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Abstract: Analyzing temporal series of satellite data for regional scale studies demand high
accuracy in calibration and precise geo-rectification at higher spatial resolution. The Advanced
Very High Resolution Radiometer (AVHRR) sensor aboard the National Oceanic and Atmospheric
Administration (NOAA) series of satellites provide daily observations for the last 30 years at
a nominal resolution of 1.1 km at nadir. However, complexities due to on-board malfunctions
and orbital drifts with the earlier missions hinder the usage of these images at their original
resolution. In this study, we developed a new method using multiple open source tools which
can read level 1B radiances, apply solar and thermal calibration to the channels, remove bow-tie
effects on wider zenith angles, correct for clock drifts on earlier images and perform precise
geo-rectification by automated generation and filtering of ground control points using a feature
matching technique. The entire workflow is reproducible and extendable to any other geographical
location. We developed a time series of brightness temperature maps from AVHRR local area
coverage images covering the sub alpine lakes of Northern Italy at 1 km resolution (1986–2014;
28 years). For the validation of derived brightness temperatures, we extracted Lake Surface Water
Temperature (LSWT) for Lake Garda in Northern Italy and performed inter-platform (NOAA-x
vs. NOAA-y) and cross-platform (NOAA-x vs. MODIS/ATSR/AATSR) comparisons. The MAE
calculated over available same day observations between the pairs—NOAA-12/14, NOAA-17/18
and NOAA-18/19 are 1.18 K, 0.67 K, 0.35 K, respectively. Similarly, for cross-platform pairs, the
MAE varied between 0.5 to 1.5 K. The validation of LSWT from various NOAA instruments with
in-situ data shows high accuracy with mean R2 and RMSE of 0.97 and 0.91 K respectively.
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1. Introduction

The AVHRR Local Area Coverage (LAC) data which are available at nominal 1.1 km spatial
resolution (hereafter AVHRR LAC) with an extensive coverage of the earth is an unique source of
the longest medium resolution time series satellite data for regional studies. However, the number
of studies which use older AVHRR LAC data are limited, owing to the complexity in achieving
acceptable accuracy due to well documented orbital drifts and clock errors with the instruments [1–5].
The archived AVHRR LAC data [6] is stored in 10 bit precision and consist of sensor data in raw
digital counts, calibration coefficients, time codes, quality indicators, angles, telemetry etc., which are
appended at different bit locations [7]. The data are provided in NOAA level 1B raw format where
earth location and calibration parameters are appended with the sensor data (digital numbers) but
not applied [8]. The data are freely available on the Comprehensive Large Array-data Stewardship
System (CLASS) [6]. CLASS is NOAA’s online facility to distribute data from multiple satellites.
Indeed, it requires high level processing taking care of inter-satellite calibrations, multiple versions
of AVHRR sensor and correcting for the known issues with the older data [3,8–10]. Developing a
long term time series combining AVHRR LAC data from multiple NOAA instruments demand two
different approaches, one for the POD (Polar Orbiter Data) series of instruments (NOAA-9/11/12/14)
and another for the KLM (KLM represents the instrument codes) series (NOAA-16/17/18/19) due to:
(i) significant differences in the headers of the POD and KLM series data [8,10]; (ii) varying spectral
characteristics of the different versions of the AVHRR sensor—AVHRR/1 and AVHRR/2 for POD
and AVHRR/3 for KLM (Table 1); and (iii) pre-processing steps depending upon the corrections to be
applied for accurate navigation [3].

The POD instruments suffered largely with position errors due to the orbital drifts, and
navigational errors due to discrepancies with the satellite orientation (generally termed as satellite
attitude) and satellite clock [1,3]. The satellite position error that occurred from the orbital drift
of the instruments, is due to the lack of orbit adjustment systems [2]. This caused a change in the
equatorial crossing time from the original (by hours) and the shift often increased with the age of the
instrument [11] (Figure 1). In Figure 1, the observation time is plotted for all the NOAA instruments
used in this study, showing a rather larger shift with the earlier missions. The effects of orbital drift
on the derived vegetation indices and sea surface temperature is well documented by [2,12]. On the
other hand, the clock error is due to drift in the satellite clock over time. To overcome this, a periodical
reset of the clock was performed in the earlier NOAA instruments [3]. This also contributed to the
navigational error due to clock mis-synchronization. To correct the navigational errors, historical
ephemeris (position of satellite in space at a given day and time) data stored in two line element
format are widely used [3,13]. The attitude control system comprises of three rotation angles - roll,
pitch and yaw which control the actual orientation by maintaining the spacecraft fixed axes along the
desired geodetic directions [14]. In the earlier AVHRR LAC data attitude errors are difficult to correct
due to missing data of roll, pitch and yaw angles. To correct the navigational errors due to attitudinal
shifts, the angles are modeled from a set of known landmarks identified from the images, but this
approach has limited success [3,14]. The KLM instruments on the other hand were launched with
much improved AVHRR/3 six channel sensor and had advanced systems on-board to minimize the
navigational errors.

Numerous studies in the past deal with the accurate geolocation of the AVHRR LAC data to
develop continuous time series irrespective of the NOAA instrument [1,14–21]. One of the earlier
methods is the automatic adjustment of the AVHRR images by applying a physical deformation
model of the actual image using the ephemeral elements followed by landmark adjustment using
reference Ground Control Points (GCP) along coastal lines [1,15]. With this method an accuracy
within one pixel is achieved on images acquired from NOAA-11/12/14. Hüsler et al. [20] used
this method as part of their AVHRR archiving process for images over Europe. Moreno et al. [17]
used a small sample of GCP’s to refine the orbital elements of the satellite thereby improving the
registration accuracy of the images. More recently, advanced image matching techniques have been
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used to extract GCP’s to achieve sub-pixel accuracy in geo-rectification of AVHRR images [18,19].
Latifovic et al. [18] developed historical AVHRR 1.1 km baseline data over entire Canada and used all
the AVHRR LAC data acquired by NOAA POD and KLM instruments. They used an image matching
procedure to automatically extract GCP’s.

Table 1. Spectral resolution of Advanced Very High Resolution Radiometer (AVHRR) sensors in µm.

Channels AVHRR/1 AVHRR/2 AVHRR/3

1 0.58–0.68 0.58–0.68 0.58–0.68
2 0.725–1.10 0.725–1.10 0.725–1.10

3a N.A N.A 1.58–1.68
3b 3.55–3.93 3.55–3.93 3.55–3.93
4 10.50–11.50 10.3–11.3 10.3–11.3
5 Ch.4 repeated 11.5–12.5 11.5–12.5

1000

1100

1200

1300

1400

1500

1600

1700

1986 1990 1995 1998 2002 2006 2008 2011

Year

T
im

e

Satellites

NOAA9

NOAA11

NOAA12

NOAA14

NOAA16

NOAA17

NOAA18

NOAA19

Figure 1. Plot of variation in observation times of National Oceanic and Atmospheric Administration
(NOAA) instruments, note the large orbital drifts of the earlier NOAA-9/11/12/14 instruments.

However, the potential use of earlier AVHRR LAC images is often hindered by lack of a
complete solution to accurately process them [14]. They are seldom used in research due to lack
of open software tools which can perform the aforementioned corrections and accurately process
the data. The available solutions are either outdated, they offer limited success, or are published
with proprietary licenses. Newer methods and geospatial libraries have become available in the last
decade and it is now worthwhile to revisit the AVHRR navigation [22,23]. At present the ability
to accurately process all the AVHRR LAC images are limited to very few research centers with
satellite receiving stations. There is also lack of publicly available processed AVHRR LAC dataset
covering a particular area of interest; on the other hand, the level 1B data are freely available for any
part of the world. Therefore, we see a strong demand for an open source solution to process the
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AVHRR LAC data in level 1B format for any area of interest which will support the scientists in
regional level studies.

Our aim is to develop an automated workflow using multiple open source geospatial libraries
and software packages to process all existing AVHRR LAC data (since 1986) for our study area. As a
proof of concept, geo-rectified time series (1986–2014) of brightness temperature from the two thermal
bands (channels 4 and 5) of AVHRR are developed, which is then intended to be used for estimating
the historical surface temperature of sub-alpine lakes [21]. The quality of the developed time series is
validated for the automatic geo-rectification and thermal calibration. We estimated long-term LSWT
of Lake Garda from the time series of brightness temperatures and performed inter-platform and
cross-platform comparisons along with in-situ data to validate the product. We used Pytroll, a set
of open source Python libraries originally meant for processing weather satellite data to read, correct
and calibrate the AVHRR data [24]. We extended the Pytroll to enhance its support for POD and KLM
series of AVHRR LAC data. We used the feature matching technique in Orfeo toolbox for precise
geo-rectification [25]. Finally all the post processing including cloud masking, workflow automation,
and time series development were accomplished in the GRASS GIS 7.0 software ([23,26,27].

2. Methods

2.1. Data and Software

We obtained all the available AVHRR LAC data from the NOAA public archive (CLASS—[6])
in the period 1986–2014 covering the study area of Northern Italy (Longitude: 42.9762°E–46.2371°E;
Latitude: 8.2127°N–12.3456°N; Area: 360 km × 340 km). Only day time images acquired between
8:00 to 17:00 UTC are considered for this study. The data are stored in binary format and consist of
two major parts—data header and the scan line data. The data header contains generic data on the
instrument, acquisition time, data quality, orbital parameters, and conversion factors for calibration
and telemetry data, while the scan line data contain data specific to a single scan or time segment
including calibration, navigation, telemetry and sensor data, among many others. A complete list of
headers is given here: POD—[10]; KLM—[8]. There are 2048 points in a LAC scan line on which the
solar zenith angle and earth location data (latitude and longitude) are sampled at every 40th sample,
while the sensor data are recorded for each of the 2048 samples.

Figure 2a,b shows the year-wise distribution of the obtained level 1B data and the time line
of all the NOAA instruments, respectively. As listed in the Table 1, AVHRR/1 lacks dual thermal
bands required for the split window technique of surface temperature calculation, which is our
main goal in processing this data. Hence the AVHRR LAC images acquired by the earliest NOAA
instruments—TIROS-N, NOAA-6/8/10 were avoided. Due to non-availability of day images over the
study area, data from NOAA-15 were also discarded. In line with the main objective of estimating day
time Lake Surface Water Temperature (LSWT) for the sub-alpine lakes in the study area, we processed
only the day images.

We combined multiple open source geospatial software packages in a single workflow to
meet the specific requirements of AVHRR processing. The software used, its source code links
and the licenses are listed in Table 2. Pytroll is an open source project, contributed by several
developers primarily from national meteorological services [24]. Among the Pytroll libraries, mpop,
pygac and pyresample are used respectively for reading, calibrating, and resampling the AVHRR
LAC images. Figure 3 shows their specific roles in the workflow. We used these libraries to
read all the AVHRR LAC level 1B data, apply corrections, calibrate and write all the channels to
separate TIF images. Orfeo toolbox is a remote sensing image processing toolbox developed in
C++ primarily by the Centre National d’Études Spatiales, France [25]. We used the Scale Invariant
Feature Transform (SIFT) feature matching algorithm in Orfeo toolbox to extract homologous points
(hereafter GCP’s; homologous meaning same relative position, a term used in Orfeo toolbox module
– otbcli_HomologousPointsExtraction – for extracting similar GCP’s from two images using feature
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matching algorithms like SIFT) in order to apply final matching of each image against a reference
image [28]. The GCP’s created are then filtered using the newly developed m.gcp.filter tool in GRASS
GIS [29]. GRASS GIS is one of the most stable and well established open source geographical
information systems and remote sensing software which can handle both vector and raster processing
in two and three dimensions [23]. The calibrated AVHRR LAC images are rectified using the filtered
GCP’s with i.rectify module in GRASS GIS. We developed all the raster processing and the cloud
removal procedure in GRASS GIS [27].

Figure 2. Data distribution. (a) Distribution of AVHRR Local Area Coverage (LAC) images over
study area from 1986 to 2014 obtained from NOAA Comprehensive Large Array-data Stewardship
System (CLASS) archive, separated by different instruments; (b) Time line of NOAA instruments used
in this study.
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Table 2. List of software packages used in this study (License type urls: http://www.gnu.org/
copyleft/gpl.html, http://www.cecill.info/licences/Licence_CeCILL_V2-en.html).

Software Source Version License

Pytroll/mpop https://github.com/pytroll/mpop - GNU GPL v3
Pytroll/pygac https://github.com/adybbroe/pygac - GNU GPL v3

Pytroll/pyresample https://github.com/pytroll/pyresample/ - GNU GPL v3
Orfeo Toolbox https://www.orfeo-toolbox.org/ 4.4.0 CeCILL v2

GRASS GIS http://grass.osgeo.org/ 7.0.0 GNU GPL v3

Figure 3 shows the workflow diagram with the respective libraries listed horizontally against
the specific requirement they meet.

Figure 3. Workflow diagram. On top, the horizontal arrows show the main steps involved in the
workflow, the software are listed vertically on the left. Role of each software in the workflow is
explained in the corresponding cells.

2.2. Pre-Processing

The pre-processing of AVHRR LAC data in level 1B format include reading the data, performing
solar and thermal calibration to the respective channels, applying clock drift correction and cloud
removal. The foremost requirement of this methodology was to develop an AVHRR LAC data
reader which can read all the versions of AVHRR LAC level 1B data irrespective of the NOAA
instrument. The Python library pygac in the Pytroll framework is developed to read and calibrate
AVHRR global area coverage level 1B data of 4 km spatial resolution which is derived from LAC data
by resampling at every 5th sample along a scanline. We enhanced the pygac library to add support
to AVHRR LAC data (Figure 3). The fundamental structure of the AVHRR LAC level 1B header and
sensor data records is consistent across data types, however there are significant differences between
records originating from various instruments (POD vs. KLM) which have to be dealt separately.
Hence we developed and added two readers (lac_pod—POD data and lac_klm—KLM data) in pygac
to successfully read and calibrate the AVHRR LAC data irrespective of the NOAA instrument. The
newly developed readers are released to the public in the source code repository here-[30]. The main
difference between the POD and KLM drivers is the mapping of the header structure. All the different

http://www.gnu.org/copyleft/gpl.html
http://www.gnu.org/copyleft/gpl.html
http://www.cecill.info/licences/Licence_CeCILL_V2-en.html
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releases of level 1B data types by NOAA over POD are mapped in the new readers following the
NOAA documentation (For a complete list of headers refer to: POD—[10]; KLM—[8]). The Python
library mpop in the Pytroll framework can read multiple satellite data in raw format and use the
coefficients given in the header to apply calibration and corrections [31]. mpop has an extendable
objective design which enables us to write plugins to support additional data formats. We developed
a plugin (lac_l1b) which is a wrapper to the new LAC readers in pygac to read and calibrate the AVHRR
LAC data.

For the calibration of the solar channels (0.63 µm and 0.86 µm) we used the inter-sensor consistent
calibration coefficients developed by [32] which ensures the continuity of data even with the
transition of satellites. Unlike the solar channels, an on-board calibration is performed on the thermal
channels [8,10]. In spite of this, the data are prone to contamination (leading to bias of more than
1 K) with unwanted fluctuations due to multiple factors including; (i) atmospheric attenuation of
the signal; (ii) decaying of the instruments; and (iii) solar contamination [9,33]. To remove these
perturbations in the true signal [34] introduced a robust median based approach to remove short
time fluctuations from a given sample of calibration elements followed by Fourier transform filtering
to remove the persisting errors over long time. For more details on thermal calibration, refer to [9]
and [34]. The aforementioned calibration techniques are successfully implemented in operation for
generating historical AVHRR baseline data records over Canada by [18] and more recently to develop
LSWT time series for Alpine lakes in Europe by [21]. In Pytroll, pygac library has implemented
thermal calibration procedure as per [8,10] followed by a Fourier transform filtering to remove high
frequency fluctuations [34]; which we used to successfully calibrate the thermal channels (Figure 3).
The ancillary data like GCP’s and the viewing zenith angle are provided as tie points (51 per scanline).
We used pygac library to apply linear interpolation on latitude, longitude and viewing zenith angle tie
points to all the points in the geographical grid covered by the data (Figure 3).

The polar orbiting NOAA satellites are launched in sun synchronous orbits at an altitude of
around 870 km above Earth [7]. They are designed to acquire two daily snapshots of Earth, one in
ascending and other in the descending mode. This is possible due to the wider scan angles (also
called zenith angles) of ±55.4° covering approximately a 2300 km wide scene. Subsequently, the
spatial resolution also varies significantly off-nadir from 1.1 km at nadir to 4 km at the edges both in
along-scan and along-track directions [7]. Due to this wide off-nadir field of view, panoramic bow-tie
effects are seen towards the edges of the images (Figure 4a) [35]. This creates artifacts when applying
re-projection with nearest-neighbour resampling on the level 1B data. In this methodology, we used
an algorithm based on 2D gradient search in the latitude and longitude geolocation fields using their
local gradients to project level 1B data to Lambert Azimuth equal-area projection, which corrects for
the bow-tie effects. Complete details of the algorithm and its implementation is explained in [35]. In
Pytroll, this method is implemented in pyresample library which is used to resample all the AVHRR
level 1B data (Figure 3).

The POD satellites (NOAA-9/11/14) were affected by drifts in the satellite clock which in turn
contributed to the position errors [3]. The difference between satellite clock time and the actual
coordinated universal time (offset ∆t) was provided by NOAA periodically (see Section 2 at [10]).
The clock drift leads to location error upto 4 km, as the GCP’s are estimated based on the satellite
clock [10]. The known offsets ∆t for the satellites NOAA-9/11/14 are used in the pygac library to
correct for clock drifts.

Unlike for level 2 MODIS products, there are no existing cloud mask available for the level 1B
AVHRR LAC data. For this, we adapted the algorithm developed by [36], Separation of Pixels Using
Aggregated Rating over Canada (SPARC) originally implemented for creating a cloud mask over
Canada. As our main interest is to remove thick clouds and thin cirrus above the lakes, we used
two relevant tests from the original SPARC algorithm, (i) Brightness temperature test (T-test) using
channel 4 and (ii) thin cirrus test (C-test) which uses the difference between channels 4 and 5. T-test
uses the channel 4 brightness temperature and compares it with a dynamic threshold which is the
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surface skin temperature data of the corresponding day and time derived from climatic models.
In the original study, North American regional reanalysis is used. Here we replaced it with the
European regional analysis interim dataset developed by the European Center for Medium-range
Weather Forecasts(ECMWF) [37] following the successful implementation over Europe by [21]. The
SPARC algorithm is implemented using raster processing tools in GRASS GIS 7.0 (Figure 3).

2.3. Precise Geo-Rectification Using SIFT

After calibration and corrections, the AVHRR LAC data still suffer from position errors due
to erroneous satellite attitude angles [1,3,14]. For any long-term analysis of landscape properties
using historical AVHRR data, it is important to obtain precise geometric position for all the images
to avoid spurious trends and artifacts. Hence we used an automatic feature matching technique
called Scale Invariant Feature Transform (SIFT) by [28] to extract matching GCP’s between an image
pair to achieve sub-pixel accuracy in image to image rectification [18,19]. We selected a cloud-free
geometrically corrected image from NOAA-19 ascending mode (dated 1 August 2012) as reference
image to all the other data to which image to image matching is applied. The homologous points
extraction module in the Orfeo Toolbox 4.4.0 is used to automatically extract the matching GCP’s
using the SIFT algorithm (Figure 3). The SIFT algorithm is widely used in object recognition from
images [38–40] successfully implemented SIFT features in registering multiple source remote sensing
imageries. The SIFT workflow starts with identifying and populating the SIFT features from the
input and reference images. The SIFT features are scale invariant and highly distinctive which makes
them suitable for image matching techniques. The matching SIFT features are then identified based
on euclidean distance of their feature vectors. The SIFT algorithm was developed and explained in
detail by [28].

We applied SIFT individually to all the bands of a single AVHRR LAC image and combined
all the extracted GCP’s. If the total number of matching GCP pairs are less than 20, often due to
wide coverage of cloud, then the input image is discarded from further processing. Before applying
image rectification using the extracted GCP’s, it is important to discard the GCP pairs with larger
Root Mean Square Error (RMSE). We used the newly developed GRASS GIS add-on m.gcp.filter to
apply this filter [29]. GCP filtering is applied in iterative mode till all the GCP’s with individual
RMSE larger than 500 m (half a pixel) are discarded. Finally, we applied polynomial second order
image rectification using i.rectify tool in GRASS GIS. The entire process of GCP extraction using SIFT,
GCP filtering and geo-rectification is automated (see Appendix B for the code). For validating the
accuracy of automated geo-rectification process, we extracted independent GCP’s (12,340 GCP’s)
from 2000 randomly selected geo-rectified AVHRR LAC images (around 10% of total number of
images). The x-deviation and y-deviation along with RMSE are then calculated for validating the
quality of geo-rectification [19,41].

2.4. Validation of Thermal Calibration by Estimating LSWT

The thermal calibration computes top of atmosphere brightness temperatures from channels 4
and 5 emitted radiances. In order to validate the performance of thermal calibration on thermal
channels from multiple NOAA instruments, we estimated Lake Surface Water Temperature (LSWT)
for the Lake Garda in Northern Italy using the split-window technique from all valid brightness
temperatures. LSWT is estimated using the modified non-linear split-window Equation (1) [42].

T = T4 + c1(T4 − T5) + c2(T4 − T5)
2 + c0 (1)

where T4 and T5 are brightness temperatures derived from NOAA AVHRR channels 4 and
5 respectively; c0,c1,c2 are split-window coefficients. We used the instrument/sensor specific
split-window coefficients derived and published by [42]. We further estimated LSWT using the
same method from the MODIS, ATSR1, ATSR2 and AATSR sensors which have similar dual thermal



Remote Sens. 2016, 8, 169 9 of 28

channels in the same spectral range. We used the MODIS channels 31 and 32 while for ATSR1,
ATSR2 and AATSR, we used the channels 11 and 12 for LSWT estimation. To correct for the different
acquisition time (between 8:00 to 17:00 UTC) of the satellites and the orbital drifts experienced with
earlier NOAA instruments (Figure 1) we applied a correction to the derived LSWT based on Diurnal
Temperature Cycle (DTC) model. This procedure is intended to homogenize the derived LSWT’s to
the noon time at 12:00 UTC irrespective of the acquisition time. The model used is explained by the
Equation (2).

Ts(t) = T0 + Tacos(π/ω(t − tm)) + Tbsin(π/ω(t − tm)) (2)

where,
ω = 4/3(tm − tsr) (3)

where T0 is the residual temperature around sun rise; Ta and Tb are temperature amplitudes; Ts(t)
is surface temperature at time t; tm is the time at which temperature is maximum; tsr is the time
of sun rise; ω is calculated using Equation (3). The correction factor is calculated for each LSWT
from the corresponding diurnal cycle as the absolute difference between LSWT at Ts(t) and Ts(12).
Finally the LSWT’s are homogenized to 12:00 UTC noon fitting to the diurnal cycle by applying the
correction factor.

A global filter is then applied to remove the outliers due to undetected clouds discarding
all the LSWT’s beyond the range 280 K–302 K which is the long term minimum and maximum
temperature respectively measured over Lake Garda. Further, we limited the LSWT estimation
to those pixels acquired at viewing zenith angle less than 45° [43]. We estimated the RMSE and
bias between inter-platform (AVHRR between different NOAA instruments) and cross-platform
(AVHRR/NOAA versus other sensors) LSWT’s averaged over lake. We took all the days
where a pair of observations is available from different sensor/instruments. For inter-platform
comparisons, same day observations for the pairs NOAA-12/14, NOAA-17/18 and NOAA-18/19 are
compared. Similarly for cross-platform comparison, the pairs NOAA-11/ATSR1, NOAA-14/ATSR2,
NOAA-16/MODIS-Aqua, NOAA-17/MODIS-Terra, NOAA-17/AATSR, NOAA-18/MODIS-Aqua
and NOAA-19/MODIS-Aqua are compared. We compared mean LSWT computed over lake per
image between these sensors.

Further, we validated the satellite derived LSWT for Lake Garda using historical in situ data.
Monthly in situ data measured using a multi-parameter probe from the deepest point of the lake
covering the period 1991–2013 are used for validation. The in situ data are measured around
12:00 UTC noon. The corresponding AVHRR images matching the dates of in situ data and acquired
between 8:00 to 17:00 UTC are used for validation. We estimated the correlation statistics, R2, RMSE
and Mean Absolute Error (MAE) between the in situ data and the corresponding LSWT extracted
from the pixel representing the field location.

3. Results

3.1. Time Series of Calibrated AVHRR LAC Data

The historical AVHRR LAC images at 1.1 km spatial resolution available for more than
last 30 years is the longest time series of satellite data and a potential alternative to ground
observations. Indeed, to develop the longest satellite derived time series of AVHRR LAC data, it
is inevitable to combine data from multiple instruments which in turn require superior inter-sensor
consistent calibration [32,34]. A total of 22,507 input images were acquired and processed using the
new method (Figure 2a,b). The newly developed AVHRR LAC data readers in pygac and the new
mpop plugin works with all the level 1B data across the POD and KLM series of instruments from the
CLASS archive [6]. The code segment to read the POD and KLM data using the new plugin in mpop
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is given in Appendix A. The new mpop plugin has been made available in a public repository with
GNU general public license [31].

The thermal calibration applied to the data as conceived by [34] is robust and takes care of
the inter-calibration between different NOAA instruments. A conclusive validation of the quality
of calibration between NOAA instruments is beyond the scope of this study. Instead we did
inter-platform comparison of estimated LSWT which is explained in Subsection 3.3. AVHRR is a
wide angle ±55.4° sensor using the whisk broom technique to acquire large swath in one acquisition.
Nevertheless, it is important to resolve the artifacts in the wider angles due to the bow-tie effects.
Visual comparison of multiple images before and after the resampling shows that the gradient-search
method eliminates the bow-tie effects restoring the original geometry over the edges [35]. Figure 4
compares the Nearest Neighbour resampling technique with our approach. Gradient search approach
(Figure 4b) provides a clear geometry of the lakes in Northern Italy, while the Nearest Neighbour
(Figure 4a) interpolation distorts the image making it impossible to capture the geometry of small
objects like lakes.

Figure 4. NIR (Near Infrared) channel 2 of AVHRR LAC data resampled using (a) Nearest Neighbour
interpolation; (b) interpolated using the gradient search algorithm. The image is NOAA-18 AVHRR
LAC taken on 1 August 2011.

3.2. Geo-Rectification of Calibrated AVHRR LAC Data Using SIFT

We found that the number of extracted GCP’s using SIFT depends upon two major factors; (i) the
overlapping area between the input and the reference image (ii) the cloud coverage. SIFT tends to fail
on input images with cloud coverage more than 50% of the total area. On a clear sky image, combining
all the corresponding bands, large number of GCP’s are extracted (> 300) for an area of 122,400 km2,
which is then filtered iteratively to remove outliers (RMSE > 500 m). We observed that with large
number of GCP’s, linear model rectification often failed due to islands of localized point clouds in the
image. Hence we used the polynomial second order rectification for all the images irrespective of the
number of GCP’s obtained from SIFT. Figure 5 shows different steps of the feature matching based
geometric correction applied on a NOAA-14 AVHRR LAC image (POD) acquired on 9 August 1997.
The input image is shown in Figure 5a (band 2-NIR) overlaid with the extracted GCP’s in which the
position error is clearly visible along the national boundary and the lakes. Figure 5c shows the final
output which is precisely aligned to the country and lake boundaries.
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Figure 5. (a–c) explains geometric correction done on NOAA-14 AVHRR LAC data (NIR channel 2
shown here) acquired on 09 August 1997. (a1) The input image with lake and country boundaries
overlayed. Also shown is blue (input) and red (reference) crosses, the Ground Control Points (GCPs)
extracted using the SIFT algorithm; (b1) The reference image used to extract the GCP points, NOAA-19
AVHRR LAC acquired on 01 August 2012; (c) The NOAA-14 AVHRR LAC image after polynomial
second level rectification using the GCP’s; (a2) Figure a1 zoomed to the sub-alpine lakes in Northern
Italy; & (b2) Figure b1 zoomed to the sub-alpine lakes in Northern Italy.

The validation output shows that the SIFT based geo-rectification procedure is able to achieve
sub-pixel accuracy. Figure 6a shows the scatter plot of x deviation and y deviation of the GCP’s
and Figure 6b shows the kernel density plots. The overall RMSE of 12,340 independent GCP’s from
2000 images is 755.63 m, which is below 1 pixel. The mean deviation in x and y direction is 607.82 m
and 624.21 m respectively. The mean deviations are found to be on the same range suggesting that
there is no geometric errors in either direction.

3.3. Quality Assessment of the Time Series Using Estimated LSWT

For the validation of the calibrated AVHRR LAC time series data, we compared the LSWT of
the Lake Garda estimated from all the valid thermal channels, irrespective of the NOAA instrument,
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Figure 6. Validation of Scale Invariant Feature Transform (SIFT) algorithm. (a) Independent GCP
point-cloud plotted in x-deviation, y-deviation; (b) Kernel density plot of x and y deviations.

after pre-processing, geo-rectification and orbital drift correction [21]. Figure 7 shows boxplots of
absolute lake mean LSWT differences between pair of NOAA instruments. The boxplots (Figure 7)
are based on the same day observations by multiple NOAA instruments. We could only get three
NOAA instrument pairs with same day observations for the inter-sensor comparison—NOAA-12/14,
NOAA-17/18 and NOAA-18/19. The MAE for NOAA instrument pairs are 1.18 K, 0.67 K, 0.35 K for
NOAA-12/14, NOAA-17/18 and NOAA-18/19 respectively. Moreover the RMSE is 1.36 K, 0.88 K
and 0.44 K respectively.

Boxplots of the absolute lake mean LSWT differences between the cross-platform pairs are shown
in Figure 8. The boxplots (Figure 8) are based on the same day observations by multiple instruments.
The MAE and RMSE in all the cases are found to be between 0.5 K to 1.5 K (Table 3). In all the
cases except for NOAA-17/MODIS-Terra, the median of lake mean LSWT difference lies below 1.5 K
(Figure 8), which indicates that the majority of the differences are in the lower range of 0–1.5 K. The
lowest MAE, RMSE of 0.6 K, 0.85 K respectively are reported with NOAA-17/AATSR observations,
while the highest errors of 1.2 K, 1.35 K are with NOAA-17/MODIS-Terra (Table 3).



Remote Sens. 2016, 8, 169 13 of 28

0.0

0.5

1.0

1.5

2.0

2.5

NOAA−12/14 NOAA−17/18 NOAA−18/19

NOAA instrument pair

LS
W

T
 d

iff
er

en
ce

 [K
]

Figure 7. Boxplots of absolute difference between lake mean Lake Surface Water Temperature (LSWT)
estimated from multiple NOAA same day observations; horizontal thick line inside the box represents
median; lower and upper end of the box represents first and third quartiles respectively; the bottom
whisker ranges from first quartile to the smallest non-outlier and the top whisker ranges from third
quartile to the largest non-outlier; the dots outside whiskers are outliers.
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Figure 8. Boxplots of absolute difference between lake mean LSWT estimated from same day
observations from NOAA and other instruments; horizontal thick line inside the box represents
median; lower and upper end of the box represents first and third quartiles respectively; the bottom
whisker ranges from first quartile to the smallest non-outlier and the top whisker ranges from third
quartile to the largest non-outlier; the dots outside whiskers are outliers.

Table 4 lists important correlation statistics derived between LSWT and the in-situ data.
Slopes are estimated from the linear models between LSWT from each NOAA instrument and the
corresponding in-situ data. All the slope values are close to each other which shows the similar
relationship between LSWT and in-situ data irrespective of the NOAA instrument. In all the cases,
coefficient of determination R2 is higher than 0.93. An average RMSE and MAE of 0.92 K and 0.71 K
are reported from the models.
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Table 3. Mean Absolute Error (MAE) and Root Mean Square Error (RMSE) (in Kelvin) between lake
mean LSWT estimated between pair of sensors.

Sensor pair N12/N14 N17/N18 N18/N19 N11/ATS1 N14/ATS2 N17/AATSR N17/MODT N16/MODA N18/MODA N19/MODA

MAE 1.18 0.67 0.35 0.81 0.72 0.6 1.2 0.99 0.75 0.95
RMSE 1.36 0.88 0.44 1.0 0.98 0.85 1.35 1.16 0.92 1.12

N 26 75 10 38 98 28 75 149 262 385

N = Number of observations; N11 = NOAA-11 (likewise for other NOAA instruments - N11,N14,N16,N17,N18,N19); ATS = ATSR; MODT = MODIS-Terra;
MODA = MODIS-Aqua.

Table 4. Correlation statistics between in-situ data and corresponding LSWT derived from various
NOAA instruments; N = Number of samples used in the linear model.

Satellites Slope R2 RMSE MAE N

NOAA-11 0.97 0.98 0.81 0.65 12
NOAA-14 0.90 0.93 1.38 1.05 22
NOAA-16 0.98 0.99 0.36 0.28 10
NOAA-17 0.89 0.99 0.56 0.46 7
NOAA-18 0.98 0.97 1.04 0.77 12
NOAA-19 0.92 0.94 1.40 1.08 21

3.4. Software Code for Deploying the Method Elsewhere

To enable reproducibility of our method following [44] and [45] we publish the code snippets
used to process the entire AVHRR LAC data. Appendix A is the Python script to process the AVHRR
LAC data using the Pytroll libraries—mpop, pyresample, pygac—which will read level 1B format, apply
solar and thermal calibration, resample using gradient search method, write all the channels and
viewing zenith angle to image format. Appendix B is a bash script which is the second part of
processing where the output images from Python script are processed inside GRASS GIS session.
The bash script executes the SIFT matching using Orfeo toolbox, GCP filtering, geo-rectification and
cloud removal.

4. Discussion

In this study we introduced a new automated method to accurately develop time series of
AVHRR LAC data at 1 km spatial resolution covering 28 years from 1986–2014. The method is
developed by chaining several open source geospatial packages (Table 2 and Figure 3) which is
reproducible and extendable. To the best of our knowledge there are no other published studies which
demonstrate successful processing of this data using tools which are available open to all researchers.
The new additions to the Pytroll libraries—mpop and pygac—support all the AVHRR LAC data in
level 1B format irrespective of the NOAA instrument, version of the AVHRR sensor and the various
data header types released by NOAA [31]. Validation of automated geo-rectification of all the AVHRR
LAC data using independent GCP’s extracted from 2000 randomly selected images reported sub-pixel
accuracy with an overall RMSE of 755.63 m. The thermal calibration takes care of inter-platform
variations [34] and our validation procedure shows that the same day LSWT estimated from AVHRR
on-board different NOAA instruments are close to each other with overall mean absolute differences
(Figure 7) below 1.5 K. Furthermore, the cross-platform validation also exhibited promising results
with reported MAE and RMSE between 0.5 to 1.5 K (Figure 7).

One of the important aspects of this methodology is its ability to deal with the earlier AVHRR
LAC data from POD satellites [3,12,14]. As proved by earlier studies [1,2,5], it is difficult to achieve
accurate geo-rectification between temporal AVHRR images acquired from POD satellites. In order
to achieve precise navigation, we applied feature matching technique—SIFT to extract homologous
GCP’s [28,40]. We found that with this approach, high quality GCP’s can be extracted after applying
an iterative filter based on RMSE. The independent GCP’s produced to validate the geo-rectification
showed that the majority (>80%) of the GCP displacements either in x and y directions are in
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the sub-pixel range (Figure 6a). The reason for larger GCP displacements (>1000 m) could be
that SIFT failed due to the cloud coverage or due to isolated cases of spurious calibration. To
derive any meaningful long term bio-physical variables from the AVHRR LAC data it is crucial to
take care of the inter-platform calibration which enables continuity of data over the transition of
instruments [9,32,34]. Furthermore, the orbital drift (Figure 1) experienced with the earlier NOAA
satellites poses a serious challenge to develop high quality time series data [21,46]. However, the
acquisition time correction procedure based on the DTC model shows promising results towards
homogenizing data from multiple satellites. The inter-platform validation of LSWT shows that the
data are indeed comparable and that it is possible to combine the data over time to create longer time
series (see Figure 7 and Table 3) [21]. The median of the inter-platform boxplots (Figure 7) are all
below 1.5 K depicting the superior thermal calibration (Figure 7). Moreover, with the cross-platform
validation we showed that the developed LSWT from AVHRR LAC data are close to those from
similar sensors on-board instruments other than NOAA. We found exceptionally good agreement
between NOAA-17 and AATSR, both morning overpasses, with lowest MAE and RMSE of 0.6 K and
0.85 K. On the other hand, the highest MAE and RMSE of 1.2 K and 1.35 K is reported between
NOAA-17 and MODIS-Terra in spite of both being morning overpass data, which needs to be further
investigated (Table 4). The outliers in both inter-platform and cross-platform boxplots could be due to
undetected clouds, unresolved navigational errors or isolated cases of spurious thermal calibration.
Though the validation with in-situ data show good agreement, it is important to note that the
satellite sensor measures temperature of a sub-micron layer between water surface and air which
is highly variable according to the meteorological conditions, whereas in-situ data represents bulk
temperatures in the lake [47,48]. Due to the skin effect over the lake surface there is a considerable
difference between the skin and bulk temperature which may also reflect the actual differences
between satellite derived LSWT and the in-situ data [46,48]. The accuracy of the derived LSWT also
depends upon the viewing zenith angle at which the observation is taken (nadir or wide angle) [43].

The developed method is fully automated which will enable the users to process bulk data in
a single workflow. [44] emphasizes the need for adopting Stallman’s four freedom paradigms in
ecological research. With the growing interest in open research and publishing the data publicly it
is also important to have the software packages used in ecological research in a public domain [45].
Thus by taking advantage of the development of open source geospatial libraries over the last decade,
we successfully revisited the accurate navigation of AVHRR LAC data and implemented a robust
methodology to process them. Though the method is robust, manually checking the precision of
each of the thousands of images is not practical, there could be unresolved navigational errors in the
final time series. The automated cloud masking may also leave undetected cloud pixels as clear sky
ones. Though the overall accuracy of SIFT based geo-rectification procedure is found to perform well
within the extent of a pixel, it does not always ensure accurate positioning of inland pixels especially
in mountainous terrain like the surroundings of Lake Garda. Our procedure does not correct for the
surface elevation which may lead to pixel misplacements and could have adversary effects especially
on small features like lakes. [19] explains accurate geolocation of AVHRR historical time series which
includes a orthocorrection scheme taking care of the accurate positioning of the pixels in complicated
terrains. Hence it is very important to design and perform robust statistical outlier detection before
any trend analysis is performed with the developed time series data. Moreover, while we tested this
method for a small study area covering Northern Italy, it can be extended to any other area provided
the data are in level 1B format and obtained from the NOAA CLASS archive [6]. It is recommended
to use high performance computing solutions if you are processing 28 years of AVHRR data over a
larger area. An ideal way to compare the performance of different sensors is the simultaneous nadir
observations approach, but it is unlikely to obtain such a pair of images over our study area [49].

The flagship NOAA series of instruments ended with NOAA-19, though the AVHRR radiometer
continued aboard the MetOp-A and MetOp-B satellites as part of a collaborative meteorological
program by the European Space Agency and the European organization for the exploitation of
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meteorological satellites. However, data from MetOp series are not considered in this study to focus
exclusively on NOAA instruments. The methodology also works with solar channels of AVHRR [32],
though it is not the scope of this paper to validate the performance of solar calibration. For the SIFT
method, bringing a seasonal perspective by using different reference images for multiple seasons (or
months) may improve the quality of the extracted GCP’s [19]. It has to be noted that for inter-platform
and cross-platform validation, we took the same day observations between 08:00 to 17:00 UTC
which is a wide window and explains some of the outliers in spite of performing the acquisition
time correction procedure. The gaps in the final time series after cloud masking and the outlier
removal could be statistically filled using methods like harmonic analysis [50] and spatio-temporal
modelling [51]. We avoided night time acquisitions as the specific project objectives demanded
processing of day time data and due to non-availability of field data during night time to validate
the product. In general, checking the consistency with night time data is important to make complete
use of the AVHRR dual acquisitions. It is recommended to use a long term high frequent in-situ
data for validating the satellite derived products to match the time of observations. Comparing
the long-term trends from both in-situ data and satellite derived LSWT would be a recommended
approach in testing the temporal stability of AVHRR LAC data over transition of instruments [46].
But due to lack of high frequent in-situ data we avoided comparing the long term trends, instead
we used linear models to check the integrity of derived LSWT. For LSWT estimation, we used
a generic non-linear split window equation (Equation (1)), but using satellite specific coefficients
provided by [42]. However, previous studies [21,43] have shown that lake specific coefficients will
lead to accurate LSWT estimation. Due to non-availability of lake specific coefficients for the POD
satellites [43] and other non AVHRR sensors [21], it is difficult to follow the same method to derive
LSWT from all the satellites used in this study. Nevertheless, we obtained high accuracy (see Tables 3
and 4) by using satellite specific coefficients in a non-linear split window equation.

5. Conclusions

To conclude, in this paper we present a new automated method for processing historical
AVHRR LAC data using open source geospatial packages (Figure 3). The method is extendable
and reproducible to any other geographic location provided the data is taken from NOAA CLASS
archive. All the software development related to this work is been published in public archives
making it accessible to maximum potential users [30] (Table 2). We found that it is possible to
resolve the much documented navigational errors with the AVHRR LAC data from POD satellites
by implementing a robust geo-rectification procedure using SIFT feature extraction procedure.
This automated geo-rectification procedure produced promising results and the validation using
independent GCP’s reported an overall RMSE of 755.63 m. Further we did a three step validation
procedure for the derived time series of brightness temperatures, (i) inter-platform validation by
comparing estimated LSWT’s between different NOAA instruments; (ii) cross-platform validation
by comparing estimated LSWT’s between NOAA instruments and other polar orbiting sensors like
MODIS and AATSR; (iii) validation using in-situ data (Table 3 and 4). The overall RMSE reported for
inter-platform, cross-platform and in-situ validation are 0.89 K, 1.05 K and 0.92 K respectively. The
high accuracy obtained with the validation procedure after performing an acquisition time correction
procedure based on DTC model shows that it is indeed possible to develop a homogenized dataset
from AVHRR LAC data over multiple NOAA instruments. Our new method, along with the code
snippets (Appendices A and B) to process AVHRR LAC data will enable researchers to leverage
the availability of historical medium resolution AVHRR data in their research, otherwise impossible
to use due to well documented issues [1,2,4]. It takes care of multiple sources of errors to a large
extent giving an opportunity to develop a homogenized time series of brightness temperatures from
AVHRR LAC data. The new methodology opens a new paradigm for researchers to create long term
(28 years) daily temporal datasets of land/water surface temperature derived from satellite imageries.
It should be noted that the current study is validated only for lake surface temperature. For land
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surface, corresponding changes must be made on the split window algorithm and the coefficients.
The effects of orbital drift will also vary depending on the land use demanding case specific correction
procedures. It is recommended to establish robust statistical filtering methods to remove undetected
outliers before performing any trend analysis using the derived data. The data thus derived can play a
significant role in research as an alternative to long term field measurements. Moreover, we could not
find any public dataset derived from AVHRR data available at its original spatial resolution. Much of
the earlier AVHRR data are underused due to lack of software tools to accurately process them. This
study will fill this gap and give scientists the opportunity to use the AVHRR LAC data at its original
spatial resolution for their research.
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Appendix

A. Python Script to Read and Calibrate Level 1B AVHRR LAC Data Using Pytroll Libraries

# -*- coding: utf-8 -*-
"""
Created on Fri Feb 25 2015
filename = pytroll.py
This script is executed by the workflow bash script (see Appendix B).
This Python script is generic, will not work as such, will need local tweaking.
@author: Sajid Pareeth
@email: spareeth@gmail.com
"""
import os
#set following variables first
os.environ[’PPP_CONFIG_DIR’] = ’/usr/local/src/mpop/etc’
os.environ[’PYGAC_CONFIG_FILE’] = ’/usr/local/src/pygac/etc/pygac.cfg’
# conversion of avhrr l1b bands to tiff starts here...
import numpy as np
import pyresample
import pyproj
import geotiepoints
import argparse
import datetime
from pyresample import *
from pyresample.gradient_search import gradient_search
from pyresample.geometry import SwathDefinition
from pyresample.geometry import AreaDefinition
from mpop.satellites import PolarFactory
from mpop.projector import get_area_def
from mpop.satin.lac_l1b import KLMReader
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#Pytroll starts here
reader = KLMReader()
ts = datetime.datetime.strptime(’{year} {doy} {hour} {minute}’, ’%y %j %H %M’)
reader.read("{ipdir}/{name}".format(ipdir=mipdir,name=mname))
reader.get_lonlat()
area_swath = SwathDefinition(reader.lons, reader.lats)
channels = reader.get_calibrated_channels()
sat_azi, sat_zen, sun_azi, sun_zen, rel_azi = reader.get_angles()
ID=reader.instrument_id
global_data = PolarFactory.create_scene("noaa", "{ID}".format(ID=ID), "avhrr", ts)
area_def = get_area_def("euro_laea_AVHRR")
scene = global_data
global_data.area = area_swath
# To save zenith angle as tiff, use the following line...
channels[:, :, 2] = sat_zen
scene[0.63] = channels[:, :, 0]
scene[0.9125] = channels[:, :, 1]
scene[3.74] = channels[:, :, 2]
scene[10.8] = channels[:, :, 3]
scene[12.0] = channels[:, :, 4]
scene.area = area_swath
l = scene.project("euro_laea_AVHRR")
l1 = gradient_search(scene[0.63].data.astype(np.float64),scene[0.63].area.lons,scene[0.63].area.lats,area_def)
l[0.63] = np.ma.masked_values(l1, 0)
b1 = l.image(0.63, mode="L")
b1.save("{opdir}/NSS.LHRR.{inst}.D{year}{doy}.S{hour}{minute}_b1.tif", floating_point=True)
l2 = gradient_search(scene[0.9125].data.astype(np.float64),scene[0.9125].area.lons,scene[0.9125].area.lats, \\
area_def)
l[0.9125] = np.ma.masked_values(l2, 0)
b2 = l.image(0.9125, mode="L")
b2.save("{opdir}/NSS.LHRR.{inst}.D{year}{doy}.S{hour}{minute}_b2.tif", floating_point=True)
lz = gradient_search(scene[3.74].data.astype(np.float64),scene[3.74].area.lons,scene[3.74].area.lats,area_def)
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l[3.74] = np.ma.masked_values(lz, 0)
bz = l.image(3.74, mode="L")
bz.save("{opdir}/NSS.LHRR.{inst}.D{year}{doy}.S{hour}{minute}_bz.tif", floating_point=True)

l4 = gradient_search(scene[10.8].data.astype(np.float64),scene[10.8].area.lons,scene[10.8].area.lats,area_def)
l[10.8] = np.ma.masked_values(l4, 0)
b4 = l.image(10.8, mode="L")
b4.save("{opdir}/NSS.LHRR.{inst}.D{year}{doy}.S{hour}{minute}_b4.tif" floating_point=True)
l5 = gradient_search(scene[12.0].data.astype(np.float64),scene[12.0].area.lons,scene[12.0].area.lats,area_def)
l[12.0] = np.ma.masked_values(l5, 0)
b5 = l.image(12.0, mode="L")
b5.save("{opdir}/NSS.LHRR.{inst}.D{year}{doy}.S{hour}{minute}_b5.tif", floating_point=True)

################ENDS HERE############################################

if __name__ == "__main__":
main()

B. Bash Script to Process the Level 1B AVHRR LAC Data—Entire Workflow

Note about script formatting: Long lines are broken with \\which means that the command continues on the next line. This symbol is usually not
necessary when typing but it is used here for formatting reasons.

#!/bin/bash
## Processing NOAA level 1B AVHRR LAC images###
## Author: Sajid Pareeth, 2015
## The code below will not run as such, you have to adapt it to the local environment
## The below code should run inside GRASS GIS session

## Exit strategy if you are not inside GRASS GIS
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if [ -z "$GISBASE" ] ; then
echo "You must be in GRASS GIS to run this program." >&2
exit 1

fi
## Setting the GRASS environments
export GRASS_OVERWRITE=1
export GRASS_MESSAGE_FORMAT=plain # percent output as 0..1..2..
# setting environment, so that awk works properly in all languages
unset LC_ALL
LC_NUMERIC=C
export LC_NUMERIC

# Setting the study area region
g.region n=2531000 s=2480000 w=4360000 e=4390000 res=$RES -a

# setting the Python environment:
PYVERSION=‘python --version 2>&1 | cut -d’ ’ -f2 | cut -d’.’ -f1-2‘
MYPYSITES=/usr/local/lib64/python$PYVERSION
# for runtime, attach to existing PYTHONPATH:
export PYTHONPATH=$PYTHONPATH:$MYPYSITES/site-packages
# setting paths required for PYTROLL
PPP_CONFIG_DIR=/.../.../mpop_etc
export PPP_CONFIG_DIR=$PPP_CONFIG_DIR
PYGAC_CONFIG_FILE=/.../.../pygac_etc/pygac.cfg
export PYGAC_CONFIG_FILE=$PYGAC_CONFIG_FILE

# The loop over all the days from 1986 to 2014 starts here
for yyyy in ‘seq 1986 2014‘; do

cd ${MYDATA}
yy=‘echo ${yyyy}|cut -c3-4‘
leap=‘is_leap_year.sh $yyyy‘ # script to check leap year or not
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if [ $leap -eq 1 ]; then
nd=366
else
nd=365
fi
for d in ‘seq 1 $nd‘; do
cd ${MYDATA}
dy=‘echo $d | awk ’{ printf("%03d\n", $1) }’‘
NUM=‘ls NSS.LHRR.NP.D${yy}${dy}*|wc -l‘

if [ ${NUM} -eq 0 ]; then
echo "No images on ${yyyy}${dy}"
continue

else
for y in ‘ls NSS.LHRR.NP.D${yy}${dy}*‘; do
echo "##########Processing ${y} starts here#########"
cd ${MYDATA}/"LACdata"${yyyy}"_NOheader"
# Set the region
g.region n=$N s=$S w=$W e=$E res=$RES -a
YEAR=‘echo ${y}|cut -c14-15‘
DOY=‘echo $y|cut -c16-18‘
HOUR=‘echo $y|cut -c21-22‘
MIN=‘echo $y|cut -c23-24‘
TIME=‘echo $y|cut -c21-24‘
i=‘echo $y|cut -c1-24‘
j=‘echo $y|cut -c1-18‘
if [ ${TIME} -ge ${MINTIME} -a ${TIME} -le ${MAXTIME} ]; then

echo "##PYTROLL starts here##"
# below pytroll.py should be modified from Appendix A with parsing.

python pytroll.py -i ${y} -o ${OUTDIR}
echo "##PYTROLL ends here##"



Remote Sens. 2016, 8, 169 23 of 28

# Geo-correction using OTBcli_homologous points
otbcli_HomologousPointsExtraction -in1 input_b1.tif -band1 1 -in2 ref_b1.tif -band2 1 -algorithm sift \\

-mode full -out $OUTB1
otbcli_HomologousPointsExtraction -in1 input_b2.tif -band1 1 -in2 ref_b2.tif -band2 1 -algorithm sift \\

-mode full -out $OUTB2
otbcli_HomologousPointsExtraction -in1 input_b4.tif -band1 1 -in2 ref_b4.tif -band2 1 -algorithm sift \\

-mode full -out $OUTB3
otbcli_HomologousPointsExtraction -in1 input_b5.tif -band1 1 -in2 ref_b5.tif -band2 1 -algorithm sift \\

-mode full -out $OUTB4
echo "##Feature matchin (SIFT) using OTB ends here##"

## To make the tie-points from SIFT Grass compatible
cat $OUTB1 $OUTB2 $OUTB3 $OUTB4 > ${MYTMPDIR}/${i}_all.txt
## adding a column with enable/disable
awk ’{$5="1\t"$5}1’ ${MYTMPDIR}/${i}_all.txt > ${MYTMPDIR}/${i}_all_GRASS.txt
# proceed in the GRASS GIS database
# importing the input TIFF files
r.in.gdal input=${y}_b1.tif output=${i}_b1 memory=${MEMORY}
r.in.gdal input=${y}_b2.tif output=${i}_b2 memory=${MEMORY}
r.in.gdal input=${y}_bz.tif output=${i}_zenith memory=${MEMORY}
r.in.gdal input=${y}_b4.tif output=${i}_b4 memory=${MEMORY}
r.in.gdal input=${y}_b5.tif output=${i}_b5 memory=${MEMORY}
i.group group=${y} input=${y}_b1,${y}_b2,${y}_b4,${y}_b5,${y}_zenith
# Moving the POINTS file to the GRASS group folder
mv ${MYTMPDIR}/${i}_all_GRASS.txt ${GRASSLOC}/group/${i}/POINTS
## GCP filtering and geo-rectification
PTCNT=‘wc -l ${GRASSLOC}/group/${i}/POINTS|cut -d’ ’ -f1‘
unset use
if [ ${PTCNT} -le 3 ]; then
g.remove group name=${i} -f
echo "Not enough gcps to filter (< 3), hence ${y} is not usable"
continue

else
eval ‘m.gcp.filter group=${i} order=1 threshold=500 -b‘
USE=${use}
i.target group=${i} -c
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fi

if [ ${USE} -lt 20 ]; then
g.remove group name=${i} -f
echo "${y} is not usable due to lack of enough homologous points - ${USE}, hence avoiding"
continue

elif [ ${USE} -gt 300 ]; then
m.gcp.filter group=${i} order=2 threshold=500 -b -u
i.rectify -a group=${i} extension=_rectified order=2 method=nearest --o

fi
unset use
r.colors map=${i}_b1_rectified rules=${CLRDIR}/avhrrb1.clr
r.colors map=${i}_b2_rectified rules=${CLRDIR}/avhrrb2.clr
r.colors map=${i}_b4_rectified color=kelvin
r.colors map=${i}_b5_rectified color=kelvin
#Cloud mask based on SPARC
echo "SPARC Cloud detection starts here"
if [ ${MIN} -lt 30 ]; then
ECMWFHR=${HOUR}
elif [ ${MIN} -gt 30 ] && [ ${HOUR} -eq 23 ]; then
ECMWFHR=00

else
ECMWFHR=‘echo $((${HOUR} + 1))‘

fi

D=‘echo $((${d} - 1))‘
DATE=‘date -d "${D} days ${yyyy}-01-01" +"%d%m%Y"‘
M=00
# below the ecmwf data for corresponding day and time used from another mapset
echo "${yyyy}${DOY}__ecmwf@sp_ecmwf is used for cloud removal"
# below the offset and scale factors from Trischenko et.al 2006
r.mapcalc "${i}_Tindex = 1.0 * (${i}_b4_rectified - ${yyyy}${DOY}_ecmwf_hants@sp_ecmwf + 6.0) * -0.42"
r.mapcalc "${i}_Bindex_land = 1.0 * (${i}_b1_rectified - 0.30) * 67"
r.mapcalc "${i}_Bindex_water = 1.0 * (${i}_b2_rectified - 0.24) * 75"
r.mapcalc "${i}_Cindex = 1.0 * (${i}_b4_rectified - ${i}_b5_rectified - 1.5) * 4.0"
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r.mapcalc << EOF
${i}_b4_masked = eval( \\
T_test = if(${i}_Tindex > 8, null(), ${i}_b4_rectified), \\
C_test = if(${i}_Cindex > 15, null(), T_test), \\
viewangle_test = if(${i}_zenith_rectified > 45, null(), C_test), \\
viewangle_test)

EOF
r.mapcalc << EOF
${i}_b5_masked = eval( \\
T_test = if(${i}_Tindex > 8, null(), ${i}_b5_rectified), \\
C_test = if(${i}_Cindex > 15, null(), T_test), \\
viewangle_test = if(${i}_zenith_rectified > 45, null(), C_test), \\
viewangle_test)

EOF
r.mapcalc "${i}_zenith_masked = if(isnull(${i}_b4_masked), null(), ${i}_zenith_rectified)"
echo "SPARC Cloud detection ends here"

else
echo "${y} is outside the time frame, hence avoiding";
continue

fi
done

fi
done
echo "#################Processing ${yyyy} finishes here#############"

done
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