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Abstract: Mapping urban areas at global and regional scales is an urgent and crucial task 

for detecting urbanization and human activities throughout the world and is useful for 

discerning the influence of urban expansion upon the ecosystem and the surrounding 

environment. DMSP-OLS stable nighttime lights have provided an effective way to 

monitor human activities on a global scale. Threshold-based algorithms have been widely 

used for extracting urban areas and estimating urban expansion, but the accuracy can 

decrease because of the empirical and subjective selection of threshold values. This paper 

proposes an approach for extracting urban areas with the integration of DMSP-OLS 

stable nighttime lights and MODIS data utilizing training sample datasets selected from 

DMSP-OLS and MODIS NDVI based on several simple strategies. Four classification 

algorithms were implemented for comparison: the classification and regression tree 

(CART), k-nearest-neighbors (k-NN), support vector machine (SVM), and random forests 

(RF). A case study was carried out on the eastern part of China, covering 99 cities and 

1,027,700 km2. The classification results were validated using an independent land cover 

dataset, and then compared with an existing contextual classification method. The results 

showed that the new method can achieve results with comparable accuracies, and is easier 

to implement and less sensitive to the initial thresholds than the contextual method. Among 
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the four classifiers implemented, RF achieved the most stable results and the highest average 

Kappa. Meanwhile CART produced highly overestimated results compared to the other three 

classifiers. Although k-NN and SVM tended to produce similar accuracy, less-bright areas 

around the urban cores seemed to be ignored when using SVM, which led to the 

underestimation of urban areas. Furthermore, quantity assessment showed that the results 

produced by k-NN, SVM, and RFs exhibited better agreement in larger cities and low 

consistency in small cities.  

Keywords: urban areas; DMSP-OLS; MODIS; SVM; random forests 

 

1. Introduction 

The urban areas on Earth’s land surface have experienced rapid expansion rates through the last three 

decades [1]. Globally, urban expansion is one of the primary factors in habitat loss and species extinction 

and results in changes in land cover. Locally, urban areas and urbanization have great, irreversible 

impacts on their surrounding environments, further affecting local climate and hydrological systems 

through the modification of albedo and evapotranspiration [2–6]. The information on the magnitude, 

distribution, pattern, and scale of urban land use is urgently to be quantified at local and global scales, 

for understanding the spatial extents of urban areas, sustainable management of these areas, and 

evaluating the impacts of urbanization on environments [1,7]. 

Remote sensing-based techniques have provided an efficient approach for mapping urban areas at 

multiple scales. Urban areas or human settlements can be mapped at different scales utilizing remote sensing 

data with different spatial resolution. High (<10 m) (e.g., SPOT, IKONOS, QuickBird) and medium  

(10–100 m) (e.g., Landsat TM/ETM+, ASTER) spatial resolution remote sensing imagery have been 

applied worldwide in mapping urban areas or built-up areas for individual cities or city-regions. [8–11]; for 

mapping urban areas at regional and global scales, coarse spatial resolution (1–2 km) data are usually 

employed [12], and nighttime lights (NTL) images from the Defense Meteorological Satellite Program’s 

Operational Line-scan System (DMSP-OLS) have provided effective and accessible data resources that 

can measure artificial illumination. NTL data have been increasingly used for mapping urban areas and 

urban expansions [13–15].When using DMSP-OLS NTL images for mapping urban areas, the threshold 

technique is often implemented because of its simplicity [16,17]; however, the selection of threshold is 

almost always empirical or subjective, and high uncertainty can be found when compared across cities 

at different levels of development [7]. 

In this paper, we present four machine learning methods, including classification and regression tree 

(CART), k-nearest neighbors (k-NN), random forests (RF), and support vector machine (SVM), to 

extract urban areas by using DMSP-OLS and MODIS NDVI data, attempting to develop a new approach 

to derive urban areas or human settlement from DMSP-OLS. Studies have found that the RF versions 

are likely to be the best classifiers, and SVM is the second best, without statistically significant 

differences [18]. CART and k-NN, as basic methods that commonly use machine learning classifiers, 

were employed for comparison in this study. A case study was carried out for eastern China cities, which 

have experienced the highest rate of urbanization in China. 
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2. Study Area and Data Resources 

Eastern China cities were selected for the case study, because China has experienced rapid 

urbanization since the 1980s, and eastern China is the most developed area of China since the last three 

decades. The study area includes seven provinces and three municipalities, covering 99 cities, with an 

area of 1,027,700 km2 (Figure 1). This accounts for only 10.65% of China’s mainland area; however, the 

population is 553.14 million, accounting for 40.65% of China’s total population, and the area accounts 

for 54.94% of GDP (China Statistical Yearbook, 2010, [19]). 

  

Figure 1. Case study area of eastern China includes seven provinces and three municipalities 

(Beijing, Tianjin, and Shanghai), which are of provincial-level. 

Multiple datasets were utilized in this study, including remote sensing data and land cover products 

derived from different remote sensing resources. A brief description of data resources is listed in Table 1.  

The version 4 DMSP-OLS stable nighttime lights annual image composites for the year 2010 was 

downloaded from the NOAA National Geophysical Data Center; the original spatial resolution of the 

products was 30 arcsecond, and the data were re-projected to Albers Conical Equal Area projection and 

resampled to 1-km resolution using the nearest neighbor resampling algorithm during the re-projection. 

The DN values of DMSP-OLS NTL range from 0 to 63; classifiers such as k-NN and SVM are not scale 

invariant, so we scaled the DN values to the range of 0 to 1.0 by using the following  

normalized algorithm: 

VA𝑖 =  
𝑉𝑖 − 𝑉𝑚𝑖𝑛

𝑉𝑚𝑎𝑥 − 𝑉𝑚𝑖𝑛
 (1) 

where VA𝑖 is the normalized value of the i-th pixel, 𝑉𝑖 is the original value of the i-th pixel, and Vmin and 

Vmax are the minimum and maximum values of all pixels. 
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Two MODIS products, monthly NDVI (MOD13A3) and land water mask (MOD44W), were 

downloaded from the NASA Land Processes Distributed Active Archive Center (LP DAAC). These two 

products having a sinusoidal projection were re-projected to the Albers Conical Equal Area projection, 

and the nearest neighbor resampling algorithm was used to resample MODIS NDVI images to maintain 

the pixel size 1 km by 1 km; the majority resampling algorithm was used to resample the land water 

mask of 250 m resolution to 1 km resolution for maintaining correspondence with NTL and NDVI data. 

The annual average NDVI was calculated using the average algorithm from January to December. We 

used the average NDVI instead of the annual maximum NDVI because of the former’s stability and 

reduced sensitivity to seasonal and inter-annual fluctuations [14]. NDVI values were constrained to the 

range of non-negative values between 0 and 1.0 by using the same normalized algorithm as Equation (1). 

The Finer Resolution Observation and Monitoring-Global Land Cover-Hierarchy (FROM-GLC-Hierarchy) 

dataset was utilized as reference data to validate the extracted results [20]. FROM-GLC-Hierarchy is a 

global land cover dataset produced using the Landsat Thematic Mapper (TM) and Enhanced Thematic 

Mapper Plus (ETM+) data, and has been aggregated with multi-resolution (i.e., 30 m, 250 m, 500 m, 

1 km, 5 km, 10 km, 25 km, 50 km, and 100 km) to meet the requirements for different resolutions from 

different applications. The 30-m base map of FROM-GLC-Hierarchy has been improved from  

FROM-GLC-agg [20], and the other multi-resolution data were produced using additional coarse 

resolution datasets to reduce land cover type confusion [21,22]. 

We selected the land cover data at a resolution of 1 km for validation in this study to match the spatial 

scale of NTL and MODIS NDVI. The data were reclassified into two classes, urban and not-urban. 

Table 1. A brief description of data resources. 

Abbreviation Data Description Spatial Resolution Time  

NTL 
DMSP-OLS stable 

nighttime light 
1 km 2010  

MOD13A3 MODIS monthly NDVI 1 km 2010 

MOD44W MODIS land water mask 250 m NA 

FROM-GLC Global land cover 1 km 2010 

3. Methods 

The DMSP-OLS NTL and MODIS NDVI datasets were obtained to extract the urban areas. The key 

steps of the method are as follows: First stage, the water mask was used to remove the pixels dominated 

by water bodies. Second, a spectral index, the Vegetation Adjusted NTL Urban Index (VANUI), which 

combines MODIS NDVI and NTL [14], was calculated as an independent variable of the classification 

algorithms. Training samples were selected on the basis of thresholds drawn from MODIS NDVI and 

NTL images. Potential urban pixels were defined with NTL DN greater than 40 and NDVI less than 0.4, 

and potential non-urban pixels were defined with NDVI greater than 0.4 [7,23]. To ensure that the 

training pixels were uniformly distributed in the study area, a stratified random sampling was carried out 

on the basis of the administrative boundary layers. First, a random value between 0.0 and 1.0 was 

generated for each potential pixel. Then, the probability of selection (P) was calculated: 

P = 𝑁𝑠 𝑁⁄  (2) 
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where 𝑁𝑆 is the number of pixels to be drawn for each stratum, and 𝑁 is the total number of potential 

pixels. The pixel was selected for the sample if its random value was <P. 𝑁𝑆 was set to 15% of potential 

pixels for each stratum. The training set was input into the classifiers for training; after training, the 

classifiers were applied to the NTL and NDVI data to classify the unknown pixels. A flowchart of the 

classification procedure is shown in Figure 2. 

DMSP-OLS NTL MODIS NDVI

Urban samples:

NTL > 40 and NDVI <0.4

Non-urban samples:

NDVI >0.4

Sampling

Input variables:

DMSP-OLS

MODIS NDVI

VANUI

Stratum:

administrative 

boundary layer

Machine learning 

algorithms

Urban extraction 

results

VANUI

 

Figure 2. Flowchart of urban area extraction method. 

A contextual classification method proposed by Cao et al. [7] was also used to compare the 

performance with that of the new method. This contextual classification algorithm did not classify all 

unknown pixels at one time, but instead used the classifier in an iterative procedure to classify the pixels 

within a 3 × 3 window of each seed pixel step-by-step. After each iteration, newly classified urban pixels 

were assigned as a new set for the new training procedure. This iterative procedure was carried out until 

the number of newly identified urban pixels was zero. Non-urban training samples were defined with 

the same condition aforementioned, and because this method is based on the high degree of spatial 

clustering of DMSP-OLS nighttime lights, urban samples were selected as the pixels with maximum 

OLS DN values in each 9 × 9 window with OLS DN greater than 40 to ensure the inclusion of all the 

potential urban patches instead of selecting urban samples using a random process based on  

probability selection. 

Mean overall accuracy was calculated to assess the performance of these aforementioned approaches. 

Overall accuracy (OA) and Kappa coefficient were implemented for each city for further validation. 
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3.1. VANUI 

VANUI is a spectral index proposed by Zhang et al. [14] that combines MODIS NDVI and NTL, to 

reduce the effects of NTL saturation and increase variation of the NTL signal, especially within urban 

areas. Additionally, the index is intuitive, simple to implement, and was found to correspond to urban 

characteristics and the percent of imperviousness [14,24]. VANUI was calculated as 

VANUI = NTL × (1 − 𝑁𝐷𝑉𝐼) (3)  

where NTL is the normalized DMSP-OLS stable nighttime lights, and NDVI is normalized annual 

average MODIS NDVI. 

3.2. Machine Learning Methods 

We experimented with four types of machine learning methods: CART (an improved version of 

C4.5), k-NN, SVM, and RF. 

CART is a commonly used method [25], in which the basic idea is to construct a tree-like graph 

or model of decisions and their possible consequences by generating relative homogeneous subgroups 

by recursively partitioning the training dataset to the maximum variance between groups of 

independent variables and dependent variables [26]. The problem in this study is binary (two-class) 

classification and involves only three variables; the maximum depth of the tree was set to 50 to avoid 

creating over-complex trees generated from the training data [27]. 

The k-NN method is a non-parametric method used for classification and regression [28]. For k-NN 

classification, an object is classified by a majority vote of its neighbors, with the object being assigned 

to the class most common among its k nearest neighbors; Euclidean distance as a common distance 

metric for continuous variables is used to define the neighbors. Typically, k (number of neighbors) is a 

positive integer less than 20 [29]; too-small values of k increase the effect of noise on classification [30], 

so we set k equal to 10 in this study. 

The SVM classifier has been widely used and reported as an outstanding classifier [31]. The basic 

idea of SVM is to classify the input vectors into two classes using a hyperplane with maximal margin. 

The maximal margin is derived by solving the constrained quadratic problem: 

Maximiza W(α) = ∑ α𝑖

𝑛

𝑖=1

−
1

2
∑ ∑ 𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗

𝑛

𝑗=1

𝑛

𝑖=1

𝐾(𝑥𝑖 , 𝑥𝑗) (4) 

Subject to {∑ α𝑖

𝑛

𝑖=1

𝑦𝑖 = 0 𝑎𝑛𝑑 0 ≤ 𝛼𝑖  ≤ 𝑇 𝑓𝑜𝑟 𝑖 = 1, 2, … 𝑛} 
(5) 

where 𝑥𝑖 ∈  𝑅𝑑  are the training sample vectors, 𝑦𝑖 ∈ {−1, +1} is the corresponding class label, and 

𝐾(𝑢, 𝑣) is the kernel function. We used the radial basis function as the kernel function [8,21,29,32] and 

default parameters in the implementation.  

The RF method is an ensemble learning method for classification and regression; it is a 

combination of tree predictors such that each tree depends on the values of a random vector sampled 

independently and with the same distribution for all trees in the forests. Comparatively, RF does not 

overfit because of the law of large numbers [33]. Its performance has been reported to be the best 

among 179 classifiers arising from 17 families (discriminant analysis, Bayesian, neural networks, 
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SVMs, decision trees, rule-based classifiers, boosting, bagging, stacking, RF and other ensembles, 

generalized linear models, nearest neighbors, partial least squares and principal component regression, 

logistic and multinomial regression, multiple adaptive regression splines, and other methods) [18]. 

Although RF does not overfit and one can run as many trees as desired according to Breiman, who first 

introduced RF [33], we set the number of trees to 25, which was sufficient depending on the size and 

nature of the training set (three variables, two classes) and can guarantee efficiency.  

The classifiers used in this study were implemented in scikit-learn, which is a Python module 

integrating a wide range of state-of-the-art machine learning algorithms for medium-scale supervised 

and unsupervised problems [32]. The parameter set for each algorithm is listed in Table 2. 

Table 2. Classification methods and parameters. 

Classifiers Abbreviation Parameters Remarks 

Classification and Regression Tree CART Maximum depth: 50 

Data were scaled to 

[0,1] before training 

and classification 

k-Nearest Neighbors k-NN Number of neighbors: 10 

Support Vectors Machine SVM 

Kernel : RBF 

C(cost):1.0 

gamma: 0.1 

Probability estimates: false 

Random Forests RF Number of trees: 25 

4. Results and Discussion  

4.1. Performance of Machine Learning Methods 

To quantify the performance of the four methods, for every region, 85% of the sample dataset was 

selected as the input training dataset of the four methods. The overall accuracy (OA) of each method 

was calculated for both training and testing datasets. The training and testing processes were carried out 

region by region.  

Table 3. Overall accuracy of training and testing for the four methods. 

Region 
Training OA Testing OA 

CART k-NN SVM RF CART k-NN SVM RF 

Beijing 0.998 - - 0.95 0.987 0.909 0.97 0.96 0.939 

Tianjin 0.997 - - 0.932 0.997 0.859 0.915 0.915 0.915 

Shanghai 1 - - 0.874 0.986 0.769 0.821 0.821 0.744 

Hebei 0.996 - - 0.988 0.993 0.982 0.986 0.983 0.986 

Liaoning 0.992 - - 0.983 0.988 0.979 0.983 0.987 0.985 

Shandong 0.986 - - 0.972 0.982 0.96 0.96 0.966 0.963 

Jiangsu 0.988 - - 0.973 0.981 0.957 0.961 0.965 0.964 

Zhejiang 0.989 - - 0.97 0.981 0.966 0.958 0.971 0.966 

Fujian 0.999 - - 0.99 0.996 0.988 0.99 0.988 0.986 

Average 0.994 - - 0.959 0.988 0.93 0.949 0.951 0.939 

Table 3 shows the training OA and testing OA of each method. The k-NN is an instance-based learning 

algorithm, or lazy-learning algorithm; all computation is deferred until classification is performed [31], so 
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there was no training processing in the k-NN algorithm. On average, the best-performing method in 

training was CART (training OA = 0.994), and SVM was the worst, relatively (training OA = 0.959). The 

test results showed the method with the highest testing OA was SVM (testing OA = 0.951), and CART 

was the worst (testing OA = 0.930). Even though CART performs almost perfectly compared to the other 

three classifiers in training processing, its testing OA ranks last among the four classifiers; a possible 

explanation might be that overfitting problems can occur during training processes [31]. The testing OA 

for the four classifiers seems to result in close values; average differences are less than 0.01%, thus further 

quantity accuracy needs to be assessed to the extracted urban areas in the following sections. 

4.2. Mapping Urban Areas 

We extracted four urban area results using CART, k-NN, SVM, and RF from MODIS NDVI and DMSP-

OLS NTL and VANUI of 2010 using the new method in this study. Figure 3 shows the extracted urban 

areas of seven cities (Beijing, Tianjin, Qingdao, Shenyang, Shanghai, Cangzhou, and Guangzhou), as well 

as FROM-GLC reclassification images (1 km); the DSMP-OLS NTL and VANUI are also displayed. 

Evident differences can be observed through a simple visual comparison between DMSP-OLS NTL and 

VANUI. VANUI can greatly decrease the saturation effect of DMSP-OLS NTL and enhance intra-urban 

variability, especially in large cities such as Shanghai, with most of the areas associated with red color. 

Therefore, it is appropriate to utilize VANUI as an indicator for extracting urban areas, and it is clear 

that results of the extracted urban areas can provide much finer details within the urban areas because of 

the effect of VANUI. 

For different machine learning algorithms, urban areas extracted by CART were visually much larger 

than those extracted by the other three algorithms and the FROM-GLC urban areas. The SVM method 

tended to identify continuous urban extent in high illumination areas but was less likely to detect subtle 

pixels around the NTL saturation areas than RF and k-NN. Although the results extracted by using RF 

and k-NN were similar when compared visually, the results extracted by using k-NN had some noise 

around the urban areas. 

Quantity accuracy assessments were performed on extracted urban area results. OA and Kappa 

coefficients were calculated on the basis of the extracted urban areas and the FROM-GLC images of 

2010. Urban pixel counts of the extracted results and FROM-GLC of each province/municipality were 

derived on the basis of administrative boundaries. The accuracy assessment results for the four 

classifiers are listed in Table 4. Figure 4 shows the scatter plots between the extracted urban pixels 

and FROM-GLC urban pixel counts of each city.  

Note that the proportion of the non-urban background pixels can account for the majority and largely 

increase OA values. Kappa coefficient was considered the primary factor for the comparisons of the four 

classifiers. Comparing the average OA and Kappa and the scatter plot, the RF had the best coherency 

with FROM-GLC (OA = 0.964, Kappa = 0.598, R2 = 0.972); k-NN and SVM had similar accuracy and 

also exhibited good agreement with the FROM-GLC data (k-NN: OA = 0.961, Kappa = 0.574,  

R2 = 0.972; SVM: OA = 0.967, Kappa = 0.568, R2 = 0.962), whereas CART had the worst results  

(OA = 0.943, Kappa = 0.525, R2 = 0.973). From Table 4, we can see that the average urban pixels of the 

99 cities extracted by using CART is 614.9, much more than the average FROM-GLC urban pixels 

(374.1), and in Figure 4 the scatter plots also show that the Beta of the fitted regression equation between 
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CART and FROM-GLC is 1.46, much higher than that of the other three classifiers, indicating that the 

CART tended to be highest at overestimating among the four classifiers. On average, RF and k-NN 

also tended to overestimate the urban areas and SVM tended to underestimate, but the RF was the 

closest to FROM-GLC; this conclusion was consistent with the previous visual comparison. 

 

Figure 3. Urban area extraction results: (a) Beijing, (b) Tianjin, (c) Qingdao, (d) Shenyang, 

(e) Cangzhou, (f) Guangzhou, and (g) Shanghai. 

For individual provinces and cities, although SVM had higher Kappa values than the other three classifiers 

for Beijing, Tianjin, and Shanghai, RF was found to have the highest Kappa values in the other seven 

provinces on average. For Beijing, Qingdao, Huizhou, and Chaozhou, the latter three classifiers (SVM,  

k-NN, and RF) all produced high-accuracy predicted results (Kappa > 0.7). Good agreement (Kappa > 0.6) 

can be found in almost 60% of cities (59) among the 99 cities in the study area for RF, whereas they were 

23%, 42%, and 47% for CART, k-NN, and SVM. Cities with fair agreement (0.2 < Kappa < 0.4) for CART, 

k-NN, SVM, and RF account for 11%, 4%, 11%, and 4% of the total quantity, respectively. 
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Table 4. Accuracy assessments of the four algorithms for extracting urban areas by province/municipality. 

Province/ 

Municipality 

FROM-

GLC 

Urban 

Pixels 

CART k-NN SVM RF 

OA Kappa 
Urban 

Pixels 
OA Kappa 

Urban 

Pixels 
OA Kappa 

Urban 

Pixels 
OA Kappa 

Urban 

Pixels 

Beijing 2107 0.943 0.666 2892 0.961 0.727 2159 0.964 0.743 2000 0.96 0.733 2336 

Tianjin 1323 0.907 0.54 2130 0.947 0.652 1293 0.956 0.696 1174 0.948 0.666 1407 

Shanghai 2137 0.763 0.528 3222 0.836 0.649 2452 0.845 0.66 2257 0.832 0.642 2593 

Hebei  296.4  0.964 0.527 518.9  0.978 0.569 258.6  0.981 0.588 194.1  0.979 0.593 242.8  

Shandong  244.2  0.963 0.605 371.0  0.972 0.632 276.4  0.976 0.652 216.6  0.975 0.663 265.2  

Liaoning  249.0  0.959 0.439 465.7  0.976 0.533 236.3  0.978 0.536 183.7  0.978 0.562 234.7  

Jiangsu  302.1  0.941 0.509 513.9  0.959 0.53 312.9  0.967 0.548 215.5  0.962 0.571 313.0  

Zhejiang  399.3  0.947 0.541 664.5  0.966 0.588 419.2  0.971 0.523 284.4  0.969 0.604 395.5  

Fujian  199.8  0.964 0.517 365.5  0.978 0.6 221.1  0.981 0.555 160.0  0.979 0.611 231.3  

Guangdong  408.2  0.903 0.522 643.0  0.929 0.557 484.1  0.939 0.535 408.2  0.933 0.571 459.5  

Average 374.1  0.944 0.526 614.9  0.962 0.575 399.4  0.967 0.568 317.0  0.964 0.598 392.7  
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Figure 4. Scatter plot of urban pixel count of each city between predicted results and  

FROM-GLC for four classifiers: (a) CART, (b) k-NN, (c) SVM, and (d) RF. 

Figure 5 shows the spatial distribution of the Kappa coefficient for each city in the study area; 

distribution of high-agreement and low-agreement regions can be seen clearly. High agreement can be 

found in most of the cities in the northern part of the study area, including Beijing, Tianjin, Hebei 

Province, Liaoning Province, and Shandong Province. In Jiangsu Province and Guangdong Province, 

RF shows higher agreements than the other three; in Zhejiang Province and Fujian Province, RF and k-

NN have similar distributions and both are better than SVM and CART. Overall, the high accuracy 

regions of extracted urban areas show a tendency distributed along the coastline. We postulated a 

possible explanation that the classification accuracy and NTL DN value are positively correlated, that is 

to say, the brighter the urban cores, the more likely to be identified as urban pixels. Figure 6 displays the 

DMSP-OLS NTL image and the mean NTL DN of 99 cities, a spatial distribution type similar to that of 

Kappa coefficient can been seen from a simple visual comparison. 
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Figure 5. Spatial distribution of Kappa at the city level: (a) CART, (b) k-NN, (c) SVM, and 

(d) RF. 

 

Figure 6. (a) DMSP-OLS NTL image of study area. (b) Mean NTL DN of 99 cities. 
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We further calculated the standard deviation (STD) of the Kappa coefficient of k-NN, SVM, and RF 

for each city as 

𝑆𝑇𝐷 = √
1

𝑛
∑(𝑘𝑖 −  𝐾)2

𝑛

𝑖=1

 (6) 

where STD is the standard deviation value for each city; n = 3 is the number of classifiers; ki are the 

Kappa coefficients for k-NN, SVM, and RF; and K is the average Kappa value of the three classifiers. 

Figure 7 shows the relationship between Kappa standard deviation and the mean value of pixels with 

NTL DN greater than 30, for 99 cities. We calculated the mean value of pixels with NTL DN greater 

than 30 instead of calculating the mean value for all pixels because the pixels having low brightness 

constitute a major portion of large cities and reduce mean values considerably. We can see that the STD 

tends to be higher in cities with lower NTL DN values, and brighter cities tend to achieve similar 

accuracy by using the three classifiers, indicating that the variance of accuracy is positively associated 

with the NTL DN values. The assumption is valid according to the results of the analyses. The brighter 

the urban cores, the more likely they are to be identified as urban pixels; urban pixels with lower mean 

NTL DN values are more likely to be neglected.  

 

Figure 7. Relationship between the Kappa variance and mean NTL DN of pixels with values 

greater than 30, for 99 cities. 

4.3. Comparison with the Contextual Classification 

Table 5 shows the classification accuracies using the contextual classification method. The best 

performer is k-NN, followed by SVM. Comparing Tables 4 and 5, we can see that all results are 

improved by the new method proposed in this study. The best performer is k-NN, with OA improvement 

of 0.016 and Kappa coefficient improvement of 0.084 over the best contextual classification results. 
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Table 5. Accuracy assessments of the four algorithms for extracting urban areas by province/municipality.  

City\Province 

FROM-

GLC 

Urban 

Pixels 

CART k-NN SVM RF 

OA Kappa 
Urban 

Pixels 
OA Kappa 

Urban 

Pixels 
OA Kappa 

Urban 

Pixels 
OA Kappa 

Urban 

Pixels 

Beijing 2107 0.859 0.450 2686 0.901  0.551  2029 0.863  0.463  2858 0.865  0.463  2636 

Tianjin 1323 0.643 0.203 2234 0.779  0.339  2562 0.703  0.253  2493 0.699  0.248  2175 

Shanghai 2137 0.859 0.641 1787 0.863  0.652  1794 0.866  0.670  2008 0.861  0.644  1784 

Hebei  296.4  0.865 0.266 772.1 0.938  0.453  336.8  0.899  0.337  395.8  0.870  0.270  370.0  

Shandong  244.2  0.948 0.539 339.2 0.962  0.612  323.5  0.953  0.568  330.6  0.948  0.539  339.0  

Liaoning  249.0  0.905 0.286 435.3 0.958  0.459  286.7  0.941  0.382  349.6  0.907  0.289  319.3  

Jiangsu  302.1  0.944 0.520 522.8 0.944  0.522  337.4  0.941  0.518  370.9  0.948  0.541  396.7  

Zhejiang  399.3  0.960 0.515 247.1 0.961  0.528  254.1  0.962  0.545  274.1  0.961  0.519  244.9  

Fujian  199.8  0.981 0.550 188.0 0.981  0.547  190.9  0.980  0.565  230.8  0.981  0.550  188.1  

Guangdong  408.2  0.929 0.481 625.0 0.930  0.482  425.8  0.934  0.516  458.0  0.926  0.481  425.0  

Average 374.1  0.928 0.451 509.4 0.948  0.514  428.6 0.939  0.491  505.1 0.929  0.456  449.6 
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4.4. Sensitivity Analysis 

An important step for accurate estimation of urban areas by using machine learning methods is the 

selection of training samples. A simple threshold strategy was used to select the potential urban and 

non-urban pixels in this study. We used sensitivity analysis to evaluate the influence of the initial 

thresholds upon the final classification results by changing each threshold at a time while maintaining 

the initial value of other thresholds. We assigned a step value of ±1 and a range of 30 to 55 for the NTL 

DN value, and a step value of ±0.01 and a range of 0.3 to 0.5 for the NDVI value. The best performers 

for each method were used respectively (RF for the per-pixel classification and k-NN for the  

contextual classification).  

Figures 8 and 9 show the Kappa coefficient of each changed value of the initial thresholds for urban 

area extraction results using the two methods. From Figure 8, we can see that the Kappa coefficient 

increases with an increase in the NTL DN value from 30 to 40, it decreases when the NTL DN value is 

greater than 50, but it does not vary when the NTL DN values change from 40 to 50, indicating that 

classification outputs are not sensitive to initial threshold changes of the NTL DN value in the range of 

40 to 50. From Figure 9, we can see that accuracies show more significant fluctuations when the initial 

NDVI threshold changes, indicating that the classification results are more sensitive to initial NDVI 

thresholds for both methods. However, when NDVI is in the range of 0.4 to 0.45, a consistent Kappa 

coefficient can be achieved by using per-pixel classification; meanwhile, accuracies vary when using 

contextual classification. 

The initial thresholds of NTL and NDVI give only the basic conditions to define the potential training 

samples with high certainties, and the above sensitivity analysis indicates that it is safe to choose the 

initial thresholds of the NTL DN value in the range 40 to 50, and the NDVI value in the range 0.4 to 

0.45 using the new method.  

 

Figure 8. Kappa coefficient for the changed initial threshold of the NTL DN value for the 

urban extraction results. 
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Figure 9. Kappa coefficient for the changed initial threshold of the NDVI value for the urban 

extraction results. 

 

Figure 10. Average kappa coefficient with different sample percentages. 

4.5. Impact of Different Training Set Percent 

To obtain a comprehensive view of the impact of different training sets upon the classification outputs 

by using the new method proposed in this paper, we repeated the four categories of classification 

algorithms with a series of sampling percentages (i.e., 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, and 

50%,), carrying out an accuracy assessment for each sample percentage (Figure 10). The overall 

decreasing trend can be detected from Figure 10 with the increase in sample percentage, and a very low 

accuracy can be reached at 45% for CART and k-NN. SVM has been used in some studies (e.g., [7,23]) 

to extract urban areas from DMSP-OLS NTL images and achieved good results in this study, when the 

sampling percentage ranges from 10% to 40%. SVM and k-NN produced similar accuracy. For RF, when 
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sampling percentage increases, the kappa line charts display a more stable trend and better accuracy than 

the other three methods, indicating a stable and better performance with RF. These analyses indicate that 

RF, as an ensemble learning algorithm, is stable and exhibits good performance in extracting urban 

information from coarse resolution data and at a large scale. 

5. Discussion 

We proposed a per-pixel classification method to extract urban areas from DMSP-OLS NTL and 

MODIS NDVI data; a simple threshold strategy and probability of selection were used to select the 

training sets, and the training sets were input into machine learning classifiers to classify the unknown 

pixels. Comparable accuracy was obtained compared to the existing contextual classification method. 

Because the contextual classification is a region-growing procedure, the initial urban seeds are defined 

as the pixels with maximum NTL DN values in each patch having NTL DN greater than 40. NTL 

saturation may cause bias in the classification, and the urban pixels are growing from the initial urban 

seeds, we must ensure that initial urban seeds include all the potential urban patches by inspecting the 

NTL values of many urban patches [7]. In contrast, the method proposed in this study collects random 

samples on the basis of the probability of selection, and all the pixels are classified at one time; compared 

to the existing method, it is easier to implement. Further, sensitivity analysis was also addressed in our 

study: for the two categories of methods, classification results were more sensitive to changes in the 

initial NDVI value than to those of NTL DN value; with the same conditions, the new method produced 

results with more stable accuracy and were less sensitive to the changes of initial thresholds. In general, 

this new approach demonstrates the following two advantages: (1) it automatically obtains a training set 

with a simple threshold strategy without any other reference data and with less human participation or 

interaction; (2) it uses a probability of selection to select the training set through a random procedure; 

final classification results are not sensitive to the initial thresholds within a safe range. Even so, 

uncertainties of initial thresholds may arise when applying this method to other regions or other years, 

and sensitivity analysis or selection of optimal thresholds is needed when employing the approach. 

Among the four classifiers that were implemented in this study, RF produced classification results 

with the highest average Kappa, and when the sample set changed, it produced results with stable 

accuracies. However, choosing the proper algorithm is also significant when using the method, because 

although RF obtained the best accuracy on average, we can see from Figure 4, that in some regions (e.g., 

Beijing, Tianjin and Shanghai) SVM performed better. Additionally, in this study we adopted the 

algorithm parameters on the basis of recommendations by developers or empirical values; this would be 

another issue that affects the final results. Selecting good parameters while the application conditions 

vary from one environment to another and one data type to another is still a challenging problem; 

additional research in this area is required. 

Moreover, because the method did not perform well in some cities, and the distribution of the cities 

with higher accuracies showed a similar tendency as the cities with higher NTL DN values, we postulated 

an assumption that the classification accuracy and NTL DN values are positively correlated. Preliminary 

analysis was carried out, and results indicated that the assumption was valid, indicating that uncertainties 

may be introduced in cities with low NTL illumination. Whereas, one may note that it is just an 

assumption based on the results in this study, and the analysis is also preliminary; details of the 
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relationships between DMSP-OLS NTL data and urban morphology and urban extraction accuracy are 

complex that we still cannot draw conclusions, and it calls for our further inquiry and research. 

6. Conclusions  

Mapping urban areas or human settlements at regional or global scales is often based on the 

DMSP-OLS NTL data [23,34–36], and threshold-based algorithms are widely used for extracting urban 

areas or human settlements [7,13,37]. However, biased estimated (overestimated or underestimated) 

problems can be a limiting factor when compared across cities with different levels of development. 

Although local threshold algorithms can be used to meet inter-region variances, the determination of 

suitable threshold values is empirical and difficult [14,15]. 

In this paper, we presented a machine-learning-based approach to derive urban areas from 

DMSP-OLS NTL and MODIS NDVI data; four classification algorithms were employed for 

comparison, and a region-by-region strategy was utilized. VANUI, which is an urban index to reduce 

the effects of NTL saturation and increase variation of the NTL signal, was implemented as an 

independent variable. Extracted urban areas were validated against the FROM-GLC image. Results 

showed that on average, RF achieved the best extraction results among the four classifiers. Meanwhile, 

CART produced highly overestimated results, compared to the three other classifiers. Although k-NN 

and SVM tended to produce similar accuracy, less-bright areas around the urban cores seemed to be 

ignored when using SVM, which resulted in the underestimation of urban areas. However, quantity 

assessment results showed that the results produced by SVM exhibited better agreement (Kappa 

coefficient) in large cities such as Beijing, Tianjin, and Shanghai. 

The classification results were also compared with an existing contextual classification method, and 

sensitivity analysis was carried out on the two methods by changing the initial thresholds. According to 

the results, the new method achieved higher Kappa coefficients and more robust results, and RF as an 

ensemble learning algorithm produced a more stable accuracy. As a result, this approach is proved to be 

successful for mapping urban areas through combined use of MODIS NDVI and DMSP-OLS NTL 

images. In addition, DMSP-OLS NTL and MODIS NDVI can be freely downloaded and have a global 

coverage and time series; thus the approach proposed in this paper can be expanded to other regions and 

other years. 

However, per-pixel-based urban area mapping is not sufficient, and areas and spatial information 

can be lost because of mixed pixels [7]. More research is needed for sub-pixel-based urban or human 

settlement mapping at coarse spatial resolution at regional and global scales. In addition, new nighttime 

light image instruments, such as the Visible Infrared Imager Radiometer Suite (VIIRS), with finer spatial 

resolution and higher quantization levels, may provide a more detailed data source to improve the 

accuracy of urban extent mapping [7,15,38]. 
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