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Abstract: Urban tree species mapping is an important prerequisite to understanding the value of
urban vegetation in ecological services. In this study, we explored the potential of bi-temporal
WorldView-2 (WV2, acquired on 14 September 2012) and WorldView-3 images (WV3, acquired on
18 October 2014) for identifying five dominant urban tree species with the object-based Support
Vector Machine (SVM) and Random Forest (RF) methods. Two study areas in Beijing, China,
Capital Normal University (CNU) and Beijing Normal University (BNU), representing the typical
urban environment, were evaluated. Three classification schemes—classification based solely
on WV2; WV3; and bi-temporal WV2 and WV3 images—were examined. Our study showed
that the single-date image did not produce satisfying classification results as both producer and
user accuracies of tree species were relatively low (44.7%–82.5%), whereas those derived from
bi-temporal images were on average 10.7% higher. In addition, the overall accuracy increased
substantially (9.7%–20.2% for the CNU area and 4.7%–12% for BNU). A thorough analysis concluded
that near-infrared 2, red-edge and green bands are always more important than the other bands
to classification, and spectral features always contribute more than textural features. Our results
also showed that the scattered distribution of trees and a more complex surrounding environment
reduced classification accuracy. Comparisons between SVM and RF classifiers suggested that SVM
is more effective for urban tree species classification as it outperforms RF when working with a
smaller amount and imbalanced distribution of samples.

Keywords: urban tree species classification; bi-temporal images; object-based method;
support vector machine; random forest

1. Introduction

All types of urban vegetation, especially trees, play an important role in the urban ecosystem.
Trees have valuable eco-service functions such as above-ground carbon storage, urban temperature
mediation, air quality improvement and urban flood risk alleviation [1–4]. Acquiring timely and
detailed information on spatial distribution and structural characteristics of trees within urban areas
is critical for a better understanding of their eco-service values, and subsequently for developing
strategies for sustainable urban development. Traditional methods for urban tree species mapping
involves random sampling in various urban districts and field investigation of tree species within
each sample plot. An alternative method is visual interpretation of aerial photographs. Both are
time and labor consuming. Remote sensing techniques, especially high spatial resolution satellite
imagery, provide a great opportunity for timely tree species mapping at a considerably lower cost.
High spatial resolution satellite images, such as those acquired by IKONOS, QuickBird, WorldView-2
(WV2) or WorldView-3 (WV3) satellites, have been widely used for tree species identification in
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forested areas [5–10]. Compared to the traditional four-band IKONOS and QuickBird, the WV2
satellite (DigitalGlobe Inc.) launched in 2009 has better spectral (eight bands) and spatial (0.5–2 m)
resolution. The four additional bands (coastal, yellow, red-edge and near-infrared2 bands) are
considered to be more capable of detailed vegetation identification [6,7,11]. The WV3 satellite was
launched in August 2014. In addition to the eight bands it shares with WV2, it also has a 16-band
mode which could provide an additional eight short-wave infrared (SWIR) bands that may further
benefit vegetation analysis.

Most of the existing tree species identification applications have focused on forested areas,
and only a few studies have evaluated the capability of high spatial resolution imagery for urban
tree species classification. One of the representative studies was conducted by Pu et al. [12], which
compared the capability of IKONOS and WV2 the tree species identification of seven types of trees
in the city of Tampa, Florida, USA. The seven tree species included sand live oak (Quercus geminata),
laurel oak (Q. laurifolia), live oak (Q. virginiana), pine (species group), palm (species group), camphor
(Cinnamomum camphora), and magnolia (Magnolia grandiflora). Both the Linear Discriminant Analysis
(LDA) algorithm and the Classification and Regression Tree (CART) methods were examined.
The results showed that WV2 achieved better overall classification accuracy (around 55% when using
CART) than IKONOS. Compared to forested areas where tree crowns are usually densely distributed
and the surrounding environment is relatively homogeneous, urban areas feature complex and
heterogeneous land covers and thus face specific challenges in tree species classification. First,
shadows casted by high-rise objects lead to reduction or total loss of spectral information of shaded
tree species so that they are difficult to be classified or interpreted. Li et al. [13] reported that
shadows considerably affected the capability of tree species discrimination, even when the shadow
area in the image was recovered using the linear-correlation correction method (the overall accuracy
decreased by over 5% when trees under shadows were considered). Second, trees in an urban area are
distributed in a scattered fashion, and thus spectral characteristics of tree crowns are easily affected by
surrounding non-tree objects. Third, various background materials under tree crowns—such as soil,
asphalt or cement—could influence spectral information of crowns observed by a high resolution
sensor. These challenges may affect species classification accuracy. As reported by Pu et al. [12],
the average producer accuracy and user accuracy of the seven tree species classification were
only around 67% and 52%, respectively, which indicates lower classification accuracy in forested
areas [6,7].

The aforementioned studies indicated that single-date imagery may not suffice for urban tree
species classification. Multi-temporal images that represent different vegetation phenologies may
assist in better classification. Tigges et al. [14] explored the identification of eight tree genera
in an urban forest in Berlin using RapidEye imagery (6.5 m) acquired in spring, summer and
autumn. The eight tree genera are: pine (Pinus sylvestris), chestnut (Aesculus hypocastanum), plane
(Platanus hispanica), lime (Tilia cordata, Tilia ˆ vulgaris, Tilia platyphyllos), maple (Acer campestre,
Acer platanoides, Acer sp.), poplar (Populus nigra, Populus alba), beech (Fagus sylvatica) and oak
(uercus robur, Quercus rubra, Quercus sp.) In Berlin, urban vegetation covers over 40% of the total
urban area, and more than 290 km2 are urban forest. This study utilized pixel-based classification
based on the Support Vector Machine (SVM) approach and found that a series of multi-temporal
images (spring, summer, autumn) were necessary for tree genera classification; the overall accuracy
reached 85.5%.

In this study, we aimed to evaluate bi-temporal high spatial resolution imagery for tree species
classification in a more complex urban environment, exemplified by two study areas in Beijing, China
which represent typical tree distribution in big cities. Unlike the study area in Berlin, urban tree
coverage in inner-city Beijing makes up only 25.2% [15]. Trees are mainly isolated and distributed
along roadsides, as well as around residential areas, school campuses, or within parks; trees are either
individually distributed or clustered in groups of several trees. Tree crown sizes vary and the crown
diameter is normally within 3–8 meters. In these cases, the spatial resolution of RapidEye imagery
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is likely too coarse to identify crown spectral and texture characteristics. Higher spatial resolution
imagery needs to be utilized to conduct tree classification at the species level. Moreover, a pixel-based
classification method such as that used for RapidEye imagery cannot be used for species classification.
In this study, we examined higher spatial resolution imagery, i.e., WV2 and WV3 images, for
bi-temporal analysis with an object-based method. At each of the two study sites, three classification
schemes, including classification based on late summer WV2 images, high autumn WV3 images and
both WV2 and WV3 images, were conducted to examine the effects of bi-temporal imagery on urban
tree species classification. Two machine learning algorithms, SVM and Random Forest (RF) were
used for object-based classification. Comparisons between the two study sites were also performed
in order to analyze the impact of a complex urban environment on tree species discrimination.

2. Study Area and Datasets

2.1. Study Area

Two study sites located in the Haidian district of Beijing, China were explored in this study.
One site covers the campus of Capital Normal University (CNU) and residential areas around the
campus. The other site is located around Beijing Normal University (BNU). The areas of the study
sites are 1.4 km2 and 1.6 km2, respectively (Figure 1). Dominant tree species at CNU include the
empress tree (Paulownia tomentosa, PATO), Chinese white poplar (Populus tomentosa Carrière, POTO),
Chinese scholar tree (Sophora japonica, SOJA), and gingko (Ginkgo biloba, GIBI). At the BNU site,
the dominant tree species are London plane tree (Platanus acerifolia, PLAC), POTO, SOJA, and GIBI.
At both study sites, the dominant tree species account for over 94% of all tree stems. In addition,
these five species are the most common hardwood species in Beijing [16,17]. Minor tree species
include cedar (Cedrus deodara) and Chinese toon trees (Toona sinensis) in the CNU area, and Sabina
tibetica (Sabina tibetica Kom.) in the BNU area. Trees at both study sites are mainly located within the
campus and residential areas and along streets, thereby representing the typical distribution of trees
in an urban area. Despite similiarities in tree species and location of trees, the two study sites differ
in average tree crown size and spatial heterogeneity of tree species distribution. Tree crown diameter
varies from 3 m to 8 m at both study sites, while tree crowns at the CNU site are generally larger
than those at BNU, with an average crown diameter of 6.7 m compared to 5.5 m at BNU. In addition,
same species trees are distributed in a more clustered manner at CNU (Figure 1, Section 2.3).
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Figure 1. (a) Location of CNU and BNU study sites in Beijng city; (b) False color WV2 image over 
CNU study site with reference polygons; (c) False color composite WV2 image over BNU study site 
with reference polygons.  

2.2. WorldView-2/3 Imagery 

Cloud-free WV2 and WV3 images acquired on 14 September 2012 and 18 October 2014, 
respectively (Table 1), were used in this study. Image acquisition dates were selected based on both 
data availability and the vegetation phenology period in Beijing. Data for both were required to be 
collected in leaf-on seasons, from a similar view angle, during different phenological phases, and able 
to provide cloud-free images over the study area. Although such a pair of images was not available 
within the same year, it is reasonably certain that the WV2 and WV3 images were acquired in 
different tree growth phases. In Beijing, mid-September belongs to late summer when trees reach 
maturity and develop a fully green canopy, while mid to late October is high autumn when most 
hardwood trees begin leaf coloring and senescence [18,19]. In addition, the temperature in early 
October 2014 dropped significantly, thus accelerating the process of pigment change and leaves 
falling. Both WV2 and WV3 datasets are composed of one panchromatic band (450–800 nm) with 
Ground Sampling Distance (GSD) of 0.5 m, and eight multispectral bands with 2 m GSD including 
coastal (400–450 nm), blue (450–510 nm), green (510–580 nm), yellow (585–625 nm), red (630–690 nm), 
red edge (705–745 nm), NIR1 (770–895 nm) and NIR2 (860–1040 nm). Although the WV3 sensor has 
16 multispectral bands, the image available over the study areas only provides eightband mode. Both 
images were geometrically corrected and projected to WGS-84 UTM Zone 50N system.  

Table 1. WV2 /WV3 imagery and relevant phenological information for the study areas. 

Image Date Max off Nadir Angle Phenology Season 
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2012 
13.68° 

Late summer (29 August to 2 October);  
Leaves fully developed 

WV3 
18 October 

2014 
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High autumn (18 October to 1 November); Most species 
start yellowing phase and the leaves then start falling 

2.3. Reference Data 

Field investigations were conducted from July to October 2014. Hardcopies of WV2 and WV3 
false color composite images were brought to the field to locate tree crowns and identify tree species 
in the study areas. A total of 187 polygons with a total area of 0.06 km2 were manually outlined in the 

Figure 1. (a) Location of CNU and BNU study sites in Beijng city; (b) False color WV2 image over
CNU study site with reference polygons; (c) False color composite WV2 image over BNU study site
with reference polygons.

2.2. WorldView-2/3 Imagery

Cloud-free WV2 and WV3 images acquired on 14 September 2012 and 18 October 2014,
respectively (Table 1), were used in this study. Image acquisition dates were selected based on both
data availability and the vegetation phenology period in Beijing. Data for both were required to
be collected in leaf-on seasons, from a similar view angle, during different phenological phases,
and able to provide cloud-free images over the study area. Although such a pair of images was
not available within the same year, it is reasonably certain that the WV2 and WV3 images were
acquired in different tree growth phases. In Beijing, mid-September belongs to late summer when
trees reach maturity and develop a fully green canopy, while mid to late October is high autumn
when most hardwood trees begin leaf coloring and senescence [18,19]. In addition, the temperature in
early October 2014 dropped significantly, thus accelerating the process of pigment change and leaves
falling. Both WV2 and WV3 datasets are composed of one panchromatic band (450–800 nm) with
Ground Sampling Distance (GSD) of 0.5 m, and eight multispectral bands with 2 m GSD including
coastal (400–450 nm), blue (450–510 nm), green (510–580 nm), yellow (585–625 nm), red (630–690 nm),
red edge (705–745 nm), NIR1 (770–895 nm) and NIR2 (860–1040 nm). Although the WV3 sensor
has 16 multispectral bands, the image available over the study areas only provides eightband mode.
Both images were geometrically corrected and projected to WGS-84 UTM Zone 50N system.

Table 1. WV2 /WV3 imagery and relevant phenological information for the study areas.

Image Date Max off Nadir Angle Phenology Season

WV2 14 September 2012 13.68˝ Late summer (29 August to 2 October);
Leaves fully developed

WV3 18 October 2014 16.03˝ High autumn (18 October to 1 November); Most species
start yellowing phase and the leaves then start falling

2.3. Reference Data

Field investigations were conducted from July to October 2014. Hardcopies of WV2 and WV3
false color composite images were brought to the field to locate tree crowns and identify tree species
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in the study areas. A total of 187 polygons with a total area of 0.06 km2 were manually outlined in
the CNU study area, and 564 polygons with a total area of 0.08 km2 were outlined in the BNU study
area (Table 2, Figure 1). Each polygon may consist of either an individual tree crown or a group of
adjacent trees of the same species; if a group of trees of the same species cannot be visually separated
on the image, one polygon may cover several crowns. Due to more uniformly distributed species at
CNU, the number of polygons drawn is less than for BNU. In both areas, POTO is the most dominant
species and GIBI has the smallest coverage. Because acquisition dates of WV2 and WV3 images
were two years apart, several trees were cut down during city construction and were thus unseen on
the WV3 images. A few trees also have slightly larger crown size in 2014. Nevertheless, over 95%
of the samples can be identified at the same positions on both WV2 and WV3 images. In order to
investigate the distribution of tree species, buffer areas with a 100 m radius were outlined around the
centroid of each reference polygon, and the number of tree species within the buffer area was counted.
The average number of tree species within the buffer areas is 2.3 at CNU and 3.5 at BNU, meaning
that same-species trees at CNU have more clustered distribution than those at BNU.

Table 2. Distribution and percentage of samples delineated in both areas.

Tree Species Polygons Pixel Area (m²) Area Percentage (%)

(a) CNU Area
PATO 31 35,752 8938 16.23
POTO 55 111,213 27,803.25 50.49
SOJA 62 70,136 17,534.00 31.84
GIBI 39 3173 793.25 1.44
Sum 187 220,274 55,068.50 100

(b) BNU Area
PLAC 33 57,443 14,360.75 17.06
POTO 163 132,424 33,106.00 39.33
SOJA 147 125,890 31,472.50 37.39
GIBI 221 20,928 5232.00 6.22
Sum 564 336,685 84,171.25 100

Figure 2 illustrates mean spectral reflectance of the dominant tree species within the delineated
reference polygons on WV2 and WV3 images. It is obvious that PATO at CNU and PLAC at BNU have
very different spectral characteristics compared to the other species at the red-edge, NIR1 and NIR2
bands, especially on the WV2 image during late summer (Figure 3a,c). GIBI has different reflectance
values compared to other species in green, yellow, red, red-edge, NIR1 and NIR2 on both WV2 and
WV3 images. Spectral characteristics of POTO and SOJA are very close at all eight bands. From late
summer to high autumn, all species have decreasing reflectance in red-edge, NIR1 and NIR2 bands,
and increasing reflectance in coastal, blue, green, yellow and red bands. The phenology variation
represented in surface reflectance change is expected to help identify tree species.

Remote Sens. 2015, 7, page–page 

5 

CNU study area, and 564 polygons with a total area of 0.08 km2 were outlined in the BNU study area 
(Table 2, Figure 1). Each polygon may consist of either an individual tree crown or a group of adjacent 
trees of the same species; if a group of trees of the same species cannot be visually separated on the 
image, one polygon may cover several crowns. Due to more uniformly distributed species at CNU, 
the number of polygons drawn is less than for BNU. In both areas, POTO is the most dominant 
species and GIBI has the smallest coverage. Because acquisition dates of WV2 and WV3 images were 
two years apart, several trees were cut down during city construction and were thus unseen on the 
WV3 images. A few trees also have slightly larger crown size in 2014. Nevertheless, over 95% of the 
samples can be identified at the same positions on both WV2 and WV3 images. In order to investigate 
the distribution of tree species, buffer areas with a 100 m radius were outlined around the centroid 
of each reference polygon, and the number of tree species within the buffer area was counted. The 
average number of tree species within the buffer areas is 2.3 at CNU and 3.5 at BNU, meaning that 
same-species trees at CNU have more clustered distribution than those at BNU. 

Table 2. Distribution and percentage of samples delineated in both areas. 

Tree Species Polygons Pixel Area (m²) Area percentage (%) 
(a) CNU Area 

PATO 31 35,752 8938 16.23 
POTO 55 111,213 27,803.25 50.49 
SOJA 62 70,136 17,534.00 31.84 
GIBI 39 3173 793.25 1.44 
Sum 187 220,274 55,068.50 100 

(b) BNU Area 
PLAC 33 57,443 14,360.75 17.06 
POTO 163 132,424 33,106.00 39.33 
SOJA 147 125,890 31,472.50 37.39 
GIBI 221 20,928 5232.00 6.22 
Sum 564 336,685 84,171.25 100 

Figure 2 illustrates mean spectral reflectance of the dominant tree species within the delineated 
reference polygons on WV2 and WV3 images. It is obvious that PATO at CNU and PLAC at BNU 
have very different spectral characteristics compared to the other species at the red-edge, NIR1 and 
NIR2 bands, especially on the WV2 image during late summer (Figure 3a,c). GIBI has different 
reflectance values compared to other species in green, yellow, red, red-edge, NIR1 and NIR2 on both 
WV2 and WV3 images. Spectral characteristics of POTO and SOJA are very close at all eight bands. 
From late summer to high autumn, all species have decreasing reflectance in red-edge, NIR1 and 
NIR2 bands, and increasing reflectance in coastal, blue, green, yellow and red bands. The phenology 
variation represented in surface reflectance change is expected to help identify tree species. 

 
Figure 2. Cont. 
Figure 2. Cont.

16921



Remote Sens. 2015, 7, 16917–16937

Remote Sens. 2015, 7, page–page 

6 

 

 

 
Figure 2. Mean spectral characteristic of the dominant tree species on (a) WV2 image over CNU  
study area; (b) WV3 image over CNU study area; (c) WV2 over BNU study area; and (d) WV3 over 
BNU study area. 
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RF. In order to evaluate the effect of bi-temporal images on urban tree species identification, for each 
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Figure 2. Mean spectral characteristic of the dominant tree species on (a) WV2 image over CNU study
area; (b) WV3 image over CNU study area; (c) WV2 over BNU study area; and (d) WV3 over BNU
study area.

3. Methods

Figure 3 presents the flowchart of the urban tree species classification procedure using an
object-based method and machine learning algorithms. The procedure consists of five steps: (1) data
preprocessing; (2) images’ object generation by image segmentation; (3) tree crown area extraction;
(4) feature extraction; and (5) tree species classification using machine learning algorithms SVM and
RF. In order to evaluate the effect of bi-temporal images on urban tree species identification, for each
study site three classification schemes were tested: classification based solely on the WV2 image,
WV3 image, and a combination of WV2 and WV3 images. Accuracy assessment was then performed
for each classification scheme. A tree species classification map was finally produced based on the
best results.
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3.1. Data Preprocessing

Each of the WV2 and WV3 panchromatic and multispectral Digital Number (DN) images was
converted to Top of Atmosphere (TOA) radiance based on radiometric calibration parameters [20]
and standard correction formula [21]. For each band, surface reflectance was generated using Second
Simulation of a Satellite Signal in the Solar Spectrum Vector (6SV) [22] radiative transfer algorithm
based on a sensor spectral response function and specified atmospheric condition. A mid-latitude
summer climate model was used to specify water vapor and ozone content. Aerosol optical thickness
was obtained from MODIS Aerosol product (MOD04_L2) on the same day. Then the 2 m multispectral
WV2 (or WV3) surface reflectance image was fused with 0.5 m panchromatic WV2 (or WV3) surface
reflectance image to generate a pan-sharpened 0.5 m WV2 (or WV3) image using the Gramm-Schmidt
Spectral Sharpening (GSPS) method with nearest-neighbor resampling [23]. Studies have proven
that this pan-sharpening method could reflect the synergic effectiveness of both multispectral and
high resolution panchromatic images. It has also proved that this method is spectrally stronger
than other sharpening techniques for the fusion of WV2 multispectral bands with the panchromatic
band [24]. The GSPS method has been widely applied in land cover classification [25], forest tree
species classification [26], urban tree species classification [12], and detection of mineral alteration in
a marly limestone formation [27]. In our study, the pan-sharpened image provides clear boundaries
of tree crowns, and thus was used for further processing including segmentation and classification.

Both WV2 and WV3 pan-sharpened images were co-registered to eliminate small location
displacement of tree crowns caused by differences in image acquisition time and satellite observation
angle. The co-registration error, i.e., Root Mean Square Error, was within 0.5 pixel size (0.28 pixel at
BNU study area and 0.17 pixel at CNU study area).

3.2. Image Segmentation

Multi-resolution segmentation algorithm in Trimble eCognitionTM Developer 8.7 software
was used to generate image objects from each of the pan-sharpened WV2 and WV3 images.
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The multi-resolution segmentation algorithm is a bottom-up region merging technique. Starting
from one-pixel objects, larger objects are generated by merging smaller ones with a series of iterative
steps [28]. Parameters required as input for the segmentation algorithm include: (1) weight of each
input layer; (2) scale parameter; (3) color/shape weight; and (4) compactness/smoothness weight.
In this study, all of the eight spectral bands of WV2 or WV3 pan-sharpened imagery were used as
input. Previous research has shown that the eight WV2 bands are equally important for urban land
cover classification [29]. Furthermore, as is shown in Figure 2, the spectral reflectance of the species
are different at each of the eight bands, and it is hard to tell which bands are more important in
distinguishing these species. Therefore, all of the eight spectral band layers were assigned the same
weight in the segmentation process. The weights of color and compactness were set as 0.8 and 0.5,
respectively, in order to balance the difference of spectral/shape heterogeneity between tree species
and buildings. For bi-temporal classification, segmented polygons from each of the single-date
images were intersected to generate new image objects.

For object-based classification, scale parameter is a key factor because it is closely related to
the resultant image object size [30,31]. Under- or over-segmentation both decreases classification
accuracy, although significant under-segmentation tends to produce much worse results than
over-segmentation [9,32,33]. In this study, we adopted the Bhattacharyya Distance (BD) index method
presented by Xun et al. [25] and Wang et al. [26] in order to determine the best segmentation scale
parameter. In statistics, BD is used to measure the similarity between two discrete or continuous
probability distributions and the amount of overlap between two statistical samples. In remote
sensing, a greater BD value corresponds to greater spectral separation between two distinct classes.
The BD index method assumed that the best scale parameter leads to the maximum separation of
classes; thus, when the pair-wise BD values reach the highest, the corresponding scale parameter was
selected as optimum. Six scale parameters, 100, 110, 120, 130, 140 and 150, were tested (Table 3).
For each segmented image, BD index values between every two tree species were calculated based
on mean spectral reflectance of each band within the segmented polygons. The scale parameter
that results in the overall maximum BD values was selected as optimal scale parameter. BD index
equations are as follows:

BD pi, jq “ 2 ˆ
”

1´ e´api,jq
ı

(1)

a pi, jq “
1
8
rM piq ´M pjqsT ˆ A pi, jq´1

ˆ rM piq ´M pjqs `
1
2

lnt
detA pi, jq

a

detS piq *detS pjq
(2)

A pi, jq “
1
2
pS piq ` S pjqq (3)

where i, j represent class i and class j, BD pi, jq is the Bhattacharyya Distance between tree species
class i and j, M piq and M pjq are the matrices composed of mean reflectance values of all polygons
at each of the eight spectral bands. S piq and S pjq are the covariance matrix of M piq and M pjq,
respectively; A pi, jq is half of the sum of S piq and S pjq. The result is a value in a range of 0 to 2,
with greater BD values representing greater separability.

Table 3. Parameters for pan-sharpened WV2/WV3 image segmentation.

Band Number Input Layers Weight Scale Parameters Color Compactness

1 coastal 1
100
110
120
130
140
150

0.8 0.5

2 blue 1
3 green 1
4 yellow 1
5 red 1
6 red-edge 1
7 NIR1 1
8 NIR2 1
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3.3. Tree Canopy Extraction

Hierarchical classification strategy was utilized to extract tree crowns in non-shadow areas.
Tree canopy under shadows casted by buildings were not considered in this study as it is difficult
to recover accurate spectral information of tree crowns. First, shadow and non-shadow areas were
separated with NIR1 threshold. Studies have demonstrated that urban land covers usually have
higher reflectivity at the NIR spectrum than the visual spectrum, and the reflectance in the shadow
area drops more significantly at the NIR band than the non-shadow area because of the occlusion of
sunlight [34]. The threshold value was determined using a bimodal histogram splitting method,
which has been successfully used for shadow detection [34–36]. Image objects with mean NIR1
reflectance values higher than the threshold were extracted as the non-shadow area. Next, vegetation
was extracted from the non-shadow area with a NDVI threshold. Because there was an overlap
between NDVI values of blue roofs (0.29–0.60 at CNU and 0.22–0.64 at BNU) and those of vegetation
(0.35–0.98 at CNU and 0.43–0.99 at BNU), we further used the blue band threshold to remove
these buildings because blue roofs have significantly higher blue band reflectance than vegetation.
Both NDVI and blue band thresholds were determined with a stepwise approximation method [12],
which searches an initial threshold values in the histogram and then identifies the optimal threshold
value as the one that results in the best match with reference polygons. Finally, tree canopy objects
were separated from the other vegetated areas such as grass and shrub. New metrics were first
calculated by multiplication of a textural feature such as Grey Level Co-occurrence Matrix Entropy
(GLCME) of NIR1 band (GLCMENIR1) or Grey Level Difference Vector Angular Second Moment
(GLDVA) of NIR1 band (GLDVANIR1) and a color feature such as hue or intensity. Both texture
and color features were considered because of the observations that tree canopy normally had a
higher GLCMENIR1 value or hue values than grass/shrub, and lower GLDVANIR1 or intensity values.
All combinations of GLCMENIR1, GLDVANIR1, hue and intensity values were evaluated. Similar as
the vegetation/non-vegetation classification, threshold values were determined using the stepwise
approximation method. After trial and error, threshold values of GLCMENIR1 ˆ hue metrics and
GLDVANIR1 ˆ intensity metrics were chosen for the CNU and BNU areas, respectively (Table 4).
The accuracy of tree crown extraction was approximately 95% for both sites. Table 4 summarized all
threshold values for each classification step.

Table 4. Threshold values for hierarchical classification steps.

Non-Shaded Area Vegetation Tree Canopy

CNU_WV2 NIR1 ě 0.083 NDVI > 0.35 and blue < 0.075 GLCMENIR1 ˆ hue > 2.45
CNU_WV3 NIR1 ě 0.094 NDVI > 0.35 and blue < 0.12 GLCMENIR1 ˆ hue > 2.6
BNU_WV2 NIR1 ě 0.063 NDVI > 0.43 and blue < 0.077 GLDVANIR1 ˆ intensity < 0.0019
BNU_WV3 NIR1 ě 0.085 NDVI > 0.33 and blue < 0.12 GLDVANIR1 ˆ intensity < 0.0013

3.4. Tree Canopy Feature Extraction

For tree canopy objects on each of the WV2 and WV3 images, a total of 69 features including
33 spectral features and 36 textural features were extracted from the pan-sharpened eight-band
image in addition to the first principal component layer derived by Principal Component Analysis
(PCA). As listed in Table 5, spectral features consisted of means and standard deviations of surface
reflectance of each band, ratios calculated by mean spectral value of each band divided by the sum
of spectral values of all eight bands, NDVIs derived from red, NIR1 bands and four additional
bands, brightness values derived from the traditional bands (band 2, 3, 5, 7) and additional bands
(band 1, 4, 6, 8), and mean and standard deviation of the first principal component image. Textural
features included 24 GLCM and 12 GLDV features [9,37]. GLCM is a tabulation of the frequency
of different combinations of grey levels at a specified distance and orientation in an image object,
and GLDV is the sum of the diagonals of the GLCM within the image object [9,28]. The spectral
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indices were considered because they reflect spectral discrimination between tree species. Texture
indices were used because tree crowns with different species have different crown structures and
distribution of branches or twigs. All these spectral and textural indices are potentially useful for
forest or urban tree species classification [9,12]. The first principle component image accounts for
most of the variance in the eight bands. Previous research [38] has shown that PCA analysis helped
discrimination of trees, grass, water and impervious surfaces in urban areas. The 69 features were
used for each single-date classification scheme. For the bi-temporal classification scheme, a total of
138 features, including 69 features from each of the WV2 and WV3 images, were used. Note that object
geometric features such as size, shape index, or length/width ratio were not incorporated because an
image segment may consist of several connected trees, and could therefore not represent shape and
size characteristics of each tree crown.

Table 5. Description of object features derived from WV2/WV3 images.

Feature Name Description

Mean1-8 Mean of bands 1–8
SD1-8 Standard deviations of individual bands 1–8

Ratio1-8 ith band mean divided by sum of band 1 through band 8 means
BTRA Brightness derived from traditional bands 2, 3, 5, 7
BADD Brightness derived from additional bands 1, 4, 6, 8

NDVI75 (band7 ´ band5)/(band7 + band5)
NDVI86 (band8 ´ band6)/(band8 + band6)
NDVI84 (band8 ´ band4)/(band8 + band4)
NDVI61 (band6 ´ band1)/(band6 + band1)
NDVI65 (band6 ´ band5)/(band6 + band5)
GLCMH GLCM homogeneity from bands 3, 6, 7, 8

GLCMCON GLCM contrast from bands 3, 6, 7, 8
GLCMD GLCM dissimilarity from bands 6, 7, 8
GLCMM GLCM mean from bands 3, 6
GLCME GLCM entropy from bands 3, 6, 7, 8

GLCMSD GLCM standard deviation from bands 3, 6, 7, 8
GLCMCOR GLCM correlation from bands 6, 7, 8

GLDVA GLDV angular second moment from bands 6, 7, 8
GLDVE GLDV entropy from bands 6, 7, 8
GLDVC GLDV contrast from bands 3, 6, 7, 8
GLDVM GLDV mean from bands 3, 6
PCAM Mean of the first principal component from Principal Component Analysis
PCASD Standard deviation of first component from Principal Component Analysis

3.5. Tree Species Classification

Image objects that intersected with reference polygons were used as reference samples.
The number of samples for each tree species was summarized in Table 6. For each classification
scheme at each study area, two machine learning algorithms, Support Vector Machine (SVM) and
Random Forest (RF), were used to mode the classifiers.

Table 6. Number of sample objects for each study area.

Study Area Tree Species WV2 WV3 Bi-Temporal

CNU

PATO 98 98 260
POTO 269 214 620
SOJA 205 157 396
GIBI 74 50 87
Sum 646 519 1363

BNU

PLAC 168 115 397
POTO 448 303 726
SOJA 459 335 814
GIBI 241 187 259
Sum 1316 940 2196
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Support Vector Machine (SVM) was developed by Cortes and Vapnik [39]. It attempts to find the
optimal hyper plane in the high-dimensional feature space to maximize the margin between classes
with a kernel function in polynomial, radial basis, or sigmoid form. SVM has proved to perform well
in handling small numbers of training samples with high-dimensional space [14,40,41]. In this study,
we used Radial Basis Function Kernel (RBF) as the kernel function because it works well in many
classification tasks [42–44]. Optimal classifier parameters including RBF kernel parameter g and
penalty factor c were determined by the grid search method in the LibSVM software package [45].

Random Forest (RF) [46] is constituted by many Classification and Regression Trees (CARTs) and
suitable for high-dimensional dataset classification [40,47,48]. Each decision tree in RF is constructed
by extracting an individual bootstrap sample (sampling with replacement) from the original dataset.
The splitting variables used at each node are determined based on the Gini Index [7,40,49–51]. Then,
each tree assigns the single vote to the most frequent class for the input data. To finish, the class
gaining the majority vote is classified into the corresponding category. RF employed out-of-bag
(OOB) samples that are not in the bootstrap samples to estimate the prediction performance. During
classification, two important parameters [7,49] are necessary: (1) ntree, i.e., the number of decision
trees executing classification; and (2) mtry, i.e., the number of input variables used at each node. In this
study, we tried the parameter ntree ranging from 100 to 1000 and mtry as 1, 8 or 11 (the square root of
the number of features) to determine the best group setting. After trial and error, the validation results
indicated that the accuracy reached its maximum with ntree = 500 and mtry = 8 for single-date image
classification, and ntree = 500 and mtry = 11 for bi-temporal image classification. These parameters
were thus used for RF classification in this study.

Image objects with over 10% of the area intersecting with the reference samples were used as
sample objects. Ten-fold cross-validation with fixed subsets of training/validation sample objects
was conducted to for each classifier and classification scheme. Each subset of the training/validation
samples were selected based on a stratified random sampling process in order to ensure that
the sample selected had a proportional number of each class. The average overall accuracy,
kappa value, user and producer accuracy from validation datasets were used to assess the
classification performance.

4. Results

4.1. Selection of Optimal Image Segmentation Scale Parameter

Pair-wise BD values were calculated for each image at each study area. Figure 4 shows that at
both areas, BD values of all six pairs of species increase gradually with a scale parameter ranging from
100 to 130. For the WV2 image at CNU (Figure 4a), all BD values except that between POTO and SOJA
reach their maximum at the scale parameter of 140 and become stable from 140 to 150. The maximum
BD between POTO and SOJA is obtained at a scale parameter of 150. Thus, 150 was selected as the
best scale parameter. For the WV3 image at CNU, all BD values reach a plateau at a scale parameter
of 140, thus 140 was selected as best scale parameter (Figure 4b). Similarly, 140 was selected as best
scale parameters for both images at BNU (Figure 4c,d). In both study areas, the number of tree stems
per segment varies from one to eight depending on the tree crown layout. For individual tree crowns,
each segment only covers one tree crown. For connected tree crowns (for example, Chinese white
poplars on the CNU campus are planted densely along the avenue), one segment may cover as many
as eight stems.

At both study sites, GIBI and any other species always have higher BD values, thereby indicating
that GIBI has better spectral separability from other species, and thus better classification accuracy is
expected. POTO and SOJA species always have smaller BD values, meaning that the two species
are less spectrally separable. PLAC and SOJA, PATO and POTO species are also less separable.
Overall, BD values at BNU are lower than those at CNU; lower overall classification accuracy is
therefore expected.
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Figure 4. BD values between six pairs of tree species at image segmentation scales from 100 to 150.  
(a) BD values from WV2 image at CNU; (b) BD values from WV3 image at CNU; (c) BD values from 
WV2 image at BNU; (d) BD values from WV3 image at BNU. 
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4.2. Classification Results

Table 7 lists the average overall accuracy (OA) and kappa values from all classification schemes
at both study sites. The OAs range from 70.0% to 92.4% at the CNU study site, and from 71.0% to
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83.0% at the BNU study site. Using either the SVM or RF algorithm, tree species classification based
on bi-temporal WV2 and WV3 images produces considerably higher accuracies than those based on
each image alone at both study sites, with an average increase in OA of 11.5%. At CNU, the OA
is around 9.7%–20.2% higher than when using a single-date image, regardless of the classification
method used. Kappa values based on bi-temporal images are higher than 0.85, while those based on
single-date images can be as low as 0.56. At BNU, OAs from bi-temporal image classification increase
around 5%–12% compared to single-date image classification, and kappa values increase from less
than 0.60 to over 0.75.

Table 7. Classification results with single-date images and bi-temporal images using the SVM and RF
methods in the CNU and BNU areas. OA: overall accuracy.

Classification
Schemes

CNU BNU
SVM RF SVM RF

OA(%) Kappa OA(%) Kappa OA(%) Kappa OA(%) Kappa
WV2 82.7 0.75 77.2 0.67 75.6 0.66 71.0 0.59
WV3 76.3 0.66 70.0 0.56 74.2 0.64 72.7 0.62

bi-temporal 92.4 0.89 90.2 0.85 80.3 0.76 83.0 0.76

Radar charts in Figure 5 show that for almost all tree species, both producer accuracies (PAs)
and user accuracies (UAs) derived from bi-temporal image classification are notably higher than
those from single-date image classification; the increases of PAs and UAs are on average 10.7%.
At CNU, PAs of SOJA species increase by over 15% regardless of classification algorithm used, and
UAs increase by over 11%; PATO has low PA and UA (44.7%–56.0%) based on the WV3 image alone,
which may be caused by the small spectral reflectance gap between PATO and other species during
high autumn (Figure 2b), while the addition of the WV2 image acquired in late summer helps increase
the accuracy to 81.5%–87.1%. At BNU, PA of PLAC increase from 62.9% to 91.2% and UA increase
from 78.2% to 94.2%. GIBI has relatively higher PAs and UAs than other species at both study sites
using either WV2 or WV3 images. Especially at BNU, both PA and UA of GIBI are over 85%, while
PA and UA of other species are lower than 80%. PATO, PLAC and SOJA had lower PA and UA when
single-date images were used in the classification in each area. However, when using a combination
of WV2 and WV3 images, PA and UA of PATO and SOJA at CNU, and PLAC at BNU increase
substantially and are comparable with those of GIBI species (Figure 5). It is evident that bi-temporal
classification not only produces higher but also more balanced PAs and UAs among tree species.
The standard deviation of PAs of all species decreases from 11.7% using a single-date image to 6.2%
using a bi-temporal image, and that of UAs decreases from 13.6% to 6.4%.

Table 7 demonstrates that OAs at the CNU site are consistently higher than those from BNU,
regardless of the classification methods or schemes. For example, the overall accuracy generated
from WV2 images using the SVM classifier at CNU is about 7% higher than that at BNU. For the same
dominant species at both sites, i.e., POTO, SOJA and GIBI, both PAs and UAs at CNU are higher than
those at BNU (Figure 5). Comparisons between SVM and RF classification results show that SVM is
superior to RF at both sites (Table 7 and Figure 5). OAs from SVM were around 1.5%–6.3% higher than
those from RF except that from the bi-temporal classification scheme at BNU. TheSVM classifier was
thus used for tree species mapping. Figure 6 illustrates the resultant classification maps for dominant
tree species using the SVM method based on bi-temporal images over both areas. Minor tree species
were classified as one of the dominant classes. It is obvious that the classification map at BNU is more
fragmented than that at CNU.
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Figure 5. Radar charts of three classification schemes with SVM and RF methods in two study areas. 
(a) PAs and UAs using SVM at CNU; (b) PAs and UAs using RF at CNU; (c) PAs and UAs using SVM 
at BNU; (d) PAs and UAs using RF at BNU. PA: producer accuracy; UA: user accuracy. 
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Figure 6. Tree species map at (a) CNU area and (b) BNU area using bi-temporal images and
SVM method.

16930



Remote Sens. 2015, 7, 16917–16937

4.3. Feature Importance

Tables 8 and 9 list the first 20 important metrics ranked by SVM and RF classifiers in the
bi-temporal classification scheme. F-score and Mean Decrease Accuracy (MDA) were used to
calculate feature importance in SVM and RF, respectively. F-score is a tool embedded in LibSVM
software and measures the discrimination of two sets of real numbers [52]. MDA is generally used to
measure the contribution of each feature to prediction accuracy in the RF model and can be calculated
by permuting the mth features of each tree for the out-of-bag data [53]. Higher F-score or MDA values
indicate higher importance of the feature in classification.

Among the 138 features used for bi-temporal classification, the top 20 important features
identified by the SVM and RF classifier are mostly dominated by spectral characteristics. In both
the CNU and BNU areas, less than five textural features are listed in the top 20 features by either
the SVM or RF classifier, indicating that the spectral features make a more significant contribution to
the species classification than the textural features. In both study areas, both the F-score and MDA
identify the red-edge band (Band 6), the new NIR band (NIR2, Band 8) and green band (Band 3) as
the most important bands since the features based on these bands, such as WV2_NDVI86, WV3_SD6,
WV2_Mean3 and WV3_Ratio6, are consistently listed among the top-ranking features. Compared to
the traditional four bands of high resolution satellite sensors, the new bands, especiallythe red-edge
and NIR2 band designed for WV2 and WV3, make more of a contribution to urban tree species
identification. In the two study areas, both WV2 and WV3 features are listed as important. Removing
features derived from either WV2 or WV3 result in a decrease in accuracy, thereby emphasizing the
role of bi-temporal spectral information in urban tree species classification.

Table 8. F-score weight of each feature in SVM for bi-temporal classification.

Rank
CNU

Rank
BNU

Features F-Score Features F-Score
1 WV2_Mean3 0.696 1 WV2_Ratio6 0.479
2 WV3_Mean3 0.511 2 WV2_NDVI86 0.409
3 WV2_Mean4 0.511 3 WV3_Ratio6 0.403
4 WV2_NDVI86 0.455 4 WV2_Mean3 0.376
5 WV3_SD6 0.446 5 WV2_Mean4 0.331
6 WV3_SD3 0.353 6 WV3_SD6 0.309
7 WV3_SD5 0.344 7 WV2_Mean6 0.288
8 WV3_PCASD 0.343 8 WV2_SD6 0.249
9 WV3_PCAM 0.343 9 WV2_Mean5 0.236
10 WV3_Mean4 0.337 10 WV3_Mean6 0.229
11 WV3_SD2 0.322 11 WV3_PCASD 0.207
12 WV3_SD4 0.322 12 WV2_BADD 0.196
13 WV2_Ratio6 0.312 13 WV2_PCASD 0.189
14 WV3_Ratio6 0.310 14 WV2_BTRA 0.187
15 WV2_Mean5 0.304 15 WV2_PCAM 0.185
16 WV2_Mean2 0.291 16 WV3_NDVI61 0.185
17 WV2_Mean1 0.262 17 WV3_Mean3 0.184
18 WV3_SD1 0.262 18 WV2_GLDVE7 0.169
19 WV3_SD8 0.261 19 WV2_GLDVA8 0.167
20 WV3_Mean2 0.254 20 WV2_GLDVE8 0.165
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Table 9. MDA of each feature in RF for bi-temporal classification.

Rank
CNU

Rank
BNU

Features MDA Features MDA
1 WV2_NDVI86 20.3 1 WV2_Ratio6 24.7
2 WV2_Ratio6 19.8 2 WV2_NDVI86 20.0
3 WV2_Mean3 16.1 3 WV3_Ratio6 16.8
4 WV3_SD6 15.1 4 WV3_SD6 16.6
5 WV3_PCASD 13.6 5 WV3_NDVI86 15.8
6 WV3_Ratio6 13.5 6 WV2_Mean3 15.7
7 WV3_Mean5 13.3 7 WV2_Ratio3 14. 4
8 WV3_Mean3 13.2 8 WV2_GLCMSD6 13.9
9 WV3_SD8 12.7 9 WV2_Ratio5 13.8

10 WV3_NDVI86 12.6 10 WV2_SD6 13.7
11 WV2_GLCMM3 12.2 11 WV3_Mean3 13.7
12 WV2_Mean6 12.1 12 WV2_NDVI65 13.6
13 WV3_SD7 11.9 13 WV3_NDVI65 13.2
14 WV3_PCAM 11.8 14 WV3_GLCMM6 13.2
15 WV2_SD6 11.7 15 WV2_GLCMH8 13.0
16 WV2_BTRA 11.7 16 WV2_GLDVA8 12.9
17 WV2_Mean8 11.7 17 WV3_Mean1 12.8
18 WV2_GLDVC3 11.7 18 WV3_SD7 12.7
19 WV2_GLCMCON3 11.7 19 WV2_NDVI57 12.6
20 WV2_PCAM 11.7 20 WV3_GLDVA6 12.4

5. Discussion

5.1. Effect of Bi-Temporal Images on Urban Tree Species Classification

In this study, we applied an object-based approach with SVM and RF classification algorithms
for urban tree species classification at two study areas in Beijing, China. Our results show that
using bi-temporal WV2 and WV3 images consistently improve urban tree species mapping accuracy
regardless of study area or classifier used. The increasing accuracy in bi-temporal classification is
mainly attributed to phenology variation that is represented in WV2 images acquired in late summer
and WV3 images acquired in high autumn. From summer to autumn, the content of chlorophyll
in tree leaves decreases gradually while the lutein increases. This results in a slight increase of
blue and red band reflectance and a significant increase of costal and yellow band reflectance,
while the reflectance of NIR1 and NIR2 bands declines due to change of porous thin-walled cells
and tissues of the plant leaves. Variations in phenological patterns among tree species represented
in the bi-temporal images enhance the spectral heterogeneity of crowns, thus helping to improve
the classification accuracy of each tree species. It should be noted that the unique phenological
characteristics of each tree species is also influenced by the climate conditions at the time. As already
mentioned, temperature in early October 2014 dropped significantly. This possibly accelerated the
process of pigment change and leaves falling, especially for the GIBI species whose leaf coloring and
senescence occur earlier than other species. Our results suggest that local phenological phases during
a certain year need to be considered when selecting bi-temporal or multi-temporal images for tree
species classification.

Compared to previous research considering three or more phenological phases within
one year [14,54], we used only two seasons in different years in late summer and high autumn in
order to identify tree species and also gained promising accuracy. Hill et al. [55] reported that the
highest classification accuracy was obtained when combining spring, summer and autumn image,
while an autumn image with an image from both the green-up and full-leaf phases were sufficient
for forest tree species classification. Tigges et al. [13] pointed out that spring, summer and autumn
images were needed to achieve high class separability in an urban forest in Berlin using five-band
RapidEye images. Our results confirmed these findings by combining late summer images with high
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autumn images. Although the two images were acquired in different years, there was not much
change in species distribution, rendering them sufficient for bi-temporal analysis. The resultant OAs
from bi-temporal image classification of 80.3% to 92.4% (CNU area) and 80.3% (BNU area), and
Kappa values of 0.89 (CNU area) and 0.76 (BNU area) indicate high consistency with the actual
species distribution. In addition to higher overall classification accuracy from bi-temporal image
classification that was reported similarly in previous research, we found that that the PAs and UAs
of tree species were more balanced compared to the single-date image scenario. Smaller differences
of PAs (UAs) among tree species suggest that each individual species can be identified with similar
accuracy, and the overall species distribution map is more treliable.

Our study extends the existing research [13] in that we explored bi-temporal images with higher
spatial resolution for urban tree species mapping. In urban areas where trees have various crown
sizes and scattered distribution, resolution of either IKONOS or RapidEye cannot provide spatial
details of tree crowns, and thus does not support species-level mapping. Our study suggests that
satellite sensors should provide spatial and spectral resolution comparable with WV2 or WV3, and
images acquired on at least two phenological phases are needed for the purpose of urban tree
species mapping.

Our analysis on feature importance rank further confirms the effect of bi-temporal images on
urban tree species identification, as both WV2- and WV3-derived features are listed among the most
important features ranked by the F-score used for SVM and the mean decrease accuracy (MDA)
used for RF. Removing features from any date reduces the accuracy. It is worth noting that spectral
features always have a greater contribution than texture features in species discrimination, which
varies from the studies in forested areas [9,50]. This can be explained by a much lower density of trees
in an urban area. As trees are isolated, differences in texture patterns of tree crowns are difficult to
uncover. This further highlights the importance of spectral features, especially those associated with
chlorophyll or leaf cellular structure such as red-edge and NIR reflectance. Therefore, the utilization
of bi-temporal or multi-temporal images is critical, because the temporal change of spectral features
enhances the discrimination of tree species.

5.2. Effect of Complex Urban Environment on Tree Species Classification

Two study areas were selected in this study in order to explore the capability of WV2/WV3 in
urban tree species classification. Although both study sites represent a typical urban environment
in big cities in China and tree species are similar at both sites, they are different in crown spatial
distribution and represent different urban environment heterogeneities. As previously mentioned,
compared to the BNU site, trees with same species in the CNU area are more clustered and evenly
distributed than those with scattered distribution; our field investigation reported that the average
number of tree species within buffer areas with the same size is 2.3 at CNU and 3.5 at BNU. On the
other hand, BNU has a greater number of tall buildings and they are in general taller than those
at CNU. Previous research showed that species distribution influences the classification results in a
forested area [56]. Uniform distribution of species tends to reduce the effect of overlapping crown
from different adjacent species and thus yields higher accuracy. More abundant species within a
small region increases variations of spectral information, thus reducing spectral separability. In our
study, we found a similar pattern in the urban environment. The overall accuracies at CNU with
more uniform species distribution were consistently higher than those at the BNU site except that of
the WV3 classification scheme using RF. Urban tree spectral characteristics are also susceptible to the
surrounding artificial materials such as buildings and backgrounds. In addition to tree distribution,
the scattering and diffuse reflectance from tall buildings may also affect the spectral information of
tree crowns. Pure spectral information of a single tree species next to the highrise is difficult to
observe, thus potentially leading to large within-species spectral variation and lower classification
accuracy at BNU.
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In our study, we used two machine learning algorithms, SVM and RF, in order to ensure that
the improvement of bi-temporal images in urban tree species classification is independent of the
classification approaches used. Interestingly, we found that SVM consistently outperforms RF at both
study sites for all classification schemes except bi-temporal classification at the BNU site (Table 7).
Manystudies have compared SVM and RF in various classification applications and showed different
comparison results [40,47,57]. Barrett et al. [41] applied SVM, RF and the Extremely Randomized Tree
method for grassland classification in Ireland, and the results indicated that the accuracies of SVM
and RF were very close. Duro et al. [51] reported that the classification accuracies yielded by SVM
were slightly higher than those produced by RF when classifying the agricultural landscapes using
the object-based image analysis approach; however, the difference was not statistically significant
(p > 0.05). Li et al. [52] compared several machine learning algorithms for urban land classification
and reported that RF was always better than SVM. Malahlela et al. [53] reported higher accuracy of RF
for canopy gap mapping based on WV2 data. Previous studies have suggested that the comparison
between RF and SVM is affected by the amount of samples and the distribution of samples among
each class [49]. SVM tends to outperform RF in the case of a small amount and uneven distribution of
samples. Investigation of the reference sample data in our study shows that the number of samples
of the four species is imbalanced. SOJA and POTO species have much greater coverage than PATO,
PLAC and GIBI at both sites, and thus a greater amount of samples were collected. The disparity
among the number of samples might explain the higher overall accuracies obtained with the SVM
algorithm. In an urban area, tree species are more scattered and unevenly distributed than in a
forested area. Our results, along with previous research [43], imply that SVM may be more suitable
for urban tree species classification.

Higher ovverall accuracies may be due to the fact thatthe selected study areas are relatively
small and that there are only four tree species at each study area compared to six or more species in
previous studies [12,13]. Lower accuracy is expected for bigger study areas and for amore complex
distribution of tree species. However, this study provides a solid example of the impact of different
urban environments on tree species classification, as both study areas have similar tree species and
the same datasets were examined. Nevertheless, district- or city-wide species-level classification still
needs to be conducted for operational investigation of urban trees.

6. Conclusions

This study evaluated bi-temporal WV2 and WV3 imagery for tree species identification in
complex urban environments. An object-based classification method based on SVM and RF machine
learning algorithms was conducted using late summer WV2 images and/or high autumn WV3
images. Five dominant tree species, the empress tree (Paulownia tomentosa), Chinese white poplar
(Populus tomentosa Carrière), Chinese scholar tree (Sophora Japonica), gingko (Ginkgo biloba) and London
plane tree (Platanus acerifolia), were examined at two study sites in urban Beijing, China.

Results showed that phenology variations presented in the bi-temporal imagery helped enhance
the species identification capability. The overall accuracies based on both WV2 and WV3 imagery
reached 92.4% and were significantly higher than those based on single-date image alone. The PAs
and UAs produced by a single-date image were relatively low (44.7%–82.5%) and could hardly
satisfy requirements for most urban ecological assessment applications, whereas those derived
from bi-temporal images were on average 10.7% higher, and the PAs and UAs more balanced.
The feature importance analysis revealed that spectral characteristics were more important than
texture features. The new wavebands designed for WV2 and WV3 sensors such as red-edge and
NIR2 bands contributed more to the classification than the traditional four bands. Both WV2- and
WV3-derived features are listed among the most important features. This highlights the necessity
of bi-temporal or even multi-temporal high resolution images for urban tree species classification.
Comparison between two study sites showed that urban environment heterogeneity and distribution
pattern of trees in the study area influenced classification accuracy. Clustered and evenly distributed
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tree species were more easily identified than trees with scattered distribution. Our study also suggests
that SVM is superior to RF in urban tree species classification as the former algorithm is more suitable
for imbalanced sample distribution.

This study only identified the species in non-shadowed areas and did not consider the shadow
effect on species classification. Our future research will focus on the development of approaches for
spectral information restoration under shadowed areas in order to perform better and more complete
tree species inventory. Because of the rounded shape of tree crowns, the uneven sun illumination
within tree crowns may affect the species classification, especially for trees individually distributed.
Impact of the uneven illumination on tree species classification will be incorporated in our future
research. As the WV3 satellite could provide images in the 16-band mode, future research will also
include evaluation of the eight shortwave infrared spectral bands in urban tree species classification.
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