Table 3. Statistics of coordinate differences between corresponding checkpoints. 

Coordinate Difference Minimum (pixel) Maximum (pixel) Mean (pixel) 

Dataset 1 
∆xgeo 195.34 255.67 226.36 

∆ygeo 343.17 502.30 427.01 

Dataset 2 
∆xgeo 303.42 307.53 304.89 

∆ygeo 882.04 927.03 906.54 

Dataset 3 
∆xgeo 235.05 255.15 242.09 

∆ygeo 115.35 167.09 137.10 

3.2. Determining Global Affine Parameters 

According to the proposed strategy, SIFT matching was conducted on the subsampled images, and 

a rough estimation of global affine transformation was made based on the matching results. Figure 4 

shows the results of SIFT matching. The SIFT parameters used are the recommended values in  

the study conducted by Lowe [17]. The number of matching points in each dataset is sufficient to 

determine the global affine parameters. The coordinate differences after affine transformation can be 

calculated using the determined parameters: assuming that the coordinate of a point on the input image 
is ൫ݔ௨௧,  ௨௧൯, according to affine transformation, the estimated value of the corresponding pointݕ
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on the reference image can be computed as ൫ݔതതതതതത,  തതതതതത൯. The difference between the estimated andݕ

observed values can then be calculated as Δݔ = หݔ − തതതതതതหݔ  and Δݕ = หݕ − തതതതതതหݕ . 
Figure 5 shows the coordinate differences of the three datasets. It can be seen that, although more 

corresponding points are obtained in Dataset 1, the coordinate differences between the estimated and 

observed values of checkpoints are greater than those in Datasets 2 and 3. We believe that this condition 

is caused by the large topographic variations in the area of Dataset 1. The statistics in Table 4 reflect that 

the coordinate differences along the x-axis and y-axis directions are both controlled within a certain 

range. Even the maximum value is less than 22 pixels, which indicates that the searching range for the 

corresponding points can be significantly reduced with the results of coarse matching. 

Figure 4. Results of SIFT matching on subsampled images. Blue crosses indicate estimated 

points and red crosses indicate excluded points. (a) Dataset 1. 1,941 pairs of corresponding 

points were matched, of which 41 pairs were false matches. (b) Dataset 2. 163 pairs of 

corresponding points were matched, of which 22 pairs were false matches. (c) Dataset 3. 308 

pairs of corresponding points were matched, of which 20 pairs were false matches. 

 
(a) 

 
(b)
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Figure 4. Cont. 

 
(c) 

Figure 5. Coordinate differences between estimated and observed values. (a) Dataset 1.  

(b) Dataset 2. (c) Dataset 3. 

(a) (b) 

(c)
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Table 4. Statistics of coordinate differences between estimated and observed values. 

Coordinate Difference Minimum (pixel) Maximum (pixel) Mean (pixel) 

Dataset 1 
∆xaffine 5.10 21.24 14.62 

∆yaffine 0.76 6.34 3.68 

Dataset 2 
∆xaffine 0.08 4.23 2.27 

∆yaffine 0.03 6.74 1.73 

Dataset 3 
∆xaffine 0.64 21.03 9.91 

∆yaffine 0.35 13.56 4.54 

3.3. Acquisition of a Large Number of Evenly Distributed Corresponding Points 

With the results of coarse matching, a large number of evenly distributed corresponding points can 

be acquired using the NCC-based matching method, and sub-pixel level matching accuracy can be 

achieved based on LSM. Figure 6 presents the results of precise matching. The grid size used in  

our approach to extract Harris feature points was 150 × 150 pixels, the template window size is  

13 × 13 pixels, the searching window size is 51 × 51 pixels, and the threshold of correlation coefficient 

is 0.85. As shown in the figure, sufficient corresponding points can be obtained for all three datasets, 

even though in Dataset 3, the HR image resolution is over four times that of the MUX image. The 

density of corresponding points of Dataset 3 is evidently lower than that of the other two. Verification 

shows that a significant difference in resolution exists between the HR and MUX images, which 

hinders a number of feature points generated in the MUX image by the Harris detector from matching 

a point as image details are more abundant in the HR image.  

Figure 6. Results of precise matching. Only correct matches are indicated on the images.  

(a) Dataset 1. A total of 6,456 Harris feature points were extracted and 4,945 pairs of points 

were successfully matched, of which 52 pairs were excluded as false matches. (b) Dataset 2. A 

total of 5,977 Harris feature points were extracted and 3,467 pairs of points were successfully 

matched, of which 117 pairs were excluded as false matches. (c) Dataset 3. A total of 20,431 

Harris feature points were extracted and 7,224 pairs of points were successfully matched, of 

which 1,348 pairs were excluded as false matches. 

 
(a)
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Figure 6. Cont. 

 
(b) 

 
(c) 

3.4. Results of Image Registration 

Image registration was conducted by resampling the input image using local affine transformation 

based on TIN. In ASDPS, the images after registration are supposed to be fused by IHS algorithm [48], 

and the fused images can reflect the effect of registration adequately. The results of image registration 

and fusion are shown in Figures 7–9. 

3.5. Efficiency and Accuracy Assessment 

All the algorithms mentioned in this paper were implemented using C++ language. To verify the 

efficiency of the proposed method, a desktop computer with Microsoft Windows 7 operating system 

was adopted for the experiments, and the main hardware environment consisted of a quad-core CPU 

with a speed of 3.20 GHz and 4 GB memory. The statistics show that three datasets respectively 
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consumed 68.2 s, 83.2 s, and 561.8 s in the registration, which completely meet the time requirements 

of the commercial operation of ASDPS. 

Figure 7. Registration and fusion results of Dataset 1. (a) provides an overall view of fused 

images, (b) shows the swipe effect of registered images in the first cyan rectangular area, 

(c) shows the fusion result, (d,e) show the result in the second rectangular area. 

 
Figure 8. Registration and fusion results of Dataset 2. (a) provides an overall view of fused 

images, (b) shows the swipe effect of registered images in the first cyan rectangular area, 

(c) shows the fusion result, (d,e) show the result in the second rectangular area. 
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Figure 9. Registration and fusion results of Dataset 3. (a) provides an overall view of fused 

images, (b) shows the swipe effect of registered images in the first cyan rectangular area, 

(c) shows the fusion result, (d,e) show the result in the second rectangular area. 

 

The comparative experiments were conducted by using ENVI 5.0. Similar to our approach, Förstner 

operator is chosen to extract feature points, and matching method of cross correlation is selected to 

obtain corresponding points. In ENVI, at least three pairs of seed tie points must be measured 

manually before the automatic generation of matching points, and the false matches should also be 

removed from matching points by human intervention. 

For each set of data, registration tests based on three methods provided in ENVI were conducted, 

including affine transformation, quadratic polynomial, and triangulation. The registration and fusion 

results are shown in Figures 10–12. Misalignment evidently exists between the registered images, 

particularly those obtained through the affine transformation and quadratic polynomial methods, which 

directly resulted in the “edge phenomenon” [15] in the fused images. 

Figure 10. Registration and fusion results of Dataset 1 using ENVI methods. (a) shows the 

swipe effect of registered images through affine transformation method, (b) shows the 

fusion results. (c,d) show the result through quadratic polynomial method, (e,f) show the 

result through triangulation method. 
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Figure 11. Registration and fusion results of Dataset 2 using ENVI methods. (a) shows the 

swipe effect of registered images through affine transformation method, (b) shows the 

fusion results. (c,d) show the result through quadratic polynomial method, (e,f) show the 

result through triangulation method. 

 

Figure 12. Registration and fusion results of Dataset 3 using methods of ENVI.  

(a) shows the swipe effect of registered images through affine transformation method,  

(b) shows the fusion results. (c,d) show the result through quadratic polynomial method, 

(e,f) show the result through triangulation method. 

 

As our method is fully automatic, the efficiency is significantly higher than the methods of ENVI. 

To examine the registration accuracy, RMSE of the registered images by different methods were 

compared, which is calculated by 50 pairs of checkpoints. More methods of accuracy assessment can 

be found in Reference [49]. 

As shown in Table 5 and Figure 13, we compared the registration accuracy between methods in 

ENVI and our method. It can be seen that: first, the accuracy of our method reaches sub-pixel level,  

the overall precision of ENVI is lower than that of our method mainly because numerous evenly 

distributed corresponding points for registration cannot be obtained by the ENVI methods; then, it 

could be noticed that the accuracy of Dataset 1 is lower than others, which may be caused by the 

dramatic changes in local topography. We also found that the local methods, including ours and the 

triangulation method in ENVI, have significantly higher precision than global methods based on affine 

and quadratic polynomial transformation. This phenomenon indicates that complex distortion exists in 

geometrically corrected images of ZY-1-02C, and that the influence of image distortion can be 

properly addressed only with local transformation. 
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Table 5. Results of registration accuracy. 

Method 
RMSE (pixel) 

Dataset 1 Dataset 2 Dataset 3 

ENVI 

Affine 12.59 2.07 5.95 

Quadratic Polynomial 9.51 1.75 5.26 

Triangulation 2.61 1.12 1.73 

Our method 0.37 0.43 0.66 

Figure 13. Comparison of registration accuracy. 

 

4. Discussion 

An AIR method with high precision and efficiency applied to fusion of ZY-1-02C imagery is 

proposed in this paper. A significant characteristic of the proposed method is the successful 

combination of the benefits from SIFT matching and NCC-based matching. As ASDPS is a 

commercial operation system with minimal human intervention, the proposed approach is a fully 

automatic procedure. 

4.1. About the Coarse-to-Fine Registration 

Our related studies have two representative approaches to realize a coarse-to-fine registration. One 

is to perform coarse matching on full-size images by means of FBM, such as SIFT or SURF, and 

perform precise matching on coarsely registered images by means of ABM [8,16]. This approach is 

feasible for regular-sized (less than 2,000 × 2,000 pixels) images. However, using FBM directly on the 

extremely large images processed in this article may consume excessive memory. Moreover, the 

matching results cannot be obtained through the use of an ordinary computer because the needed 

memory exceeds that of the computer hardware. The other approach only uses ABM and performs a 

progressive image matching based on an image pyramid, thereby reducing the time consumed for 

searching corresponding points [4,15]. However, constructing a multi-level image pyramid based on 

complex subsampling method (e.g., wavelet pyramid) for very large images reduces efficiency. When 

the difference in positioning accuracy between images is very significant, matching results obtained by 

ABM are not as reliable as those obtained by FBM. 
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To resolve the abovementioned issues, the corrected images were subsampled only once with a 

simple interval sampling method, and coarse matching based on SIFT was performed on the 

subsampled images. Relatively constant and suitable subsampled image sizes can be obtained with 

Equation (2). Thus, coarse matching can be conducted very efficiently, and the amount of memory 

consumed becomes acceptable. The overall workflow of the proposed matching strategy was 

dramatically simplified in comparison with methods based on image pyramids. 

The error elimination applied in this article differs from the approaches reported in most studies. 

Traditional error elimination is mostly based on global estimation. The false matches or outliers are 

excluded by estimation based on least squares [8,9,28] or RANSAC [3,16,19,24,29]. However, 

complex distortion exists between images in our experiments, and, thus, a simple mathematical model 

cannot be directly used to describe the global transformation. In our approach, considering that the 

influences of distortions can be minimized when the judging area is reduced, we constructed a TIN 

structure; consequently, the false matches can be eliminated effectively by local affine estimation. 

The main purpose of this article is to obtain fused ZY-1-02C images in spite of significant 

difference in positioning accuracy among images captured from different sensors. Our method can also 

be applied to similar problems in satellite data sources. However, the proposed method also has 

limitations. First, geometric correction with equivalent GSD was adopted before registration. The 

correction requires RPC parameters for each scene of images. Thus, our method cannot be directly 

applied to images with rotation and scale differences without RPC parameters. Moreover, using a 

coarse-to-fine strategy to achieve registration is unnecessary for satellite images with very small 

difference in positioning accuracy; NCC-based matching can be directly performed, and the 

corresponding points can be easily searched on the basis of the geographic information of the images. 

4.2. Accuracies, Errors, and Uncertainties 

In the experiments, 50 evenly distributed point pairs were manually selected for each dataset to 

assess the registration accuracy. The sub-pixel level accuracies were achieved for all the datasets. 

Comparative analysis revealed that our method is better than methods in ENVI. 

The registration error in this article is mainly produced by three factors. First, the error may be 

generated in image matching. Theoretically, LSM can achieve sub-pixel level precision; however, the 

accuracy of individual point pairs may remain low because of different influences such as noises. 

Second, the error may be caused by local affine estimation. In most cases, affine transformation based 

on TIN structure can sufficiently estimate the local-image distortion. However, in image areas where 

the distribution of matching points is relatively sparse, some triangle may cross a larger range of image 

than others would. The estimation based on affine may be insufficient under this condition. Third, the 

error may be caused by image resampling. Bilinear interpolation adopted in our approach may also 

produce errors. 

In the proposed method, the registration accuracy is significantly determined by the results of 

precise matching. Parameters such as the size of the template and searching window and the threshold 

of correlation coefficient are determinants of the matching results. In our experiments, the searching 

window size (51 × 51 pixels) is determined according to the coarse matching results, and the template 

window size (13 × 13 pixels) and the correlation coefficient threshold (0.85) are set from experience. 
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Whether there exists any parameter that could yield better results remains uncertain. Moreover, the 

maximum resolution discrepancy in our test datasets is about four times. We are also uncertain if the 

proposed approach can process images with higher differences in resolution. 

5. Conclusions 

Significant difference in positioning accuracy exists among images captured by different sensors of 

ZY-1-02C. A coarse-to-fine matching was applied to register images under this situation. Unlike  

other related works, instead of performing coarse matching directly on the full-size images or using a 

multi-level image pyramid to implement the coarse-to-fine matching, coarse matching based on scale 

invariant feature transform (SIFT) was performed for the subsampled images and a rough global 

estimation was made with the matching results. On the basis of the global estimation results, precise 

matching was conducted by means of normalized cross correlation and least squares matching. After 

eliminating the false matches through a local estimation by triangulated irregular network structure, 

image resampling was implemented based on local affine transformation to achieve registration. 

The proposed method can achieve highly precise registration even when the sizes of the processed 

images are extremely large (maximum of 27,466 × 29,645 pixels). The experiments show that three 

test datasets consumed 68.2 s, 83.2 s, and 561.8 s in the registration with the accuracies of 0.37 pixels,  

0.43 pixels, and 0.66 pixels, respectively. These findings suggest that our method is better than 

methods in ENVI. The accuracy and efficiency can fully meet application requirements of ZY-1-02C. 

Our method has been successfully applied at the China Center for Resources Satellite Data and 

Application, and the satellite data can be processed efficiently in a parallel computing environment. 

However, it is important to mention that some further improvements are required. The adopted 

SIFT-matching approach can be replaced by a more efficient feature-based matching algorithm, such 

as speeded up robust features or Gradient location-orientation histogram [22]. Equivalent results can 

be achieved by these algorithms, which can reduce computation intensity. Meanwhile, during the 

process of geometric correction and image resampling, the gray value of the multispectral image was 

calculated twice with bilinear interpolation, which might result in a deviation from the gray value of 

the original image. Future studies aim to focus on solving the aforementioned problems. 
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