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Abstract: In recent times, the use of Unmanned Aerial Vehicles (UAVs) as tools for 

environmental remote sensing has become more commonplace. Compared to traditional 

airborne remote sensing, UAVs can provide finer spatial resolution data (up to 1 cm/pixel) 

and higher temporal resolution data. For the purposes of vegetation monitoring, the use of 

multiple sensors such as near infrared and thermal infrared cameras are of benefit. 

Collecting data with multiple sensors, however, requires an accurate spatial co-registration 

of the various UAV image datasets. In this study, we used an Oktokopter UAV to 

investigate the physiological state of Antarctic moss ecosystems using three sensors: (i) a 

visible camera (1 cm/pixel), (ii) a 6 band multispectral camera (3 cm/pixel), and (iii) a 

thermal infrared camera (10 cm/pixel). Imagery from each sensor was geo-referenced and 

mosaicked with a combination of commercially available software and our own algorithms 

based on the Scale Invariant Feature Transform (SIFT). The validation of the mosaic’s 

spatial co-registration revealed a mean root mean squared error (RMSE) of 1.78 pixels. A 

thematic map of moss health, derived from the multispectral mosaic using a Modified 

Triangular Vegetation Index (MTVI2), and an indicative map of moss surface temperature 

were then combined to demonstrate sufficient accuracy of our co-registration methodology 

for UAV-based monitoring of Antarctic moss beds. 
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1. Introduction 

In recent times, the increased development and availability of micro and small-sized Unmanned 

Aerial Vehicle (UAV) platforms in combination with lightweight and low-cost Inertial Measurement 

Units (IMUs), GPS receivers, and scientific imaging sensors has driven a proliferation in the civilian 

use of UAVs. Small fixed wings, helicopters, and multi-rotor UAVs with a total weight of 5 kg or less 

(typically known as Micro-UAVs or MUAVs) are increasingly being used for scientific purposes, in 

areas such as photogrammetry and environmental remote sensing [1,2]. The use of UAVs for 

vegetation monitoring has been demonstrated by Dunford et al. [3], who mapped riparian forests, and 

by Rango et al. [4], who mapped rangelands in New Mexico. UAVs have also been proven to be useful 

for mapping agricultural crops, for example, mapping of vineyards [5], monitoring of wheat trials [6], 

and quantitative remote sensing of orchards and vineyards [7,8]. However, research on the use of 

multiple sensors, which are expanding the remote sensing capabilities of UAV platforms, is rather 

limited. The use of multiple sensors presents unique challenges related, in particular, to the  

co-registration of the different image sensors. 

UAVs offer particular advantages over other remote sensing platforms, especially if a fine spatial 

resolution (<10 cm/pixel) is required. In terms of agricultural crop monitoring or mapping of natural 

vegetation such as Antarctic moss, satellite imagery acquired at very high spatial resolution (e.g., pixel 

size ~0.5 m provided by sensors on-board platforms such as WorldView or GeoEye), often provide 

insufficient detail to monitor vegetation structure [9] and to extract detailed biophysical information, 

such as leaf size [10] Although imaging systems carried by manned airborne platforms can provide 

high spatial and temporal resolution imagery, they are limited by high operational complexity and 

costs, particulary in Antarctica and polar regions. UAVs can offer a cost-effective alternative to 

traditional airborne remote sensing, but it is essential that techniques used to process the large amount 

of high spatial resolution data collected by a UAV are accurate and efficient. 

Adequate spectral resolution is another key factor, particularly when monitoring vegetation, which 

exhibits great variability in magnitude of the near-infrared (NIR) reflectance. The lack of NIR 

reflectance information imposes limitations on vegetation characterization and thus a multispectral 

sensor that can capture data over several, preferably narrow, spectral bands is required [11]. However, 

few lightweight multi-/hyper-spectral sensors suitable for UAV operations are currently available [10], 

which limits research progress in this area. A typical approach to acquire NIR data from a small UAV 

is to modify a conventional digital camera by removing the infrared filter. As demonstrated by several 

studies [12–15], a consumer-modified camera can collect useful Color Infrared (CIR) imagery. 

However, for detailed analysis of vegetation structural and biochemical parameters, narrow band 

multi- or hyper-spectral sensors are required. Kelcey and Lucieer [16] described a correction workflow 

for reducing noise and optical distortion of the 6-band Tetracam multispectral sensor UAV image data, 

also used in this study. Berni et al. [8] mapped olive orchards with a radiometrically calibrated 

multispectral sensor. They used images corrected for atmospheric effects to retrieve per-pixel leaf 
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chlorophyll content and Leaf Area Index (LAI). Laliberte et al. [11] classified land cover types from 

atmospherically corrected multispectral imagery of rangelands in New Mexico using Object Based 

Image Analysis (OBIA) techniques. More recently, Zarco-Tejada et al. [7] used calibrated and fully 

corrected multispectral imagery to estimate content of leaf carotenoid pigments of Spanish vineyards. 

Satellite thermal imaging is currently limited to low spatial resolutions, for example 90 m per pixel 

from the TERRA-ASTER instrument [17], a high spatial resolution assessment of vegetation moisture 

can be obtained from Thermal Infrared (TIR) imagery acquired from a UAV platform [14]. Uncooled 

TIR sensors, based on microbolometer technology, are generally used on MUAVs, because they are 

smaller and have lower power consumption [18]. Unfortunately, uncooled sensors are less sensitive 

and have a lower spectral resolution than their cooled counterparts [18]. They also require a specific 

spectral calibration and geometric characterization to retrieve the “true” ground surface temperature [8]. 

Despite these challenges, several studies have successfully used uncooled TIR sensors to map plant 

surface temperature for the purposes of crop monitoring [8,18,19]. 

As demonstrated by many studies cited above, there is a significant potential for UAV-based remote 

sensing of vegetation in the visible, near infrared, and thermal infrared region of the electromagnetic 

spectrum. A typical limitation in using current MUAVs for this purpose is, however, the ability to 

carry only one sensor at a time, due to the current lack of lightweight sensors, in particular sensors 

capable of measuring reflectance in the NIR. Imagery of visible, NIR and TIR wavelengths are, 

therefore, collected on separate flights [12], which results in a requirement to spatially co-register the 

separate datasets. Berni et al. [8], Bryson et al. [15] and Bendig et al. [19] conducted their research 

using various multispectral and TIR sensors, but they did not discuss co-registration accuracy of their 

datasets. Although, Nagai et al. [20] developed a method to co-register laser scanner data with data 

from visible and NIR cameras, most other UAV studies have focused on sensor calibration and 

correction [8], correlation of multi-sensor data with biophysical properties of the vegetation [7], or on 

object based classification of vegetation types [21]. Therefore, the objective of this study is to present a 

workflow for spatial co-registration of visible, multispectral, and TIR imagery acquired at different 

ultra-high spatial resolutions during separate UAV flights. We describe technical specifications of the 

sensors used in this study, their image recording systems, and the multiple-image georectification and 

co-registration workflows. 

To demonstrate the applicability and accuracy of our methodology we will present multi-sensor 

datasets collected over three moss study sites in Antarctica. Moss is the dominant form of vegetation in 

Antarctica, capable of preserving in their shoots up to a hundred-year long record of Antarctic climatic 

conditions [22]. Despite Antarctica’s sensitivity to climate change, there have only been few studies 

investigating the response of Antarctic vegetation to dynamic climatic conditions [23,24]. There is, 

therefore, a need for mapping methods allowing detailed inventory and subsequent spatial monitoring 

of the changes in these vulnerable ecosystems. These Antarctic moss beds are spatially highly 

fragmented and cover only small areas (<1 ha). It is, therefore, practically impossible to map their 

extent with even the highest spatial resolution satellite imagery currently available (0.5 m/pixel). 

Moreover, local logistical obstacles limit the acquisition of conventional aerial photography in 

Antarctica, which may not provide the required spatial resolution (<10 cm/pixel). UAVs are an ideal 

platform from which image data of moss beds can be collected with sufficient spatial detail [25]. 
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2. Materials and Methods 

2.1. Test Sites  

In Turner et al. [26] we introduced a technique to georeference and mosaic multiple visible images 

collected by a MUAV. In the present study we are using two additional datasets of thermal and 

multispectral images, to demonstrate our multi-sensor spatial co-registration methodology. Input data 

were collected at three study sites in the Windmill Islands region, Antarctica (near the Australian base, 

Casey), where some of the most well-developed continental Antarctic vegetation is located. 

The three study sites were named: Robinson Ridge, Red Shed, and Antarctic Specially Protected 

Area 135 (ASPA 135) (see Figure 1 for location overview). Robinson Ridge is located approximately 

10 km south of Casey station, the Red Shed site is beside a melt lake behind the main accommodation 

building at Casey, and ASPA135 lies approximately 500 m east of Casey. Further description of all 

three test sites can be found in Turner et al. [26] and in Lucieer et al. [25].  

Figure 1. Site location map for the three Antarctic test sites.  
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2.2. Platform 

Multi-rotor UAVs are becoming more commonplace and are frequently used for commercial and 

recreational aerial photography. For this study we used an eight rotor Mikrokopter Micro-UAV called 

an “Oktokopter” supplied by HiSystems (GmbH, www.mikrokopter.com, Germany) (see Figure 2). 

The Oktokopter had a payload capacity of around 1 kg, a flight duration of 5 min (with a typical 

payload), and was equipped with a gimballed camera mount (i.e., self leveled during flight based on 

onboard gyroscopes that measure the roll and pitch of the airframe), to which we individually fitted 

each of the three sensors. The Mikrokopter flight electronic systems can be used to automatically 

maintain level flight, control the altitude, log system data, and to fly the UAV through a series of 

predefined, three-dimensional waypoints. 

Figure 2. Oktokopter fitted with FLIR Photon 320 Thermal Infrared camera with Ethernet 

module mounted below. 

 

2.3. Visible Digital Camera 

To collect visible imagery we used a Canon 550D Digital Single Lens Reflex (DSLR) camera (15 

Megapixel, 5184 × 3456 pixels, with Canon EF-S 18-55 mm F/3.5-5.6 IS lens). The image capture rate 

was controlled by the UAV’s flight control board, which was programmed to emit a pulse at a desired 

frequency. The flight control board was connected to a custom-made cable that triggered the remote shutter 

release of the camera. The Canon camera was operated in shutter priority mode (a fast shutter speed was 

required to minimize motion blur), in which the desired shutter speed (typically 1/1250–1/1600 sec) was 

set before flight and the exposure was adjusted automatically by varying the camera’s aperture. Images 

were captured in RAW format and stored on the memory card in the camera for post-flight download. 

2.4. Thermal Infrared Sensor 

To collect TIR imagery we used a FLIR Photon 320 (FLIR Systems, Inc. the USA, www.flir.com) 

uncooled thermal sensor (see Figure 2). The Photon 320 had a 14 mm lens providing a 46° field of 

view and acquired image frames of 324 × 256 pixels as raw 14-bit Digital Numbers (DNs) at the rate 

of 9 Hz. Image frames from the camera were converted into ethernet data packets by the FLIR 

Ethernet module and this data was then stored on a Single Board Computer (SBC), a Gumstix Verdex 

Pro XM4-BT, equipped with netCF and console expansion cards. System time of the Gumstix SBC 

was set to GPS time prior to flight, so that the thermal data files could be synchronized with UAV GPS 
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log files. The 9 Hz data rate was too fast for the data buses of the Gumstix SBC and thus images could 

only be collected at a rate of around 1 Hz, which was fast enough for our purposes and retained 

sufficient image overlap on ground.  

After the flight, the raw image data was downloaded from the SBC memory card and processed 

with code written in the IDL/ENVI image-processing environment (Exelis Visual Information 

Solutions, Inc. USA, www.exelisvis.com) to extract the image frames from the captured data packets. 

Extracted images were stored as 16-bit ENVI single band files containing the original 14-bit raw DNs 

as collected by the TIR sensor. A set of JPEG quick look images were simultaneously generated 

allowing a visual check of image quality. As the DNs typically do not cover the full 14-bit dynamic 

range, a contrast stretch to the data had to be applied, so that subsequent image processing software 

was able to identify features within the images. To identify an appropriate stretch, we created a 

histogram of the DNs of all pixels in all images, chose an upper and lower threshold such that the full 

dynamic range of the scene was covered, and applied a linear stretch based on these minimum and 

maximum thresholds. The images were then stored as 16-bit TIFF files, keeping note of the thresholds 

used such that the pixel values could later be converted back to the original DNs. The DN-values in the 

thermal imagery represent at-sensor radiance. After mosaicking and co-registration the DN-values 

were converted to absolute temperature in °C based on an empirical line correction. Nineteen targets 

with similar emissivity (0.97 assumed for moss and dark rock) were marked with shiny aluminum 

disks. Due to the very low emissivity of shiny aluminum these targets were clearly visible in the 

thermal imagery. A temperature observation was collected with a thermal radiance gun (Digitech 

QM7226) in between two aluminum disks. A GPS coordinate was also recorded for these 

observations. Matching pixels were extracted from the thermal imagery and based on the matching 

reference temperatures a linear regression was calculated. With this empirical relationship we 

converted the whole thermal mosaic into absolute temperature, assuming a constant emissivity of 0.97 

(which is justifiable given our interest in the moss bed). 

2.5. Multispectral Sensor 

The multispectral sensor used in our study was a Tetracam (Tetracam, Inc. the USA) mini-MCA 

(Multiple Camera Array) with an array of six individual image channels. Each channel has its own 

Complementary Metal Oxide Semiconductor (CMOS) sensor that could acquire 10-bit image data at 

an image size of 1280 × 1024 pixels. It was possible to fit customized waveband pass filters to each 

lens, allowing the user to define the desirable spectral band configuration. The data sets collected for 

this study had 530, 550, 570, 670, 700 and 800 nm optical filters fitted, with a Full-Width at Half 

Maximum (FWHM) of 10 nm. 

The mini-MCA could be set to a “burst” mode in which it captured images continually from the 

time the shutter release was first pressed, we used the maximum rate of 0.5 Hz. Each of the six arrays 

stored the images in a proprietary raw format onto individual compact flash memory cards. After the 

flight the image data was downloaded from the cards resulting in six files for each camera exposure. 

As with the TIR data, we designed processing code in the IDL/ENVI environment to read the raw 

format files and to merge the layers into a single six band, 16-bit (to store the 10-bit data) ENVI image 

file format. The next stage was to correct mini-MCA imagery for sensor noise and other image 
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distortions. Detailed description of these corrections can be found in Kelcey and Lucieer [27]. In short, 

the following three corrections were applied: (i) noise reduction using dark current imagery, (ii) lens 

vignetting correction based on spatially dependent correction factors, and (iii) a Brown-Conrady model 

removed lens distortion [27]. 

Finally, the image bands had to be aligned, as the six mini-MCA camera lenses were spatially 

offset. Tetracam Inc. provides software and alignment equations to correct for these offsets, but similar 

to Laliberte et al. [11] we found this alignment correction inaccurate at our typical UAV flying 

heights. To improve the band misalignment, we developed our own technique based on detecting 

geometric features within the imagery with the Scale Invariant Feature Transform (SIFT) keypoint 

detector [28]. The alignment process considered the first spectral band (Band 1) of each image to be 

the master and aligned the other bands to it by matching key points between the bands. SIFT was run 

on each band of an image to create a set of key files and a key matching algorithm was then run 

between Band 1 and each of the other bands. Extracting the x, y locations of the matching features 

allowed us to create a control point file that aligned a given band with Band 1, i.e., there were five 

control point files for bands 2 to 6. The control points were applied to each band with a Delaunay 

triangulation combined with a nearest neighbor resampling in order to perform a non-linear local 

transformation for alignment with the first band. The band alignment was highly dependent on the 

distance between the camera and the imaged surface. Provided that this distance remained relatively 

constant (within ±5 m), the technique would create a set of alignment parameters applicable to the 

current dataset. Final inspection of the band alignment for objects with sharp edges in the images was 

found to be satisfactory. Moreover, the method had the added advantage of being fully automated.  

2.6. Mosaicking of Visible Imagery 

During a typical flight of our UAV the Canon camera collected around 200 images. It was therefore 

necessary to join the images into a single mosaic of the whole study area. The image mosaic also 

needed to be georeferenced, such that the imagery from the different sensors could be co-registered. 

There are various methods for mosaicking UAV imagery; e.g., Berni et al. [8], Bryson et al. [29], 

Laliberte et al. [30], Turner et al. [26], and Turner et al. [31]. Recently, new commercial software 

packages for automatically georectifing UAV imagery have become available (a review of some of 

these packages can be found in Turner et al. [31]). Based on our previous research results we selected 

Photoscan Professional by Agisoft (Agisoft LLC, Russia) to georectify and mosaic the visible 

UAV imagery. 

An overview of the Structure-from-Motion (SfM) workflow in Photoscan software can be found in 

Lucieer et al. [25]. Prior to processing, the images were geotagged with their approximate location as 

recorded by the UAV’s on-board navigation-grade GPS. The internal time of the camera was set to 

GPS time prior to flight to ensure that the images could be easily synchronized with the position data 

in the UAV GPS log file. The blurry images were then detected with an algorithm that calculates an 

image blur metric according to Crete et al. [32]. A more detailed description of this image processing stage 

can be found in Turner et al. [31]. In the final step images with excessive overlap are removed [31]. 

Once the set of images to be processed was finalized, they were imported into Photoscan, which 

then detected and matched thousands of features between the images. Using these matches it 
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performed a bundle adjustment to estimate the camera positions, orientations, and lens calibration 

parameters. Based on this information, the geometry of the scene (in the form of a 3D model) was 

created by applying a dense, multiview stereo reconstruction to the aligned images. Once the 3D 

geometry of the scene was constructed, a Digital Surface Model (DSM) and an orthophoto mosaic 

could be exported [25]. 

To improve the absolute spatial accuracy of the mosaics, we manually located Ground Control 

Points (GCPs) distributed within the imagery. The GCPs were 30 cm diameter metal disks with a 

bright orange rim that were laid out in the study area prior to flight and measured with Differential 

RTK GPS (DGPS) with a typical accuracy of 2 cm in the horizontal and 4 cm in the vertical direction 

(relative to a local coordinated benchmark). Similar to the large GCPs, between 20 and 45 smaller 

(10 cm diameter) orange metal disks were randomly laid out across the study area and also coordinated 

with a DGPS. These small GCPs were used later as check points to verify the accuracy of the 

georeferenced mosaics. 

Photoscan provided a simple interface to mark the location of a GCP on the 3D model and its 

location was then automatically marked on all the images that covered that part of the model. The user 

then needed to manually verify and, if necessary, adjust the location of the GCP in each image. 

Although this process was time-consuming, taking from 2 to 4 h to mark about 20 GCPs in a dataset of 

200 photographs, the significant improvement in spatial accuracy justified the work required. 

2.7. Mosaicking of Thermal Infrared Images 

Similarly to the visible camera, the TIR sensor could collect hundreds of images in a single flight 

and it also required selection of the best images from the acquired dataset. The response time of the 

microbolometer in the FLIR Photon 320 is approximately 10 milliseconds (see www.flir.com), giving 

it an effective shutter speed of 1/100th of a second, resulting in motion blur in around 40% of the 

images. Blurriness was assessed with the algorithm described in Section 2.6 and images with a blur 

metric greater than 0.3 were automatically removed from the dataset (see Figure 3). TIR images were 

subsequently processed with Photoscan in a manner similar to the visible imagery. 

Figure 3. Comparison of two consecutive TIR frames; (a) blurry image with blur index of 

0.32, and (b) sharp image with blur index of 0.22. 

 
(a) (b) 
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Photoscan was provided with initial estimations of camera position based on the time stamp of the 

image and the position as recorded in the on-board GPS log file. The TIR imagery was stored as a 

single band 16-bit file. Features in the images were enhanced with a linear contrast stretch, which was 

based on the minimum and maximum temperature DNs detected in the full scene (see Section 2.4). 

Once Photoscan had aligned the images, the GCPs needed to be identified within the imagery to allow 

accurate co-registration. It should be noted that only large aluminum trays (30 cm diameter) with an 

unpainted central part (see Figure 4b) were detectable in the lower resolution TIR imagery 

(10 cm/pixel for a typical UAV flight). The metallic aluminum surface of the trays with a low 

emissivity appeared as very cold (dark) pixels, which made the GCPs easy to visually identify. After 

the GCPs were marked, the scene’s geometry was constructed, and an orthophoto was generated 

following the same approach as described in Section 2.6. 

2.8. Mosaicking of Multispectral Images  

Unlike the TIR and the visible imagery it was not possible to process the multispectral imagery with 

Photoscan. Although multi-band 16-bit images could be imported into Photoscan, it was not feasible to 

reliably align the images of different spectral bands, no matter what parameters were selected. The 

CMOS sensors in the mini-MCA have a rolling shutter, which built up each image as a scan from top 

to bottom rather than a whole-frame snapshot as in the case of a global shutter. Given the movements 

of the sensor during image acquisition the rolling shutter leads to geometric distortions in each image, 

which were unpredictable. The SfM algorithm in Photoscan expects images to be acquired by a global 

shutter. Thus, the distorted image geometry of the mini-MCA leads to very poor and false image 

matching results. Laliberte et al. [33] developed a method for rectifying, georeferencing, and 

mosaicking UAV visible imagery by matching the individual images with a pre-existing orthophoto of 

the study area using image correlation techniques. This method served as the basis for our approach, 

however, we have implemented the SIFT algorithm as we did with the mini-MCA band alignment 

workflow (see Section 2.5). Instead of using a low-resolution orthophoto we matched each mini-MCA 

frame to the ultra-high spatial resolution visible orthophotomap (Section 2.6). This allowed SIFT to select 

thousands of features per image to be used as control points, providing a denser transformation matrix.  

The mini-MCA collected a large number of overlapping images during flight. High overlap  

(80%–90%) is essential for the SfM algorithm, but for the mini-MCA imagery we only needed overlap 

of about 25%–30% to form a continuous mosaic. Therefore, the first processing step of the 

multispectral mosaicking workflow was determining an optimal subset of input images. The position 

of the airframe at the time of each image exposure, logged by the on-board GPS unit, is used to select 

the mini-MCA images based on their spatial distribution. Through process optimization we determined 

that a threshold of 7 m between the image positions achieved a mosaic with full coverage, but minimal 

seam lines. This selection reduced the number of images in a test dataset from 142 to 41, greatly 

reducing the number of seam lines within the final mosaic, whilst maintaining sufficient image overlap 

of around 25% (as determined via experimentation across all datasets). The blurriness of mini-MCA 

images was verified in the same manner as the other two datasets. However, the blur factor of the 

mini-MCA images was, in general, so low that no images were excluded from the datasets. 
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Before we matched features in a mini-MCA image, we had to identify all the features in the visible 

orthophoto. To overcome limitations of the conventional SIFT algorithm implementation that usually 

runs only on low-resolution images, we implemented a SIFT distribution called “libsiftfast” [34], 

which uses multiple CPU cores and can process large images. As result, SIFT was able to detect 

3,643,780 features in one of our 8690 × 17,215 pixels large visible mosaics. Since the SIFT algorithm 

runs per single image band, the six mini-MCA spectral bands supply more geometrical features for the 

matching process than the standard RGB imagery. From the millions of matches, there are often many 

false matches, which were removed with a Random Sample Consensus (RANSAC) algorithm 

developed by Fischler and Bolles [35]. In the application of the RANSAC algorithm we made the 

assumption that we were working with a projective model and that the epipolar constraints would hold 

despite the possibility of rolling shutter distortions within the imagery. To ensure these distortions did 

not affect the results we applied a low distance threshold (0.01 in normalized space), which reduced 

the number of resultant matches, whilst ensuring there were no false positives. We did not require a 

large number of matches as the remaining feature matches (post RANSAC) were not going to be used 

in an SfM context but were instead used to create control point files. 

Using the feature matches, and the feature key files containing the locations of each feature in each 

image, we automatically created a series of dense GCP files for each mini-MCA image. This was 

facilitated by matching the known x, y coordinates of mini-MCA image features with their 

corresponding x, y coordinates in the RGB orthophoto, which were converted to easting and northing 

coordinates as the RGB mosaic was already georeferenced. The GCPs were then used in a Delaunay 

triangulation, which transformed a mini-MCA image using a nearest neighbor resampling algorithm 

into the same coordinate system as the visible and TIR mosaics. The pixel size of the resulting 

georeferenced image was set based on the flying height during the image acquisition (3 cm/pixel for 

our test datasets). Finally, all the images were merged into a georeferenced mosaic with the IDL/ENVI 

mosaicking routine using a feathering of the seam lines to smooth the original image edges.  

2.9. Calculating MTVI2 from Multispectral Data 

Raw images of the mini-MCA, recorded as 10-bit digital counts with maximal signal strength equal 

to 1024 DNs, were transformed into the physically meaningful relative reflectance by applying an 

empirical line correction [36]. Three spectrally flat calibration panels (40 × 40 cm) of white, grey, and 

black color with reflectance intensities ranging from 2 up to 80% were placed within the UAV flight 

path and captured in the mini-MCA imagery. The target’s actual DN values (approx. 130–140 pixels 

per panel) were extracted from the airborne image and empirically related to their reflectance functions 

measured with a spectrally calibrated ASD HandHeld2 (HH2) spectroradiometer (Analytical Spectral 

Devices, PANalytical Boulder USA) on the ground immediately after completion of the mini-MCA 

acquisition. The absolute reflectance of the calibration targets measured with the ASD-HH2 between 

325 and 1075 nm (751 spectral bands of 1 nm bandwidth) were spectrally convolved to resemble the 

six broader spectral bands of the mini-MCA instrument with FWHM of 10 nm. The empirical line 

correction coefficients established between the convoluted ASD-HH2 and the six acquired mini-MCA 

spectral bands were then applied per pixel to the mini-MCA image mosaic to remove optical 
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attenuation caused by scattering and absorption processes of atmospheric gases and aerosols between the 

sensor and observed surfaces and to standardize the multispectral signal as the relative reflectance function. 

An efficient way of detecting photosynthetically active vegetation in multispectral imagery and 

assessing its actual physiological state is to transform the relative reflectance function into an optical 

vegetation index. The Modified Triangular Vegetation Index 2 (MTVI2) was originally introduced by 

Haboudane et al. [37] to estimate green biomass density of spatially homogeneous agricultural crops. 

It is computed as: 2ܫܸܶܯ = ଼ߩ)1.2)1.5	 − (ହହߩ − ߩ)2.5 − ଼ߩට(2	ହହ))ߩ + 1)ଶ − ൫6଼ߩ − 5ඥߩ൯ − 0.5 
(1)

where ߩହହ, ߩ and ଼ߩ are the reflectance values at 550, 670 and 800 nm. As a successor of the 

Triangular Vegetation Index [38], MTVI2 integrates an area delineated by the reflectance at 550, 670 

and 800 nm, which is influenced by the changes in leaf and canopy structure, normalized by a soil 

adjustment factor that reduces the contamination effect of the bare soil background.  

Being stressed by insufficient water supply and high photosynthetically active and ultraviolet 

irradiation, Antarctic moss turf can, within few days, change in compactness and pigmentation. Over 

days to weeks it changes from a healthy, green open-leaved form to a stress-resisting denser, yellow-brown 

or red closed packed turf. If dry periods persist over longer periods (months to years) the turf will lose 

photosynthetic pigments, forming grey-black mounds of moribund (dormant/dead) moss. Since these 

physiological stress reactions systematically alter the moss reflectance at the wavelengths of 550, 670 

and 800 nm, we could apply MTVI2 to separate photosynthetically active moss (health > 60%) from 

moribund moss, lichens, and the rocky surroundings. 

For assessment of the ability of the MTVI2 index to determine moss health, the Robinson Ridge 

MTVI2 results were compared with field samples from the 2012 field season collected as part of a long 

term monitoring system for Australian State of the Environment Indicator 72 (SoE 72). Established in 

2003, this monitoring system comprises a set of 30 permanent quadrat locations, across 10 transects 

spanning a water gradient across three community types: from the wettest community dominated by 

mosses (Bryophyte community) to the driest community dominated by moribund moss encrusted with 

lichens (Lichen community), with a Transitional community between [39]. For each quadrat, the 

percentage of live bryophytes was evaluated from 9 small samples, each containing approximately 20–50 

moss shoots, at 9 intersections within a 20 × 20 cm grid. For a more detailed description of moss 

ground monitoring see Wasley et al. [39] and Lucieer et al. [25] and for a description of spectral 

properites of Antarctic moss see Lovelock and Robinson [40]. To replicate the ground based sampling 

scheme, a grid of 3 × 3 pixels was extracted from the MTVI2 map and averaged per sampled quadrat. 

2.10. Accuracy Assessment 

To achieve the best possible co-registration of the three different datasets, it was essential that each 

of the mosaics was georeferenced with the highest spatial accuracy possible. For the RGB 

orthomosaics we, therefore, measured the positional error of all small orange disk check points that 

were measured with DGPS, but not used by Photoscan to georeference the mosaics. These disks were, 

unfortunately, too small to be visible in the TIR imagery and to be accurately identified in the mini-MCA 
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imagery. For these two datasets the larger GCPs were used as check points. The Root Mean Square Error 

(RMSE) was computed between check point coordinates measured in the field with DGPS and coordinates 

retrieved from georeferenced image mosaics to assess the overall spatial accuracy of each dataset. 

3. Results 

3.1. Image Mosaics 

The three tests sites were flown with our manually navigated Micro-UAV on three separate days. 

Manual navigation was required due to failure of autopilot navigation, which was caused by the 

extreme magnetic declination of Eastern Antarctica (~100° West). A basic description of the acquired 

datasets is provided in Table 1. Flights were all carried out in good solar illumination conditions, light 

winds, and at an altitude of approximately 50 m Above Ground Level (AGL). Despite flying at the 

same height AGL during each UAV mission, the resulting image mosaics have different spatial extents 

and different spatial resolutions caused by differences in the technical parameters of each sensor. 

Table 1. Details of acquired image datasets collected at each test site. 

Site Type 
Date and Time Collected 

(Local: UTC+10) 

Number of  

Images Collected 
Spatial Resolution GCPs 

Robinson Ridge RGB 24-FEB-2011, 2:45 pm 200 1 cm/pixel 62 

Red Shed RGB 20-FEB-2011, 1:33 pm 240 1 cm/pixel 57 

ASPA 135 RGB 21-FEB-2011, 2:52 pm 256 1 cm/pixel 65 

Robinson Ridge mini-MCA 24-FEB-2011, 3:48 pm 148 3 cm/pixel 62 

Red Shed mini-MCA 20-FEB-2011, 3:00 pm 168 3 cm/pixel 57 

ASPA 135 mini-MCA 21-FEB-2011, 4:13 pm 158 3 cm/pixel 65 

Robinson Ridge TIR 24-FEB-2011, 5:40 pm 424 10 cm/pixel 62 

Red Shed TIR 20-FEB-2011, 3:42 pm 571 10 cm/pixel 57 

ASPA 135 TIR 21-FEB-2011, 5:20 pm 508 10 cm/pixel 65 

Applying the methods described in Section 2, we created georeferenced mosaics for each of the 

nine flights. An example of a visible mosaic from the Robinson Ridge site is shown in Figure 4a. 

Figure 4b illustrates the detail that can be seen in this RGB imagery with a pixel size of 1 cm. The 

same spatial subsets of the lower resolution thermal infrared mosaic (10 cm/pixel) and of the false 

colour multispectral mosaic (3 cm/pixel) are shown in Figure 4c,d, and finally Figure 4e gives an 

example of a typical spectral signature for the healthy moss. 

Using the methods described in Section 2.10, the spatial accuracy of each orthomosaic was 

measured and a summary of the spatial errors and RMSE is provided in Table 2. The RMSE ranges in 

general from 1 to 2.6 pixels, which means that all the mosaics exhibit a comparable level of spatial 

accuracy. The ASPA135 visible mosaic has the lowest RMSE, which can be attributed to the fact that 

it is a relatively small site with limited geomorphological variability, whereas the other two test sites 

are larger in spatial extent and have more diverse terrain morphology.  
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Figure 4. Robinson Ridge study site: (a) visible mosaic of entire area, (b) RGB image 

subset, (c) multispectral image subset, (d) thermal infrared image subset, and (e) typical 

multi-spectral reflectance function of a healthy Antarctic moss turf. 

 

Table 2. Spatial accuracy of orthomosaics for each sensor as measured against check points. 

Site Type 

Minimum 

Error 

(pixel/cm) 

Maximum 

Error 

(pixel/cm) 

Standard 

Deviation 

(pixel/cm) 

RMSE 

(pixel/cm) 

Number 

of Check 

Points 

Number 

of GCPs 

Used 

Robinson 

Ridge 

Visible 

(1 cm/pixel) 
0.72/0.72 4.65/4.65 1.15/1.15 2.63/2.63 25 12 

Red Shed 
Visible 

(1 cm/pixel) 
0.46/0.46 3.71/3/71 0.82/0.82 2.04/2.04 41 24 

ASPA 135 
Visible 

(1 cm/pixel) 
0.00/0.00 2.09/2.09 0.58/0.58 0.95/0.95 39 15 
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Table 2. Cont. 

Site Type Minimum 

Error 

(pixel/cm) 

Maximum 

Error 

(pixel/cm) 

Standard 

Deviation 

(pixel/cm) 

RMSE 

(pixel/cm) 

Number 

of Check 

Points 

Number 

of GCPs 

Used 

Robinson 

Ridge 

mini-MCA 

(3 cm/pixel) 
0.97/2.91 3.27/9.81 0.74/2.22 2.14/6.42 13 - 

Red Shed 
mini-MCA 

(3 cm/pixel) 
0.87/2.61 3.95/11.85 0.99/2.97 2.43/7.29 19 - 

ASPA 135 
mini-MCA 

(3 cm/pixel) 
0.98/2.94 3.54/10.62 0.63/1.89 1.87/5.61 12 - 

Robinson 

Ridge 

TIR 

(10 cm/pixel) 
0.84/8.4 3.84/38.4 0.84/8.4 1.83/18.3 11 14 

Red Shed 
TIR 

(10 cm/pixel) 
0.75/7.5 2.30/23.0 0.38/3.8 1.48/14.8 24 24 

ASPA 135 
TIR 

(10 cm/pixel) 
1.90/19.0 4.04/40.4 0.76/7.6 2.03/20.3 19 14 

3.2. Co-Registration Accuracy 

Large GCPs were used as cross-comparison check points for the co-registration accuracy 

assessment, since they were the only features clearly identifiable in all three datasets. The location of 

the comparison points in the visible mosaic was considered to be the reference position. The  

co-registration errors of these GCPs in the mini-MCA and TIR mosaics are summarized in Table 3. 

The RMSEs are generally around 2 pixels, which matches the absolute RMSE that was obtained for all 

the mosaics listed in Table 2. 

Table 3. Co-registration accuracy of mini-Multi Camera Array (mini-MCA) and Thermal 

Infrared (TIR) mosaics as compared to the visible mosaic. 

Site 

Mini-MCA Mosaic TIR Mosaic 
Number of  

Compare Points 
Standard Deviation  

(pixel/cm) 

RMSE  

(pixel/cm) 

Standard Deviation 

(pixel/cm) 

RMSE  

(pixel/cm) 

Robinson Ridge 0.71/2.13 1.88/5.64 0.81/8.1 1.66/16.6 10 

Red Shed 0.94/2.82 1.75/5.25 0.39/3.9 1.30/13.0 15 

ASPA 135 0.76/2.28 2.15/6.45 0.88/8.8 1.98/19.8 12 

3.3. Assessing Health of Antarctic Moss from Multisprectral Imagery 

To demonstrate sufficient spatial accuracy of these geocoded mosaics and the ability of the 

multispectral imagery to assess the actual health state of Antarctic mosses, we computed the MTVI2 

optical vegetation index from the mini-MCA imagery collected at the Robinson Ridge test site (see 

Section 2.9). The Robinson Ridge data was selected as the most suitable of the three available datasets, 

because it has the least snow cover, it was acquired under optimal light conditions (bright, but diffuse 

irradiation), and ground observations of actual moss health are available for this site. Since reflectance 

signatures of stressed mosses and agro-systems with low leaf density (i.e., low leaf area index) are 
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spectrally similar, we could apply MTVI2 to assess the spatial distribution of the health state of moss 

bed at Robinson Ridge. 

Comparing the moss health measured in summer 2012 and mean MTVI2 values derived from the 

mini-MCA mosaic we found a strong quadratic relationship between the two (see Figure 5). MTVI2 is 

insensitive to moss health in the driest lichen community quadrats due to the low abundance of 

photosynthetically active moss. MTVI2 does, however, show a statistically significant positive 

relationship for quadrats with a significant and/or dominant presence of bryophytes (R2 = 0.636). Such 

a strong correlation provides evidence of a good co-registration agreement between mini-MCA and 

DGPS localization of quadrats and georectification of the mini-MCA image mosaic.  

Figure 5. Statistical relationship between the ground-measured moss health and the 

MTVI2 index computed from mosaic of multispectral mini-MCA images obtained at 

Robinson Ridge test site.  

 

The statistical relationship shown in Figure 5 allowed us to approximate per-pixel moss health of 

the whole moss bed captured in the mini-MCA mosaic. Unfortunately, a considerable number of 

erroneous pixels were identified after a close inspection of the moss health map. These were caused, 

for instance, by high sensor noise combined with low light in shadows that produced incorrect spectral 

signatures of rock surfaces, mimicking high MTVI2 values of healthy moss. To prevent false moss 

health estimates, we applied the following rules: (i) the calculated per-pixel value of the Normalized 

Difference Vegetation Index (NDVI) must always be positive, (ii) the reflectance value of the 800 nm 

spectral band must be positive and greater than the reflectance in the shorter wavelengths, i.e., at 550, 

570 and 700 nm, and finally (iii) to eliminate negative estimates, moss health is assessed only if the 

MTVI2 value is greater than 0.4. The final map of moss health with these rules applied is displayed in  

Figure 6b. 
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Figure 6. Spatially co-registered thematic maps; (a) Overview; (b) Moss health derived 

from MTVI2 vegetation index and (c) Moss surface temperature at ultra-high spatial 

resolution (a red circle highlights thermal shadow cast by tall boulder). 

 

3.4. Assessing Temperature of Healthy Moss from Thermal Infrared Image Mosaic 

Simultaneously with the UAV flight over the Robinson Ridge study site, ground measurements of 

surface temperature were carried out with a handheld infrared thermometer at various locations 

recorded with DGPS. The corresponding DN value at each of the ground sample points was extracted 

from the georeferenced TIR mosaic and compared to the ground temperature measurements. A strong 

linear relationship established between both datasets was used to convert the TIR DN values to 

indicative surface temperatures (see Figure 7), providing a map of indicative surface temperature for 

the whole study site. Applying the moss health map as a mask for the TIR imagery produced the 

surface temperature map of only moss pixels. The resulting surface temperature map of moss with a 

relative health score greater than 60% is shown in Figure 6c. 
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Figure 7. Statistical relationship between thermal infrared DN values from UAV imagery 

and ground measured surface temperature for 19 sample points at the Robinson Ridge test site. 

 

4. Discussion 

The primary aim of this study is to demonstrate that our image co-registration workflow is able to 

produce sufficiently accurate georectified mosaics from images collected by three sensors during three 

separate flights at ultra-high spatial resolution (1–10 cm/pixel). It is important to note that each mosaic 

is produced with its own fully independent workflow and that none of them has been cross adjusted to 

improve the co-registration result. The mean accuracy of the co-registration (1.78 pixels) is regarded as 

satisfactory and acceptable for mapping of Antarctic moss beds, as verified by the statistically 

significant agreement with moss health ground observations (Figure 5). Unfortunately, there are 

currently no similar studies of co-registration of UAV imagery, to which our results could be 

compared. Nevertheless, the thematic maps of moss health and moss surface temperature could only be 

created because of accurate co-registration of the three independent datasets. 

The actual moss health map does not provide estimates below 60% (Figure 6b), which is mostly 

populated by desiccated (or moribund) plants. The spectral signature of such moss is similar to 

signatures of surrounding rocks and bare soil in the area, therefore, MTVI2 is unable to distinguish 

between these surfaces. In Lucieer et al. [25] a correlation between moss health and water availability 

was established based on local point measurements. Occurrences of high moss health (health > 90%) 

were shown to coincide with areas of high water flow accumulation. Geostatistical analysis of the 

moss health map produced in this study has potential to quantify the statistical significance of this 

relationship spatially at the scale of the whole study area, but such an analysis is beyond the scope of 

this paper. 

The map of moss surface temperature shows subtle variations across the moss beds. These 

variations do not seem to be related to moss health, but rather reflect the local micro-topography, 

shadowing effects, and local moss moisture (water availability) variability. The phenomenon can be 
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clearly seen in the areas of cooler moss occurring south of the large boulders (Figure 6c). These areas 

are shadowed from the sun, which at the time of image collection had an azimuth of 350 degrees and 

an elevation of 35 degrees. Thus the areas to the south of the boulders are cooler due to the 

microclimatic differences between the sunlit and shaded sides of the boulders. It is unlikely that the 

apparent zones of lower moss temperatures are caused by inaccurate spatial co-registration of 

multispectral and thermal mosaics, as the marked thermal shadow of a large boulder in the center of 

Figure 6c is too large to be attributed wholly to co-registration errors. 

The creation of the visible of thermal mosaics was straightforward with the use of the Photoscan 

software, however, significant work was required to mosaic the multispectral imagery as it was not 

compatible with Photoscan. The SIFT algorithm provided the innovation required, allowing the 

multispectral imagery to be matched to the already georeferenced visible imagery. Matching of ultra-high 

resolution UAV multispectral imagery with visible imagery using the SIFT algorithm provides a new 

method to coregister UAV imagery. It should be noted that the methodology needs to be tested with 

more topologically variable terrain to validate its performance with datasets collected over steep terrain. 

Although the co-registration techniques described in this study have proven to be robust and 

accurate, an elimination of GCPs and implementation of a direct georeferencing system such as 

described in Turner et al. [31] would certainly be a significant future improvement. There are also 

some limitations to the mini-MCA camera, in particular the rolling shutter and the sensor noise, which 

need further attention 

5. Conclusions 

In this study, we have developed a semi-automated workflow for accurate spatial co-registration of 

image datasets acquired from a Micro Unmanned Aerial Vehicle (MUAV) platform equipped with 

three different sensors: visible, multispectral, and thermal. We demonstrated that the methodology can 

achieve a mean co-registration accuracy of 1.78 pixels. A significant achievement of this study was a 

method to georectify and mosaic a large number of multispectral images acquired by the TetraCam 

mini-MCA, which could not be previously achieved with available image processing software. The 

study is also the first to present a detailed analysis of co-registration accuracy of three UAV image 

datasets acquired at an ultra-high spatial resolution. The benefit of accurate co-registration of UAV 

sensors was demonstrated through a case study assessing moss plant health and estimating moss 

surface temperature at a permanent study site in Eastern Antarctica. Both thematic maps, created from 

the accurately co-registered image mosaics, provide important spatial insights into the dynamic 

environment and growing conditions of the Antarctic mosses. In this study, we have shown that UAVs 

carrying multiple sensors can be used to accurately map vegetation canopies. Although future 

applications will likely deploy all such sensors simultaneously in order to eliminate changes caused by 

flight time delays, a similar co-registration methodology will still be required. 
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