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Abstract: Monitoring open water bodies accurately is an important and basic application in remote
sensing. Various water body mapping approaches have been developed to extract water bodies
from multispectral images. The method based on the spectral water index, especially the Modified
Normalized Difference Water Index (MDNWI) calculated from the green and Shortwave-Infrared
(SWIR) bands, is one of the most popular methods. The recently launched Sentinel-2 satellite can
provide fine spatial resolution multispectral images. This new dataset is potentially of important
significance for regional water bodies’ mapping, due to its free access and frequent revisit capabilities.
It is noted that the green and SWIR bands of Sentinel-2 have different spatial resolutions of 10 m
and 20 m, respectively. Straightforwardly, MNDWI can be produced from Sentinel-2 at the spatial
resolution of 20 m, by upscaling the 10-m green band to 20 m correspondingly. This scheme, however,
wastes the detailed information available at the 10-m resolution. In this paper, to take full advantage
of the 10-m information provided by Sentinel-2 images, a novel 10-m spatial resolution MNDWI is
produced from Sentinel-2 images by downscaling the 20-m resolution SWIR band to 10 m based on
pan-sharpening. Four popular pan-sharpening algorithms, including Principle Component Analysis
(PCA), Intensity Hue Saturation (IHS), High Pass Filter (HPF) and À Trous Wavelet Transform
(ATWT), were applied in this study. The performance of the proposed method was assessed
experimentally using a Sentinel-2 image located at the Venice coastland. In the experiment, six water
indexes, including 10-m NDWI, 20-m MNDWI and 10-m MNDWI, produced by four pan-sharpening
algorithms, were compared. Three levels of results, including the sharpened images, the produced
MNDWI images and the finally mapped water bodies, were analysed quantitatively. The results
showed that MNDWI can enhance water bodies and suppressbuilt-up features more efficiently than
NDWI. Moreover, 10-m MNDWIs produced by all four pan-sharpening algorithms can represent
more detailed spatial information of water bodies than 20-m MNDWI produced by the original image.
Thus, MNDWIs at the 10-m resolution can extract more accurate water body maps than 10-m NDWI
and 20-m MNDWI. In addition, although HPF can produce more accurate sharpened images and
MNDWI images than the other three benchmark pan-sharpening algorithms, the ATWT algorithm
leads to the best 10-m water bodies mapping results. This is no necessary positive connection between
the accuracy of the sharpened MNDWI image and the map-level accuracy of the resultant water
body maps.
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1. Introduction

As an important part of the Earth’s water cycle, land surface water bodies, such as rivers, lakes
and reservoirs, are irreplaceable for the global ecosystem and climate system. Surveying land surface
water bodies and delineating their spatial distribution has a great significance to understanding
hydrology processes and managing water resources [1–3]. At present, remote sensing has become a
routine approach for land surface water bodies’ monitoring, because the acquired data can provide
macroscopic, real-time, dynamic and cost-effective information, which is substantially different from
conventional in situ measurements [4–6]. Various methods, including single band density slicing [7],
unsupervised and supervised classification [8–11] and spectral water indexes [12–19], were developed
in order to extract water bodies from different remote sensing images. Among all existing water body
mapping methods, the spectral water index-based method is a type of reliable method, because it is
user friendly, efficient and has low computational cost [20]. Different water indexes have already been
proposed in the past few decades. Specifically, McFeeters (1996) proposed the Normalized Difference
Water Index (NDWI) [21], using the green and Near Infrared (NIR) bands of remote sensing images
based on the phenomenon that the water body has strong absorbability and low radiation in the range
from visible to infrared wavelengths. NDWI can enhance the water information effectively in most
cases, but it is sensitive to built-up land and often results in over-estimated water bodies. To overcome
the shortcomings of NDWI, Xu (2006) developed the Modified Normalized Difference Water Index
(MNDWI) [22] that uses the Shortwave Infrared (SWIR) band to replace the NIR band used in NDWI.
Many previous research works have demonstrated that MNDWI is more suitable to enhance water
information and can extract water bodies with greater accuracy than NDWI [12,13,22,23].

In the last few decades, MNDWI had been widely applied to produce water body maps at different
scales. In practice, both the spectral information of the SWIR and green bands that are used to calculate
MNDWI and the spatial resolutions of both bands directly affect the accuracy of mapped water bodies.
For example, MODerate-resolution Imaging Spectroradiometer (MODIS) images have been widely
used to map water bodies at both global and regional scales. Specifically, Carroll et al. produced a
new global raster water mask at 250-m resolution from MODIS dataset [24]. Feng et al. used MODIS
images between 2000 and 2010 to estimate the inundation changes of Poyang Lake [6]. Huang et al.
monitored water surface variations using long-term MODIS data time series [25]. For regional studies,
images provided by the Thematic Mapper (TM), the Enhanced Thematic Mapper Plus (ETM+) and the
latest Operational Land Imager (OLI) from Landsat series satellites are popular datasets. For example,
Hui et al. modelled the spatial and temporal change of Poyang Lake using multi-temporal Landsat TM
and ETM+ images [15]. Du et al. extracted the water body maps at subareas over the Yangtze River
Basin and Huaihe River Basin in China from Landsat OLI images [13]. Rokni et al. extracted water
features and detected change using Landsat TM, ETM+ and OLI images [26]. Compared to MODIS,
the Landsat TM, ETM+ and OLI images have much finer spatial resolutions (30 m) and can extract
open water bodies with more explicit and accurate boundaries. However, the spatial resolution of
Landsat series images is still not fine enough to identify smaller-sized open water bodies, such as
narrow gutters and small pools in urban areas. By exploring remote sensing images, such as SPOT6/7,
IKONOS and Quick-bird, these small-sized water bodies can be mapped. However, these fine spatial
resolution images have no SWIR band, making it impossible to use the MNDWI method.

Remarkably, the European Space Agency (ESA) launched a new optical fine spatial resolution
satellite, namely Sentinel-2, on 23 June 2015. Sentinel-2 can provide systematic global acquisitions of
fine spatial resolution multispectral images with a fine revisit frequency, which is important for the
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next generation of operational products, such as land cover maps, land cover change detection maps
and geophysical variables [27–29]. The Sentinel-2 images would surely be of great significance for
regional water bodies’ mapping, due to its appealing properties (i.e., the 10-m spatial resolution for
four bands and the 10-day revisit frequency) and the free access. As shown in Table 1, the Sentinel-2
multispectral image has 13 bands in total, in which four bands (blue, green, red and NIR) have a spatial
resolution of 10 m and six bands (including SWIR band) have a spatial resolution of 20 m. The MNDWI
method can be applied to extract water bodies from the Sentinel-2 images, since the green and SWIR
bands are included. However, it is noticed that the spatial resolutions of green and SWIR bands are at
10 m and 20 m, respectively. In this case, it is easy to produce MNDWI with the 20-m resolution, by
simply upscaling the green band (Band 3) from 10 m to 20 m. However, spatial information would be
lost following this scheme.

Table 1. Band spatial resolution, central wavelength and bandwidth of the Sentinel-2 image.

Band Number Spatial Resolution (m) Central Wavelength (nm) Bandwidth (nm)

B1 60 443 20
B2 10 490 65
B3 10 560 35
B4 10 665 30
B5 20 705 15
B6 20 740 15
B7 20 783 20
B8 10 842 115

B8A 20 865 20
B9 60 945 20

B10 60 1375 30
B11 20 1610 90
B12 20 2190 180

An alternative and advisable way to enhance the performance of water bodies’ mapping using
the Sentinel-2 imagery is to produce MNDWI at the 10-m resolution by downscaling the SWIR band
(Band 11) from 20 m to 10 m. Obviously, the key issue is how to increase the spatial resolution
of the SWIR band accurately. In general, spatial interpolation [30,31] and image fusion [32,33]
(e.g., pan-sharpening [34]) are the two most popular kinds of methods applied to increase the spatial
resolution of remote sensing imagery. The spatial interpolation method is always applied to coarse
spatial resolution images directly and does not use any additional datasets. By contrast, image fusion,
such as pan-sharpening, is premised on the availability of the fine spatial resolution panchromatic
(PAN) band of the same scene and aims to downscale the coarse multispectral imagery to the spatial
resolution of the PAN band. Pan-sharpening is widely applied to remote sensing images that have
coarse multispectral bands and a fine spatial resolution PAN band, such as MODIS, Landsat TM/ETM+,
SPOT, IKONOS and QuickBird imagery. More specifically, image fusion has also been applied widely
to produce fine spatial resolution water body maps. For example, Feng et al. used the pan-sharpening
methods of PCA and IHS to produce the 250-m water body maps by fusing 500-m and 250-m MODIS
images to estimate the inundation changes of Poyang Lake [6]. Ashraf et al. compared several image
fusion methods for the exploring of spectral and spatial information in freshwater environments [32].
Che et al. used a nonlinear regression-based fusion method to downscale the MODIS image to improve
water body mapping [35]. Wu et al. used a statistical regression based image fusion method to
downscale the water inundation map from coarse data to fine-scale resolution [36]. In order to produce
the 10-m MNDWI from Sentinel-2, only the spatial resolution of the SWIR band needs to be increased.
More importantly, Bands 2, 3, 4 and 8 in the Sentinel-2 imagery all have 10-m resolution. Therefore, the
10-m bands in the Sentinel-2 imagery can be treated as PAN-like bands [37,38], and they can provide
important fine spatial resolution information to downscale the 20-m bands to 10 m. Motivated by this,
in this paper, the pan-sharpening technique was chosen to increase the spatial resolution of SWIR Band
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11 to 10 m to match the 10-m green Band 3, using the information provided by directly observed 10-m
Bands 2, 3, 4 and 8.

The objectives of this study are to: (1) produce 10-m MNDWI from the Sentinel-2 image
by sharpening the SWIR band; (2) compare the performance of various popular pan-sharpening
algorithms in producing the 10-m MNDWI; (3) evaluate the performance of the produced 10-m
MNDWI in water bodies mapping by comparing it to the 10-m NDWI and the 20-m MNDWI; and (4)
explore the relationship between the accuracy of the sharpened SWIR band or the sharpened MNDWI
image and the map-level accuracy of the resultant water body map.

2. Study Site and Dataset

The study area in this paper is located at the Venice coastland, Italy. The city of Venice and its
lagoon represent an extraordinary environment and human heritage susceptible to loss in surface
elevation relative to the mean sea level [39]. The lagoon covers an area of about 550 km2 with shallows,
tidal flats, salt marshes, islands and a network of channels, which are all sensitive to the changes
of surface water bodies. Over the past 100 years, the mean sea level in Venice coastland rose about
23 cm [40], which leads to an obvious expansion of the open water bodies in the Venice coastland and
an increase of flooding events, causing great inconvenience for the population and enormous damage
to the cultural heritage. Therefore, it is of great interest to extract surface open water bodies and to
monitor their changes in the Venice coastland.

The dataset used in this study is the standard Sentinel-2 Level-1C product, which was produced
by radiometric and geometric corrections, including ortho-rectification and spatial registration on
a global reference system with sub-pixel accuracy. The Sentinel-2 Level-1C product is composed of
100 km ˆ 100 km tiles in the UTM/WGS84 projection and provides the Top-Of-Atmosphere (TOA)
reflectance. One scene of the Sentinel-2 Level-1C image acquired on 13 August 2015 (relative orbit:
R022) was downloaded from the ESA Sentinel-2 Pre-Operations Hub (https://scihub.copernicus.eu/).
A subset covering 20 km ˆ 20 km and cantered at 45˝28’30”N, 12˝16’29”E was used for the case study.
The false colour composite of the Sentinel-2 image at 10 m is shown in Figure 1a. The study area is
mainly covered by open water bodies, urban built-up and vegetation features. The images of the green
band at 10 m, the NIR band at 10 m and the SWIR band at 20 m are shown in Figure 1b–d, respectively,
and these three bands were involved in the calculation of water indices of NDWI and MNWI.
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Figure 1. (a) Ten-metre false colour map (R: Band 4; G: Band 3; B: Band 8); (b) 10-m green Band 3;
(c) 10-m NIR Band 8; (d) 20-m SWIR Band 11.

3. Methodology

3.1. Spectral Water Indexes

3.1.1. NDWI

The NDWI proposed by McFeeters [21] is designed to: (1) maximize the reflectance of the
water body in the green band; (2) minimize the reflectance of water body in the NIR band [22,41].
McFeeters’s NDWI is calculated as:

NDWI “
ρGreen ´ ρNIR
ρGreen ` ρNIR

(1)

where ρGreen is the TOA reflectance value of the green band and ρNIR is the TOA reflectance value
of the NIR band. Comparing to the raw Digital Numbers (DN), TOA reflectance is more suitable in
calculating NDWI [12,42,43]. The freely-available Sentinel-2 Level-1C dataset is already a standard
product of TOA reflectance [27]. Therefore, no additional pre-processing is required, and the NDWI
for Sentinel-2 can be directly calculated as:

NDWI10m “
ρ3 ´ ρ8
ρ3 ` ρ8

(2)

where ρ3 is the TOA reflectance of the Band 3 (the green band) of Sentinel-2 and ρ8 is the TOA
reflectance of the Band 8 (the NIR band) of Sentinel-2. Note that both Band 3 and Band 8 of Sentinel-2
have the spatial resolution of 10 m, and thus, the calculated NDWI in Equation (2) also has the spatial
resolution of 10 m. For clarity, we represent it as NDWI10m.

3.1.2. MNDWI

A main limitation of McFeeters’ NDWI is that it cannot suppress the signal noise coming from the
land cover features of built-up areas efficiently [22]. Xu [22] noticed that the water body has a stronger
absorbability in the SWIR band than that in the NIR band, and the built-up class has greater radiation
in the SWIR band than that in the NIR band. Based on this finding, the MNDWI was proposed, which
is defined as:

MNDWI “
ρGreen ´ ρSWIR
ρGreen ` ρSWIR

(3)
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where ρSWIR is the TOA reflectance of the SWIR band. In general, compared to NDWI, water bodies
have greater positive values in MNDWI, because water bodies generally absorb more SWIR light than
NIR light; soil, vegetation and built-up classes have smaller negative values, because they reflect more
SWIR light than green light [41].

For Sentinel-2, the green band has the spatial resolution of 10 m, while the SWIR band (Band 11)
has the spatial resolution of 20 m. Thus, MNDWI needs to be calculated at a spatial resolution of either
10 m or 20 m. The 20-m MNDWI is calculated as:

MNDWI20m “
ρ20m

3 ´ ρ11

ρ20m
3 ` ρ11

(4)

where ρ11 is the TOA reflectance of Band 11 (SWIR) of Sentinel-2 and ρ20m
3 is the TOA reflectance of

the upscaled Band 3 of Sentinel-2 with a spatial resolution of 20 m. The value of ρ20m
3 is calculated as

the average value of the corresponding 2ˆ 2 ρ3 values.
On the other hand, if the spatial resolution of Band 11 is increased from 20 m to 10 m, the MNDWI

with the spatial resolution of 10 m, MNDWI10m, can then be calculated as:

MNDWI10m “
ρ3 ´ ρ10m

11

ρ3 ` ρ10m
11

(5)

where ρ10m
11 refers to the TOA reflectance of Band 11 at 10 m, which is produced by downscaling

the original 20-m Band 11. This is achieved by using the pan-sharpening algorithms described in
the following.

3.2. Pan-Sharpening Algorithms

In this paper, four popular pan-sharpening algorithms, including PCA [44], IHS [45], High Pass
Filter (HPF) [46] and À Trous Wavelet Transform (ATWT) [47] were applied to downscale the Sentinel-2
SWIR band. The basic principles of these different pan-sharpening algorithms are introduced briefly
as follows.

3.2.1. PCA

PCA is an approach based on the component substitution for spectral transformation of the
original data [48]. Specifically, PCA creates an uncorrelated feature space that can be used as an
alternative of the data in the original multispectral feature space. The first Principal Component
(PC) image with the largest variance is considered to contain the major information from the original
multispectral image, and it is replaced by the fine spatial resolution PAN image [44]. It is noted that
before the substitution, the histogram of the PAN image is adjusted to match the first PC. After the
substitution, an inverse PC transform is performed to produce the pan-sharpened multispectral image.

3.2.2. IHS

The IHS transform is also a component substitution-based pan-sharpening method. IHS transform
separates the spatial information (regarded as intensity) and spectral information (regarded as hue
and saturation) into an IHS colour space [45]. The intensity refers to the total brightness of the image,
while the hue refers to the dominant or average wavelength of the light contributing to the colour
and saturation to the purity of colour. For pan-sharpening, three bands of a multispectral image are
first transformed from the RGB domain to the IHS colour space. The PAN component is matched to
replace the intensity component of the IHS image, and then, the IHS image is transformed back into
the RGB colour space. An improvement model was proposed in [49] to generalize the concept of IHS
to multispectral images with more than three bands.
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3.2.3. HPF

HPF is a method based on the multi-resolution analysis [34]. The general principle of HPF is to
extract high frequency information that is related mostly to the spatial information from the PAN image
by using a high pass filter [46]. The high frequency information is then added to each coarse band with
a specified weight. Different high pass filters, including the Box filter, Gaussian and Laplacian, can be
applied in HPF, and the Box filter is chosen in this paper [46].

3.2.4. ATWT

Similarly to HPF, ATWT is also based on multi-resolution analysis [34]. For ATWT, the original
multispectral bands are interpolated to match the spatial resolution of the PAN band. The PAN image
and each interpolated band of the multispectral image are decomposed as three high and one low
frequency components through wavelet transform. The high frequency component extracted from
the PAN image is then merged into the interpolated multispectral bands. Each of the pan-sharpened
multispectral bands is finally obtained by the inverse wavelet transform. Three inter-band structure
modes, including Context-Based Decision (CBD), Support Value Transform (SVT) and Laplacian
pyramids, are widely used in ATWT to rule on the transformation of high frequency components of
the PAN image [50], and the Laplacian pyramids are used in this paper.

3.2.5. Algorithm Implementation

As the pan-sharpening algorithm is based on the availability of a PAN or PAN-like band, a
suitable PAN-like band needs to be selected from 10-m Bands 2, 3, 4 and 8 at first. In this study, the
most suitable PAN-like band was determined by measuring the correlation coefficient between them
and the SWIR band. The 10-m band with the greatest correlation coefficient is chosen as the PAN-like
band [37,38].

For all four used pan-sharpening algorithms, HPF and ATWT can be applied for coarse
multispectral images band by band. To produce the 10-m SWIR band with HPF and ATWT, the
20-m SIWR band can be sharpened using the PAN-like band directly. By contrast, PCA and IHS
are based on the component substitution, and multiple coarse bands are required. To facilitate the
implemented process, in this study, all six 20-m bands, including Bands 5, 6, 7, 8A, 11 and 12, were
used in these pan-sharpening algorithms of PCA, his, HPF and ATWT.

3.3. Water Bodies’ Mapping with the OTSU Algorithm

After the NDWI or MNDWI are produced, water bodies can then be mapped by the simple
segmentation algorithm using a suitable threshold value. In general, the threshold is often set to be
zero in order to map water bodies from NDWI or MNDWI, that is a pixel whose NDWI or MNDWI
is larger than zero is considered as water. In practice, however, multispectral images acquired by
different satellite platforms at different regions and different times always have different characteristics.
Thus, the threshold should be determined according to the feature of water index values themselves
in each scene [51]. In this study, the OTSU algorithm [52], a widely-used dynamic threshold method
aiming to maximize the inter-class variance, is employed to determine the optimal threshold value t˚

for water bodies’ mapping with NDWI and MNDWI [12,13].
Assume the NDWI or MNDWI values range from a to b, where ´1 ď a ď b ď 1. Based on the

OTSU algorithm, a threshold value t can divide the NDWI or MNDWI image into two classes: the



Remote Sens. 2016, 8, 354 8 of 19

non-water class ranging from a to t and the water class ranging from t to b. The optimal threshold
value t˚ in the OTSU algorithm is determined as follows:

$

’

’

’

’

&

’

’

’

’

%

δ2 “ Pnw ¨ pMnw ´Mq2 ` Pw ¨ pMw ´Mq2

M “ Pnw ¨Mnw ` Pw ¨Mw

Pnw ` Pw “ 1

t˚ “ Arg Max
aďtďb

!

Pnw ¨ pMnw ´Mq2 ` Pw ¨ pMw ´Mq2
)

(6)

where δ is the inter-class variance of the non-water class and the water class, Pnm and Pw are the
possibilities of one pixel belonging to non-water and water, respectively, Mnw and Mw are the mean
values of the non-water and water classes and M is the mean value of the NDWI or MNDWI image.

3.4. Result Accuracy Assessment

In order to fully assess the performances of different methods, three levels of results, including the
sharpened images, the produced MNDWI images and the final mapped water bodies, were analysed
with different quantitative indexes, respectively.

The Quality with No Reference (QNR) index that is widely used for pan-sharpening quality
evaluation without reference data is employed here to assess the sharpening results [34,53]. The QNR
index is calculated based on the two terms. One is the spectral distortion index Dλ, which reflects
the degree of preserving the spectral information, and the other is the spatial distortion index Ds,
which reflects the degree of preserving the spatial details in the PAN band. More precisely, QNR is
formulated as:

QNR “ p1´Dλq
α
p1´Dsq

β (7)

where α, β are two weighted coefficients and are typically set to one. The spectral distortion index Dλ

and the spatial distortion index Ds are calculated as:
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where p and q are weighted coefficients and are typically set to one. N is the number of bands in the
observed multispectral image MS, MS f is the sharpened multispectral image and PLR is upscaled from
the observed pan-like band P. The Q´ index [54] is used here to calculate the dissimilarities between
bands, di,jpMS, MS f q “ QpMSpiq ´MSpiqq ´QpMS f piq ´MS f piqq.

The value of QNR ranges from 0 to 1, and a higher QNR value indicates a more accurate
sharpened result. The QNR index is designed for multiple bands (at least two bands) and cannot be
used to validate the sharpened SWIR band solely. Thus, to assess the results produced by different
pan-sharpening algorithms, the QNR index was calculated using the SWIR band and Band 8A.

The correlation coefficients (CC) and root-mean-square-error (RMSE) were used to quantitatively
compare the four MNDWI10m images produced by four pan-sharpening algorithms. Since the real
MNDWI10m image is not available, the MNDWI20m calculated by Equation (4) was used as the
reference. The two indexes are calculated as:

CC “

N
ř

i“1
pMNDWI20mpiq´M20mqpMNDWI10mÓ

20m piq ´M10mÓ
20m q

d

N
ř

i“1
pMNDWI20mpiq ´M20mq

2
¨

N
ř

i“1
pMNDWI10mÓ

20m piq ´M10mÓ
20m q

2
(10)
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RMSE “

g

f

f

e

1
N

N
ÿ

i“1

pMNDWI20mpiq ´MNDWI10mÓ
20m piqq2 (11)

where N is the number of pixels in MNDWI20m, MNDWI10mÓ
20m is the MNDWI image at the spatial

resolution of 20 m that was generated by upscaling the sharpened MNDWI10m images and M20m and
M10mÓ

20m are mean values of MNDWI20m and MNDWI10mÓ
20m , respectively.

To examine the final water body maps produced with different water indexes, map-level accuracy
values, including Kappa and Overall Accuracy (OA), as well as class-level accuracy values, including
the omission error and the commission error, were employed. The reference water maps were produced
by manually digitizing the 10-m false Sentinel-2 image with the help of Google Earth Map. As it is
difficult to obtain the reference water body map for the whole study area (20 km ˆ 20 km) at the
spatial resolution of 10 m, the validation of the final water body maps was performed in three separate
subareas, with each covering an area of 2 km ˆ 2 km, as shown in Figure 2a.
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Figure 2. (a) Ten-metre NDWI10m produced by the original green and NIR bands; (b) 20-m
MNDWI20m (M, Modified) produced by the upscaled green band and the original SWIR band;
(c) 10-m MNDWIPCA

10m produced by the original green band and the PCA-sharpened SWIR band;
(d) 10-m MNDWIIHS

10m produced by the original green band and the his-sharpened SWIR band; (e) 10-m
MNDWIHPF

10m produced by the original green band and the High Pass Filter (HPF)-sharpened SWIR
band; (f) 10-m MNDWIATWT

10m produced by the original green band and the À Trous Wavelet Transform
(ATWT)-sharpened SWIR band. The three black square frames shown in (a) indicate the locations of
Subareas A, B and C, respectively.
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4. Results and Discussion

4.1. Comparison between NDWI and MNDWI

All six water indexes’ images, including NDWI10m, MNDWI20m and four 10-m MNDWI
images produced by four pan-sharpening algorithms, MNDWIPCA

10m , MNDWIIHS
10m, MNDWIHPF

10m and
MNDWIATWT

10m , are shown in Figure 2. All NDWI and MNDWI images clearly enhance the separability
of the water bodies. Most MNDWI values of water bodies are larger than 0.8, while most NDWI values
of water bodies are larger than 0.5. As shown in Figure 2a, NDWI values of built-up and vegetation
are much different. Compared to water bodies, vegetation has much smaller NDWI values, making
vegetation easy to distinguish from water bodies. However, built-up features in the NDWI image
present in a light yellow tone with positive values between zero and 0.2, especially in the city centres,
leading to the confusion between built-up and water bodies. Compared to NDWI, built-up features
in the city areas in all MNDWI images present a light cyan tone with values below 0 (Figure 2b–f),
indicating that the confusion caused by built-up features in the NDWI image are notably suppressed
or even removed in the MNDWI image. This phenomenon agrees with previous research results that
MNDWI values of built-up would be smaller than NDWI values, because TOA reflectance values of
built-up in the SWIR band are larger than those of NIR.

Table 2 lists the statistical results of water bodies, built-up and vegetation features of Band 3
(green), Band 8 (NIR), Band 11 (SWIR), NDWI and MNDWI images shown in Figure 1b–d and
Figure 2a,b, respectively. A similar trend shown in Figure 2 is also found in Table 2. For water bodies,
the minimum and maximum values of MNDWI are all larger than those of NDWI. The mean MNDWI
value increases by about 0.3 when compared to the mean NDWI value, because the mean TOA value
of the SWIR band used for MNDWI is 9.86, while the mean TOA value of the NIR band used for
NDWI is 45.75. For built-up features, it is found that the maximum value of NDWI is 0.0845, which is
larger than 0. If the threshold value of zero is used to segment water bodies from the NDWI image,
some built-up pixels should be wrongly assigned as water. By contrast, the maximum MNDWI value
of built-up features is ´0.0127, which is much smaller than that of NDWI (0.0845), making built-up
features easier to distinguish from water bodies.

Table 2. Maximum (Max), minimum (Min), mean and standard deviation (SD) values of water body,
built-up and vegetation features within the Band 3 (green), Band 8 (NIR), Band 11 (SWIR), NDWI20m

and MNDWI20m images shown in Figure 1b–d and Figure 2a,b, respectively.

Green NIR SWIR NDWI20m MNDWI20m

Water
body

features

Min 81.7500 22.2500 5.0000 0.3418 0.5920
Max 121.5000 45.7500 23.0000 0.6000 0.8963

Mean 105.8400 32.4225 9.8600 0.5296 0.8275
SD 13.5183 5.1469 4.6035 0.0690 0.0843

Built-up
features

Min 108.2500 119.0000 153.0000 ´0.2957 ´0.3854
Max 360.7500 398.2500 421.0000 0.0845 ´0.0127

Mean 213.4525 253.1175 292.3300 ´0.0829 ´0.1626
SD 63.7689 76.9810 69.9212 0.0737 0.0930

Vegetation
features

Min 82.0000 267.7500 127.0000 ´0.7117 ´0.3766
Max 109.5000 497.2500 199.0000 ´0.4483 ´0.1416

Mean 91.8025 386.6150 158.4300 ´0.6058 ´0.2632
SD 7.3246 71.6243 18.7154 0.0798 0.0684

4.2. Comparison between Pan-Sharpening Results

In order to produce NDWI10m, the 20-m SWIR band needs to be sharpened with the
pan-sharpening algorithm, by using a suitable PAN-like band to provide detailed spatial information.
Figure 3 shows the scatter plots and correction coefficient values between the original 20-m SWIR band
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and four upscaled 20-m bands produced from the original 10-m Bands 2, 3, 4 and 8. It is noticed that
Band 8 (NIR) has the greatest correction coefficient of 0.8166. Therefore, Band 8 was chosen as the
PAN-like band in the pan-sharpening algorithms to produce the 10-m SWIR image.
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Bands 2, 3, 4 and 8 of Sentinel-2.

The QNR validation index was used to examine the sharpened SWIR bands with different
pan-sharpening algorithms. Table 3 shows the QNR values, including the spectral distortion value Dλ

and the spatial distortion value Ds of both sharpened bands (the SWIR band and Band 8A) generated
by PCA, IHS, HPF and ATWT, respectively. IHS has the smallest QNR value and the largest Dλ

and Ds values, showing that IHS is the weakest algorithm in preserving the spectral information of
multispectral bands (20-m SWIR band and Band 8A) and the spatial detail in the PAN band (Band 8).
HPF has the smallest Dλ and Ds values of 0.0843 and 0.0626, and the largest QNR value of 0.8584,
showing that HPF is more able to preserving the spectral and spatial information of the observed
images. Therefore, HPF is considered as the most accurate pan-sharpening algorithm for this case.

Table 3. QNR, Dλ and Ds indexes of the sharpened SWIR band and Band 8A generated by PCA, IHS,
HPF and ATWT.

PCA IHS HPF ATWT

Dλ 0.1258 0.2087 0.0843 0.1342
Ds 0.1428 0.1960 0.0626 0.0872

QNR 0.7494 0.6362 0.8584 0.7902

4.3. Comparison between Different MNDWIs

In Figure 4, enlarged NDWI and MNDWI images of three subareas are shown. It is noticed that
there still exists much difference among these images. In general, the spatial resolution is a significant
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factor that affects the information of water bodies in the MNDWI image. In the NDWI20m image, many
water bodies, especially linear water features, were invisible, and many jagged squares appeared
around water boundaries, due to its relatively coarse spatial resolution. By contrast, in all MNDWI10m
images, more spatial details of water bodies, especially linear water features, were represented more
clearly, and water boundaries become smoother. This is because the sharpened SWIR band, which
is used in producing the 10-m MNDWI images, inherited 10-m detailed spatial information from
Band 8 (NIR). Visual inspection reveals that PCA- and IHS-based MNDWI images present a dark
orange tone that is similar to the 10-m NDWI image, and some water bodies, especially linear water
features, are not sufficiently enhanced. This is because the results of PCA and IHS rely heavily on the
selected PAN-like band. Since the selected PAN-like band in this study is the 10-m NIR band, the 10-m
MNDWI images produced by PCA and IHS are predictably similar to the 10-m NDWI. Compared to
PCA and IHS, the ATWT and HPF MNDWI images present a darker red tone that is more similar to
the original 20-m MNDWI, and water bodies are all enhanced. This is because HPF and ATWT can
preserve more spectral information of the original multispectral image [34].
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Table 4 shows CC and RMSE values between the original MNDWI20m image and four MNDWI20m
images upscaled from the MNDWI10m images produced by PCA, IHS, HPF and ATWT. The trend
of CC and RMSE is similar to that of the sharpened band validation result based on the QNR index.
The MNDWI image produced by IHS has the smallest CC and the largest RMSE, and HPF produced the
largest CC and the smallest RMSE, meaning that HPF has the most satisfactory performance, while IHS
has the weakest performance in preserving the information within the observed 20-m MNDWI image.

Table 4. The correlation coefficient (CC) and RMSE between original MNDWI20m image and four
upscaled MNDWI10mÓ

20m images produced by PCA, HIS, HPF and ATWT.

PCA IHS HPF ATWT

CC 0.9943 0.9862 0.9991 0.9971
RMSE 0.0760 0.1011 0.0215 0.0382

4.4. Comparison between the Resulting Water Body Maps

The final water body maps were extracted by segmenting the NDWI or MNDWI images with
the optimal threshold value t˚ calculated by the OTSU algorithm. Figure 5 shows the histogram and
the corresponding optimal threshold value of each NDWI or MNDWI image. All histograms have
bimodal shapes, and optimal threshold values calculated by the OTSU algorithm are all located at the
bottoms. In general, the optimal threshold value of NDWI is much smaller than those of MNDWI.
The histograms of MNDWI20m, MNDWIHPF

10m and MNDWIATWT
10m are similar, and their optimal threshold

values are also close. The histogram peak valleys of MNDWIPCA
10m and MNDWIIHS

10m are narrower, and
their optimal threshold values are smaller than those of MNDWIHPF

10m and MNDWIATWT
10m .

Three resulting water body maps in different subareas are shown in Figure 6. For the results of
NDWI, many isolated pixels (built-up features) are mapped as water bodies, especially in Subarea
A. Moreover, many detailed linear water bodies cannot be mapped with NDWI, especially in
Subareas B and C. In the water body maps produced by MNDWI20m, most isolated pixels caused by
built-up features are eliminated. However, due to the coarse spatial resolution of 20 m, detailed water
bodies are still not satisfactorily mapped, and water boundaries are often mapped as jagged squares.
For MNDWIPCA

10m , isolated pixels in Subarea A caused by built-up features are mostly eliminated;
detailed water bodies are satisfactorily mapped, especially in the Subarea C; and water boundaries
are smoother than those of MNDWI20m. For MNDWIIHS

10m, some isolated pixels caused by built-up
features still exist in Subarea A, and the result is similar to those of MNDWIPCA

10m in Subareas B and C.
For MNDWIHPF

10m , linear water bodies are satisfactorily mapped in Subareas B and C, but some linear
water bodies are not mapped correctly in Subarea A. Although the 10-m sharpened SWIR band and
MNDWI image of HPF are more similar to the observed 20-m SWIR band and MNDWI image than
those of ATWT, PCA and IHS, the difference between water body features and non-water body features
in the results of HPF is not as obvious as those of ATWT, PCA and IHS. Therefore, HPF often makes a
confusion between water and non-water body features, although it can better preserve the information
of the observed image. By contrast, in the results of MNDWIATWT

10m , isolated pixels in Subarea A caused
by built-up features are almost eliminated completely, and more detailed water bodies are correctly
mapped in Subareas B and C, showing the most satisfactory performance of ATWT in producing the
10-m resolution MNDWI for water bodies’ mapping. The reason behind this is that ATWT enhances
the water body features, especially the linear water body features. Although enhancing water body
features makes the resultant pan-sharpened SWIR and corresponding 10-m MNDWI image have a
lower accuracy than those of HPF, as shown in Tables 3 and 4 it benefits the water body mapping;
because, in this case, water body features become easier to distinguish from non-water body features.
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10m; (e) MNDWIHPF

10m ; and (f) MNDWIATWT
10m .

The corresponding statistic accuracies of three different water body maps are shown in Table 5.
Water body maps produced by 10-m NDWI images have the smallest average commission errors.
When compared to MNDWI10m, however, large average omission errors are also achieved in 10-m
NDWI images, because MNDWI is more suitable to enhance the water body features than NDWI.
MNDWI20m has the largest average omission error, due to its coarse spatial resolution. Compared to
MNDWI20m, the average Kappa values of MNDWI10m produced by PCA, IHS, HPF and ATWT are
larger, showing the effectiveness of pan-sharpening for water bodies’ mapping. Compared to NDWI,
the average Kappa values of MNDWI10m produced by PCA, IHS HPF and ATWT increase by 0.0262,
0.0245, 0.0065 and 0.0338, respectively. This indicates the superiority of MNDWI over NDWI. Although
the average commission errors of MNDWIATWT

10m are larger than those of MNDWIHPF
10m , MNDWIPCA

10m
and NDWI, the largest average Kappa and OA values and the smallest average omission error are
achieved by MNDWIATWT

10m , suggesting the superiority of ATWT in mapping water bodies.



Remote Sens. 2016, 8, 354 15 of 19

Remote Sens. 2016, 8, 354 15 of 19 

 

PCA
10mMNDWI  and NDWI, the largest average Kappa and OA values and the smallest average omission 

error are achieved by ATWT
10mMNDWI , suggesting the superiority of ATWT in mapping water bodies. 

 
Figure 6. Subarea reference 10-m water body maps and 20-m and 10-m water body maps extracted 
from the sub-area NDWI and MNDWI images shown in Figure 4. 

Table 5. Kappa, Overall Accuracy (OA), omission error and commission error of resultant water body 
maps in Subareas A, B and C. 

  10mNDWI  20mMNDWI PCA
10mMNDWI IHS

10mMNDWI  HPF
10mMNDWI  ATWT

10mMNDWI

Kappa 

A 0.8464 0.7037 0.8756 0.8700 0.8334 0.8846 
B 0.8974 0.8579 0.8955 0.8954 0.8905 0.8971 
C 0.8435 0.8289 0.8947 0.8952 0.8828 0.9070 

Average 0.8624 0.7968 0.8886 0.8869 0.8689 0.8962 

OA 

A 97.20% 95.36% 97.78% 97.61% 97.13% 97.92% 
B 95.07% 93.12% 94.92% 94.91% 94.67% 94.99% 
C 94.86% 94.28% 96.41% 96.44% 96.02% 96.79% 

Average 95.71% 94.25% 96.37% 96.32% 95.94% 96.57% 
A 8.81% 1.98% 3.30% 7.55% 2.74% 3.53% 

Figure 6. Subarea reference 10-m water body maps and 20-m and 10-m water body maps extracted
from the sub-area NDWI and MNDWI images shown in Figure 4.

Table 5. Kappa, Overall Accuracy (OA), omission error and commission error of resultant water body
maps in Subareas A, B and C.

NDWI10m MNDWI20m MNDWIPCA
10m MNDWIIHS

10m MNDWIHPF
10m MNDWIATWT

10m

Kappa

A 0.8464 0.7037 0.8756 0.8700 0.8334 0.8846
B 0.8974 0.8579 0.8955 0.8954 0.8905 0.8971
C 0.8435 0.8289 0.8947 0.8952 0.8828 0.9070

Average 0.8624 0.7968 0.8886 0.8869 0.8689 0.8962

OA

A 97.20% 95.36% 97.78% 97.61% 97.13% 97.92%
B 95.07% 93.12% 94.92% 94.91% 94.67% 94.99%
C 94.86% 94.28% 96.41% 96.44% 96.02% 96.79%

Average 95.71% 94.25% 96.37% 96.32% 95.94% 96.57%

Commission
Error

A 8.81% 1.98% 3.30% 7.55% 2.74% 3.53%
B 2.53% 7.65% 6.92% 6.87% 6.94% 7.08%
C 0.47% 4.71% 2.33% 1.92% 2.88% 2.99%

Average 3.94% 4.78% 4.18% 5.45% 4.19% 4.53%

Omission
Error

A 18.29% 42.19% 17.93% 15.43% 24.68% 16.34%
B 9.54% 9.05% 5.21% 5.28% 5.81% 4.83%
C 21.89% 20.85% 13.48% 13.75% 14.72% 11.15%

Average 16.57% 24.03% 12.21% 11.49% 15.07% 10.77%
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4.5. Impact of the Threshold Value on the Performance of Water Mapping

Figure 7 is used here to show how the threshold values affect the performance of water mapping
for different NDWI and MNDWI images of different methods. The water mapping threshold value is
set to be in the range of zero to 0.4 with an interval of 0.05 by considering the histograms of different
NDWI and MNDWI images shown in Figure 5. From Figure 7, it can be found that the optimal
threshold value of the NDIW image is in the range of zero to 0.1, while that of MNDWI images are in
the range of 0.2 to 0.35, and the optimal threshold values t˚ calculated by the OTSU algorithm (see
Figure 5) for NDWI and MNDWI images are following these optimal ranges of zero to 0.1 (NDWI) and
0.2 to 0.35 (MDNWI). NDWI is more sensitive to the change of the water mapping threshold value
than MDNWI. If the threshold value of NDWI is larger than 0.1, the Kappa values of the resultant
water maps will have a severe decrease. Similar trends shown in Table 5 are also found in Figure 7; the
MNDWI20m has the lowest Kappa values in the optimal ranges by comparing to other 10-m NDWI
and MNDWI images. For the four pan-sharpening-based 10-m MNDWI images, the results of ATWT
have the highest Kappa values by comparing to those of PCA, IHS and HPF.
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5. Conclusions

The newly-launched Sentinel-2 can provide fine spatial resolution multispectral imagery at a fine
temporal resolution, which makes it an important dataset for water bodies’ mapping at the global
scale. In this paper, a novel method is proposed for water bodies’ mapping from the Sentinel-2 image
by producing the 10-m MNDWI image. In order to take full advantage of the Sentinel-2 image that
has four 10-m bands, including green and NIR, and six 20-m bands, including SWIR, pan-sharpening
is applied to downscale the 20-m SWIR band to 10 m by using the 10-m NIR band as the PAN-like
band. Four popular pan-sharpening algorithms, including PCA, IHS, HPF and ATWT, are compared.
The experiment on the subset Sentinel-2 image located at Venice coastland demonstrates that MNDWI
is more efficient to enhance water bodies and to suppress built-up features than NDWI. All 10-m
MNDWIs produced by PCA, IHS, HPF and ATWT can represent more detailed spatial information of
water bodies than 20-m MNDWI. As a result, 10-m MNDWIs can be used to extract more accurate water
body maps than 10-m NDWI and 20-m MNDWI. Amongst the four used pan-sharpening algorithms,
HPF produces the sharpened 10-m SWIR band with a higher QNR value and the 10-m MNDWI
image with a higher correlation coefficient and a lower RMSE by comparing to PCA, IHS and ATWT.
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However, HPF makes a confusion between water and non-water body features and cannot produce
water body maps with higher accuracy than the other three pan-sharpening algorithms. Compared to
PCA, IHS and HPF, ATWT is most likely to enhance water body features (especially the linear water
body features) and can produce the most reliable 10-m MNDWI, which yields the most accurate water
bodies’ maps. In general, this is no necessary positive connection between the accuracy (QNR, CC
and RMSE values) of the sharpened SWIR band or the sharpened MNDWI image and the map-level
accuracy of the resultant water body map, because the two kinds of accuracies focus on different key
points. QNR, CC and RMSE aim to measure the similarity between the sharpened image and the
observed coarse image, while map-level accuracy of the resultant water body map mainly focuses on
the difference between water body features and non-water features in the NDWI or MNDWI images.
In future research, more powerful pan-sharpening algorithms, which can better take into account the
characteristics and water body feature and the spectral and spatial features of the Sentinel-2 image will
be explored.
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