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Abstract: Road networks are very important features in geospatial databases. Even though
high-resolution optical satellite images have already been acquired for more than a decade, tools for
automated extraction of road networks from these images are still rare. One consequence of this is
the need for manual interaction which, in turn, is time and cost intensive. In this paper, a multi-stage
approach is proposed which integrates structural, spectral, textural, as well as contextual information
of objects to extract road networks from very high resolution satellite images. Highlights of the
approach are a novel linearity index employed for the discrimination of elongated road segments
from other objects and customized tensor voting which is utilized to fill missing parts of the network.
Experiments are carried out with different datasets. Comparison of the achieved results with the
results of seven state-of-the-art methods demonstrated the efficiency of the proposed approach.
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1. Introduction

Automated extraction of man-made objects from aerial and satellite imagery has been explored for
decades. Starting points for further research arose over time and have been influenced by many factors,
such as the availability of very high resolution (VHR) optical satellite imagery. Increasing demands
for updating geospatial databases call for the development of more advanced tools to minimize
the human interaction in urban feature extraction and identification [1,2]. Road networks not only
have vast usage in many applications, such as urban design, navigation, change detection, image
registration [3], transportation applications [4,5], personal navigation systems, or vehicle routing [6],
but also incorporate a vital component in most GIS systems.

Due to the variety of methods in the literature, a strict categorization of all approaches dealing
with road extraction methods is a difficult task [7]. For the sake of conciseness, we confine our
literature review to the recent state-of-the-art approaches in road extraction from VHR images. For a
detailed literature review on road extraction researches, which have been carried out before 2003, the
reader is referred to Mena et al. [7]. In 2006, Mayer et al. [8] compiled a EuroSDR test and compared
results of different approaches for automatic road extraction from VHR satellite and aerial images.
Furthermore, comprehensive reviews of techniques for linear features extraction and road extraction
are presented by Quackenbush [9] and Das et al. [10].

Das et al. [10] introduced a hierarchical multi stage approach that integrates edge and region
information of road segments. The edge map is generated using a “dominant singular measure”

Remote Sens. 2016, 8, 637; doi:10.3390/rs8080637 www.mdpi.com/journal/remotesensing

http://www.mdpi.com/journal/remotesensing
http://www.mdpi.com
http://www.mdpi.com/journal/remotesensing


Remote Sens. 2016, 8, 637 2 of 19

and multi-scale 1D Canny edge detector. In addition, road segments are classified utilizing a
probabilistic support vector machine (PSVM). Edges and regions of road segments are merged using a
“Constraint Satisfaction Neural Network with Complimentary Information Integration”. To improve
the quality of extracted road network, false segments are reduced during a refinement step. The authors
provided most parts of their dataset and results via [11] which, afterwards, have been used in several
studies [12–16] and serve as a basis for evaluation and comparison of related approaches.

Grote et al. [17] presented a region-based method for extraction of roads. In a normalized cut
segmentation, they consider knowledge about the appearance of roads in the image via the weights of
graph edges. In the next step, object grouping with color and edge criteria decreases oversegmentation
of the image. Finally, road parts are extracted using shape and radiometric similarities. For the
experiments, high-resolution color infrared images, as well as digital surface models (DSM), are used.
The authors concluded that whereas the method can still produce reasonable results without a DSM,
using the DSM improves the extraction considerably, as expected.

Nikfar et al. [18] designed an object-based framework for road detection from IKONOS imagery
based on multi-resolution segmentation and a Type-2 fuzzy logic system. They used a genetic algorithm
to tune the implemented fuzzy system. The presented method produced impressive results with
different datasets. However, it seems that incorporating more proper shape features can improve the
detection result. Moreover, as concluded by the authors, employing a gap detection algorithm could
decrease the missing parts of the road network.

Chaudhuri et al. [14] proposed a semi-automated multistage framework which enhances the
image based on a customized directional morphological filter. On this enhanced image they perform a
directional segmentation which depends on the homogeneity of two road seed templates of different
directions. A set of post-processing steps, including hole-filling, pruning, and segment linking, are
then applied in order to improve the quality of results. The visual inspection of experimental results
signifies the efficiency of the method, although a quantitative assessment of the results is missing and
hinders further analysis.

Sun and Messinger [19] developed an automatic knowledge-based system for road network
extraction from multispectral images. Important edges are enhanced by exploiting a trilateral filter.
A spectral flood-filling technique based on the spectral angle mapper and the Euclidean distance
criteria is used to generate a binary asphalt image. This image inevitably contains objects like parking
lots and building roofs that are similar to the road surface. Next, template-matching, followed by
pruning, reduces these false alarms. The system output contains the extracted road centerlines, as well
as width and orientation of road segments.

During the past few years, members of the Department of Land Surveying and Geo-informatics of
the Hong Kong Polytechnic University reported many research output on the topic of road extraction
from VHR images. Miao et al. [13] integrated shape and spectral features to extract candidate road
segments from a binary map obtained from edge filtering segmentation. For accurate centerline
extraction from road segments multivariate adaptive regression splines (MARS) is utilized to avoid
short spurs that keep the centerline smoothness. Shi et al. [3] presented a two-stage framework to
extract main roads by integrating spectral-spatial classification and shape features. Miao et al. [20]
presented a semi-automatic object-based method which improves the discrimination of linear features
using object-based Frangi’s filter (OFF) and object-based shape filter (OSF) and detects road segments
exploiting support vector machine (SVM) classification. In another study reported by Miao et al. [21],
tensor voting, principal curves, and the geodesic method are integrated to extract road centerlines.
In this research, first-order tensor voting is utilized in order to generate feature points, which are then
projected onto principal curves using a subspace constrained mean shift. Then the geodesic method
is used to create the central line by linking the projected feature points. In a recent study [22], an
information fusion-based approach is proposed. This approach produces two binary road maps using
an expectation maximization clustering and linearness filter. Next, centerlines of both road maps are
extracted utilizing a modified RANdom SAmple Consensus (RANSAC) method. Then, a decision-level
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fusion (union of the results of both detection methods) and some regularization rules are exploited to
generate the final road centerlines.

Yin et al. [23] extended an ant colony optimization (ACO) algorithm which integrates some
geometrical features of segmented objects and geometrical characteristics of extracted edges.
Considering the fact that usually most of objects in road contexts share the direction of a road which
they are related to, the proposed system injects the information, which exhibits the direction of
extracted features, into the decision rule of the ant colony algorithm. To the best of our knowledge
Zarrinpanjeh et al. [24] is the first research work which exploited ACO for urban road map updating
from high-resolution satellite imagery. The authors proposed a distributed framework which verifies
the existing road map and extracts new roads through seed region growing segmentation and
supervised classification and groups the results of these steps.

Wang et al. [15] proposed a semi-automatic neural-dynamic tracking framework which consists of
two processing steps: the training step and the tracking step and is based on deep convolutional neural
networks to recognize the pattern of input data and a finite state machine to translate the recognized
patterns to states and control the behavior of the tracker.

Ameri and Valadan [25] motivated by research of Doucette et al. [26], introduced a road
vectorization method based on dynamic clustering. This approach utilizes a swarm-based optimization
technique that relies on a modified cost function. Afterwards, results are enhanced using some
morphological filters. Finally, a minimum spanning tree is used to construct a road network.

Wegner et al. [6] presented a probabilistic representation of network structures to extract road
networks from aerial images via a recover-and-select strategy. At the cost of many false positives, a
large over-complete set of potential candidate paths is generated. Next, considering a feature vector,
false positives are pruned from the detected paths by minimizing a global higher-order conditional
random field energy.

Poullis et al. [27] presented a semi-automatic system to extract roads from VHR images or Light
Detection and Ranging (LIDAR) data that benefits from capabilities of both perceptual organization
and graph cut segmentation. During the encoding stage of a tensor voting process, a set of Gabor filter
response images are tensorized. Next, in voting, the tensor field is organized. With a threshold-free
classification, curves and junctions are extracted. By an orientation-based segmentation using
graph-cuts parameters of a road model are used to discriminate road segments from other curves.
Finally, road centerlines are extracted by using a set of Gaussian-based filters followed by a snake-based
tracking procedure. Poullis ameliorated their system by introducing another framework called
“Tensor Cuts” [12]. In this new framework, labels are encoded as tensors to eliminate the need
for a pre-classification of curve pixels.

Roads and objects in medical imaging, such as blood vessels or axons and dendrites in neurons,
have similar structure and properties. This resulted in applicability of many proposed approaches
in both fields. One of the recent approaches proposed by Sironi et al. [28] considers the extraction
of centerlines as a regression problem. The system computes the distance to the closest centerline
exploiting a multistage regressors training process and then finds the centerlines and their scale by
applying local maxima suppression on regressors. Impressive results are reported on gray-scale aerial
images from sub-urban areas with just some false negatives at the end of roads and at small linear
segments at the borders of the image.

In VHR images roads mainly appear as elongated homogeneous regions and linear characteristics
of roads are not very salient [29]. With the increasing availability of VHR satellite images the general
trend in recent years has been towards conducting object (region)-based methods as shown by the
reviewed literature. Another trend is exploiting both spectral and spatial information of objects.
However, in urban areas, spectral and spatial characteristics of non-road structures can be similar
to roads. Therefore, some studies utilize textural and contextual information to achieve a more
accurate road network. Moreover, many approaches perform a post-processing step, such as a
pruning to increase the correctness. In cases where adjacent objects, like trees, occlude the road
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surface or cast shadows on it, road detection often fails, which results in gaps between detected road
parts. Therefore, some methods fill these discontinuities in road networks in order to increase the
completeness and overall quality of the extracted roads.

In road extraction from VHR images significant progress has been achieved by the remote
sensing and photogrammetry community, e.g., [17,18,20,25,30], and by computer science researchers,
e.g., [1,10,12,14,31]. Nevertheless, the ultimate goal of designing and implementing a reliable automatic
road extraction system is still far-off [6,12,20,21,29].

This paper is organized as follows: after this literature review of recent state-of-the-art
road extraction approaches, Section 2 introduces our novel multi stage object-based approach for
road extraction. Moreover, fundamental details of methods of our approach will be described.
Experimental results obtained from our approach on three different datasets, as well as results of
altogether seven other methods are reported and compared in Section 3.

2. Proposed Approach and Methods

The proposed approach for road network extraction from VHR remotely sensed images based on
context aware object based feature integration and customized tensor voting is depicted in Figure 1.
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Figure 1. Workflow of the proposed approach.

As it can be seen from Figure 1, first, VHR remotely sensed imagery is smoothed utilizing
“guided filter” to reduce road surface heterogeneity. Next, the filtered image is segmented using
multi-resolution segmentation in order to generate image objects. A novel object linearity index is
introduced as a structural descriptor of the objects. Structural, spectral, textural as well as contextual
information of objects are integrated to extract the road binary map. Afterwards, Customized Tensor
Voting (CTV) fills missing parts of the network. Finally, after road map vectorization, small spurs
are eliminated in vector space. To assess the quality of the extracted road network, the final road
network is compared with ground truth data utilizing three evaluation criteria. In our approach, no
ancillary data, such as DSM or vector data provided by road databases is employed in order to avoid
malfunction of the process if this kind of information is not available.

2.1. Guided Filter

It is well known that the appearance of objects in remote sensing images is closely related to the
resolution of the images. The higher the resolution, the more details are visible. By looking at roads in
VHR images, say at 1 m ground resolution, cars, trees that occlude parts of a road, and beyond that
noise and many other small details are visible, for example, pavement color changes that originate
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from road surface repairs. Therefore, a smoothing step is necessary to reduce the destructive effect
of these small obstacles on segmentation and thereupon on road extraction quality. The guided filter
method [32] offers the possibility to suppress details while, at the same time, preserving the edges by
transferring the structures of the guidance image to the filtered output image.

According to [32] a general linear translation-invariant filter that utilizes additional information
from a given guidance image (I) can be formulated as:

qi “
ÿ

j

Wij pIq pj (1)

where p and q are images before and after filtering, i and j are pixel indices, and the filter kernel Wij of
the guided filter is defined as:

Wij pIq “
1

|ω|2

ÿ

k:pi,jqPωk

˜

1`
pIi ´ µkq

`

Ij ´ µk
˘

σ2
k ` τ

¸

(2)

where ωk is a square window centered at the pixel k, |ω| is the number of pixels in ωk, µk and σ2
k are

the mean and variance of I in ωk, and τ is a regularization parameter which controls the degree of
smoothness. It should also be mentioned that we use the VHR image itself as the guidance image.
The main assumption of the guided filter is that the filter response is a local linear transformation
of I [32]:

qi “ ak Ii ` bk,@i P ωk (3)

where ak and bk are two coefficients computed as:

ak “

1
|ω|

ř

iPωk
Ii pi ´ µk pk

σ2
k ` τ

and bk “ pk ´ akµk (4)

where pk is the average of p in ωk. Then, the filtering output at each pixel can be calculated as:

qi “ ai Ii ` bi (5)

The quality of this process can strongly affect the effectiveness of the segmentation and the whole
road extraction process.

2.2. Segmentation

Image segmentation is defined as a procedure which completely partitions a scene into disjoint
homogenous regions of pixels such that each region is homogenous according to some coherent features
(color, shape, and texture), whereas the union of two adjacent regions is not homogenous [29,33–35].
Major categories of current state-of-the-art segmentation methods are: (1) pixel-based; (2) edge-based;
(3) region-based; and (4) hybrid image segmentation [34,36–38].

In this paper, the multi-resolution segmentation approach introduced by Baatz and Schäpe [39] is
utilized for image segmentation which considers objects as the smallest meaningful processing entities.
This reduces the salt-and-pepper effects which are typical for pixel based classification methods [20,40]
and exploits the full information, both of the physics of the sensor measurements and the context
within the scene [41].

Multi-resolution segmentation is a bottom up region-merging technique starting with one-pixel
objects. In each merging step, the algorithm tries to minimize the fusion factor of resulting objects,
which is defined as:

f “ Wcolordhcolor `Wshapedhshape (6)
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where Wcolor and Wshape are the weight of spectral (color) heterogeneity and weight of shape
heterogeneity, respectively, and dhcolor and dhshape are the difference in spectral heterogeneity and
difference in shape heterogeneity, respectively. It should be noted that, there are some researches on
optimizing the multi resolution segmentation parameters [42,43]. However, optimum segmentation is
still an open research area. The interested reader can find the details of the algorithm in [39,41–43].
A successful implementation of this concept is the Trimble eCognition Developer software package,
which catalyzed a boost of its exploitation in considerable research works [18,35,40,44,45].

2.3. Object-Based Feature Integration

After segmentation, each pixel is assigned to an object. In order to distinguish road segments from
other segments their properties should be taken into account. The most dominant characteristics of
roads in VHR images include: (1) roads are mostly elongated structures with bounded width [1,46,47];
(2) roads do not appear as a small segment or patch [10,13]; (3) usually the road surface is at least locally
homogeneous [1,18,35]; and (4) roads have a limited and smoothly changing local curvature [48,49].

Integration of these characteristic of roads can seldom be found at other objects in VHR images.
Therefore, these four characteristics define our basic model of a road object.

To address the first characteristic, we propose a novel linearity index called the skeleton-based
object linearity index (SOLI) to discriminate elongated road-like objects from other objects.

The skeleton-based object linearity index is defined for each object as:

SOLIb “

$

’

&

’

%

L2
s

Ab
i f Db P WR

0 otherwise
(7)

where b is an object, and Ls is the length of the main line of the object’s skeleton. The main line of
the object is the main skeleton of the object whose “legs” are refined at the end parts of skeleton
(Figure 2c), Ab is the area of the object, WR is the width range of all roads in the network that integrate
external road-specific knowledge into the index. Db is the maximum object-based distance map value
defined as:

Db “ max
`

Dp
˘

, @p P b (8)

where p is the pixel index and Dp is the distance map value of each pixel of b.
Employing Db in Equation (7) guarantees that very narrow and long segments like some shadow

casts and sidewalks are not further considered because of SOLI values of 0.
There are similar indices, like Linearity Feature Index (LFI) [13], which uses the diagonal d

(Figure 2a) instead of Ls and LFIe [50] which uses the length to width ratio Le{We (illustrated in
Figure 2b of an approximating ellipse) for the linearity. The measurement of the length of the object
via the skeleton improves the approximation of the real length of the object. Furthermore, SOLI takes
advantage of explicit a priori knowledge like that of WR.
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Our experimental results confirm that the proposed index outperforms the LFI and LFIe especially
for curved or branched regions. In Figure 3 some examples are depicted which illustrates that, for
different objects, the length to width approximation by the SOLI is close to reality.

Considering the definition of different linearity indices (Figure 2), it is obvious that all indices can
measure the linearity of the rectangular object in Figure 3a. However, LFI underestimates the linearity
of the objects in Figure 3b,c. That is because the diagonal of the minimum bounding box is not a good
approximation for the lengths of these objects. Moreover, this underestimation leads to overestimating
the width of the object (to keep the area constant) which magnifies the overall inaccuracy in calculating
the object’s linearity. LFIe, which uses the axes of the ellipse, is also not a suitable index for curved and
branched objects. In most cases, the major axis of the ellipse is smaller than the real length of the curved
and branched objects and the minor axis is larger than the real width of these objects. SOLI, which
estimates the length of the object by the length of its main skeleton, can efficiently quantify the linearity
of these curved and branched objects.
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To consider the second characteristic, i.e., a small region, is not likely to be a road segment,
area-based filtering [14,25] is employed. Moreover, we add contextual information to avoid the
elimination of small road segments which are connected to at least two road segments (detected by
SOLI). Those small segments are remaining as potential road objects.

The standard deviation of all pixel values of an object can be used as a measure of homogeneity
to take into account the third property in the road model [1,10,51]. We use an adaptive threshold for
this measure to take the size of the objects into account. Due to our application i.e., road detection,
elongated objects are of more interest, a length-based adaptive threshold is used as:

STDb ď pT¨Lsq (9)

where STDb stands for standard deviation of pixel values of the object, T is a constant threshold and
Ls is same as in Equation (7). Moving the length of the object to the left side of the equation yields
standard deviation value weighted by length of each object:

WSTDb “
STDb

Ls
(10)

where WSTDb is the weighted standard deviation of object b in each band and can be used as an
efficient measure of homogeneity for objects with different size.
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Another feature that is used to measure the homogeneity of the object surface is entropy based on
gray level co-occurrence matrix (GLCM). The power of the gray level co-occurrence approach is that it
characterizes the spatial interrelationships of the gray levels in an image. The lack of consideration of
the shape aspects of the objects is the most important shortcoming of GLCM based processing [52].
However, in our approach road shape properties are modeled with structural features like SOLI.
The entropy value for each object (b) can be defined as [52]:

Eb “ ´
ÿ

i,j

PijlogPij (11)

where i and j are the row and column indices, and P is the normalized value in the cell i,j.
The fourth property of the road model demands for small values of both curvature and standard

deviation of curvature of the main line of road segments. The curvature of each segment can be
evaluated by the directional change of neighboring mainlines of segment [49]. For a non-rectangular
shape, the “main line” is actually a polyline. Therefore, the standard deviation of the curvature is
evaluated by the standard deviation of the absolute values of the directional changes of the main line
parts and it can be expressed as:

SCb “

g

f

f

f

e

řk
i“1

ˆ

ai ´
řk

i“1 ai
k

˙2

k´ 1
(12)

where ai represents the absolute value of the ith deflection angle of the object’s main line. Considering n
as number of line segments of the main line, then k “ n´ 1.

2.4. Tensor Voting

Medioni et al. [53,54] proposed tensor voting (TV) which generally relies on data communication
between image features called tokens and provides an efficient framework for the inference
of perceptually salient information. Raw local features which are directly extracted from data
(e.g., satellite images) are often noisy and incomplete due to several reasons, such as a change in
environmental condition like lighting in imaging, sensor imperfectness, as well as scene complexities,
like an abundance of shadows cast and other types of occlusions in real world remotely-sensed
images. TV is a non-iterative algorithm for the robust inference of features from noisy and sparse data.
According to TV framework, each token can be encoded as a symmetric tensor in a quadratic form and
is defined as:

T “
”

e1 e2 e3

ı

»

—

–

λ1 0 0
0 λ2 0
0 0 λ3

fi

ffi

fl

»

—

–

eT
1

eT
2

eT
3

fi

ffi

fl

(13)

where λi are the eigenvalues of tensor in descending order and ei are their corresponding eigenvectors.
Such a tensor can be graphically depicted as an ellipse in 2-D, and an ellipsoid in 3-D. Figure 4a
illustrates representation of tensors of second order in 3-D and provides additional interpretations of
the eigen-decomposition. Here, the shape of the tensor defines the type of the captured information
and the associated size represents the saliency [53].

By applying spectrum theorem which states that any tensor can be expressed as a linear
combination of ball, plate and stick tensors, T can be decomposed [53]:

T “ TS ` TP ` TB “ pλ1 ´ λ2q e1eT
1 ` pλ2 ´ λ3q

´

e1eT
1 ` e2eT

2

¯

` λ3

´

e1eT
1 ` e2eT

2 ` e3eT
3

¯

(14)
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Figure 4. Tensor voting representation: (a) graphical representation of a second order tensor
as its components (adapted from [55]); (b) stick voting from “Voter” token to “Receiver” token
(adapted from [56]).

Medioni et al. [53] expressed the 2-D stick tensor as the fundamental voting field and represented
that all other voting fields can be derived from the 2-D stick tensor. Tokens represented in tensor space
obtained from encoding process (voters) will propagate their information and communicate with other
tokens during a voting process which is illustrated in Figure 4b. The strength of the vote at receiver
site is expressed by a so-called decay function:

DF pL, kq “ e´
pL2`ck2q

σ2 (15)

where L is the path length, k is the curvature of the path, σ is the scale of voting which is the only free
and data-dependent parameter of the algorithm and determines the range within which tokens can
influence each other and c is a parameter which is a function of σ and controls the relative weight of
path length and curvature [57], and is defined as:

c “
´16 pσ´ 1q log p0.1q

π2 (16)

After the pixels have been encoded with tensors, the information they contain is subsequently
propagated to their neighbors. Dense tensor maps, which are generated after voting stage, would
be used as the input to an extremal feature extraction algorithm in order to extract the connected
road map.

Tensor voting as a very efficient and multi-purpose framework, formulates a number of computer
vision problems as a perceptual organization approach in a unified way, with minor problem-specific
adaptations [57]. Nevertheless, some issues, such as its high execution time due to considerable stages
of numerical integration, limited its applicability in many fields [55]. Different modifications have
been proposed to tackle the time complexity of TV. Generally, most of these propositions try to find a
closed solution for the problem [58], which was proven incorrect in [59], or optimizing the calculations
of the plate and ball voting fields as the most time consuming parts of TV [56]. Therefore, applying TV
to road gap filling requires further purpose-dependent customization.

In this paper, we customized TV in order to suit our goal i.e., connected components-based road
gap filling. This customization consists of: (1) eliminating voters which are inside the road region and
using just those voters which are located on the boundary of the binary road map in the voting process;
(2) changing the propagation angular limit from π/4 to π/8. The former step in our customization
not only reduces the computation time dramatically, but also has no destructive effect on results.
The later customization will avoid undesired shape artifacts in filled areas. It is worth mentioning
that restricting the angular vote propagation has no effect on the ball voting field and just makes the
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stick voting cone narrower, which has no considerable disturbing effect on road gap filling due to local
linearity and curvature limitation of the roads.

2.5. Vectorization and Pruning

For centerline extraction from enhanced road binary map, a skeletonization approach can be
employed which is based on a thinning algorithm. For most applications, a road map skeleton
has far more points than necessary to represent roads network [35]. Furthermore, thinning may
result in some spurs. Shi [60] conducted a survey of the literature on line simplification algorithms
and their evaluation. After comparing shape and displacement measures for the most popular
simplification methods, it was concluded that the Douglas-Peucker algorithm is the most accurate one.
The Douglas-Peucker algorithm not only decreases the number of nodes but also retains the similarity
of the simplified road shape as close as possible to the original one and it ensures that the simplified
road curve is no worse than a specified tolerance. After vectorization, further processing, such as
efficient pruning in vector space is possible [35].

To remove spurs of the centerlines caused, for example, by segmentation leakage or existence of
attached spectrally-similar objects to the road network like driveways, we employed a pruning step on
vector road data. Boundary fluctuations may result in some extraneous skeleton branches. We consider
as an extraneous branch a skeleton segment for which only one of its endpoints is connected to another
segment and has a length smaller than the average width of the roads. A contextual constraint is also
employed to avoid removing short lines which are part of the main line of the network. Those small
branches whose direction slightly differs from the direction of the last part of the connected road
centerline segments are not removed.

2.6. Evaluation Metrics

In this research, three popular evaluation metrics defined by Wiedemann et al. [61,62] will be
adopted. These metrics include completeness, correctness, and quality. In order to calculate the
completeness, a buffer with a specified width is built around each segment of the extracted road
centerline. All reference lines inside the buffer zone are called “matched reference”. The completeness
is the percentage of the reference network that lies within the buffer zone around the extracted data
and is defined as follows:

Completeness “
lenght of matched reference

length of reference
ˆ 100 (17)

In order to calculate the correctness, a buffer is constructed around each segment of the reference
data. All extracted road centerlines that are inside the buffer zone are called “matched extraction”.
The correctness is the percentage of the extracted data which lie within the buffer around the reference
network, and is defined as follows:

Correctness “
lenght of matched extraction

lenght of extraction
ˆ 100 (18)

The Quality can be calculated as:

Quality “
lenght of matched extraction

lenght of extraction` length of unmatched reference
ˆ 100 (19)

In our study, no geographical database for the road network was available. Thus, reference road
networks are delineated manually from the images.
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3. Experimental Results and Discussion

In order to assess the performance of our approach for extracting the road centerline, we mainly
conduct three experiments with three different data sets. Furthermore, we compare our results with
the published results of altogether seven state-of-the-art methods.

3.1. First Experiment

For the first experiment, a high-resolution image was downloaded from [11]. This is one of the
images of a road dataset which Das, et al. [10] made publicly available. It is a part of an urban area from
the developed countries category of this dataset. The selected part of the scene has 512 ˆ 512 pixels,
with a “nominal” spatial resolution of 1 m and three spectral bands. With “nominal”, we emphasize
that this data originates from screen capturing of a Wikimapia image [10,13,15] and the original
resolution of the recorded image might have been different. The image of the first dataset and its
ground truth is depicted in Figure 5a,b, respectively. Frequent existence of dead ends, cul-de-sacs and
many branches, irregular shape of the roads, as well as varying width and material change of the road
surface, are some of the apparent properties of this road network.

In this experiment, the guided filter method is applied to each band of the image, which removes
noise and outputs a smoothed image. By multi-resolution segmentation (Section 2.2), image objects
as the smallest processing entities are achieved. Figure 5c shows the results of image segmentation,
which are obtained by setting the parameters to 30, 0.5, and 0.5 for the maximum fusion factor,
shape, and compactness weight, respectively. The extracted elongated objects represent homogeneous
scene components according to the goal of object-based image segmentation in our application.
The edge-preserving guided filter applied in the preceding step contributes significantly to a high
quality of the segmentation result. After segmentation, objects’ features are used to distinguish road
segments from non-road segments as discussed in Section 2.4. Figure 5d depicts the binary road map
obtained from feature integration. The widths of the roads in this dataset are about 10–20 m, but we
set the lower value for WR in Equation (7) more cautiously to 7.5 m to deal with the over-segmentation
problem. Moreover, the upper limit for WR is set to 20

?
2 to take into account the extended regions at

junctions and slightly undersegmented objects due to segmentation leakages.
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As marked with red rectangles in Figure 5d, there are some discontinuities in this binary road
map caused by the inference of trees, lane markings (e.g., zebra crossing) and shadow casts. CTV is
employed to tackle this problem. Results of applying CTV on the binary road map with σ = 13
(cf. Section 2.4) is illustrated in Figure 5e. As mentioned earlier, σ is the only free parameter of the TV
algorithm. An investigation on selecting the optimum value for σ follows at the end of this section.

After filling gaps, vectorization and pruning are performed in order to evaluate the results as
polylines. The resulting polylines are shown in Figure 6c.

Remote Sens. 2016, 8, 637; doi:10.3390/rs8080637 11 of 19 

 

from feature integration. The widths of the roads in this dataset are about 10–20 m, but we set the 
lower value for ோܹ in Equation (7) more cautiously to 7.5 m to deal with the over-segmentation 
problem. Moreover, the upper limit for ோܹ is set to 20√2 to take into account the extended regions 
at junctions and slightly undersegmented objects due to segmentation leakages.  

 
(a) (b)

  
(c) (d) (e) 

Figure 5. First study area: (a) input image; (b) ground truth data obtained via manual digitization; (c) 
segmentation result; (d) road binary map; (e) filling gaps using CTV. 

As marked with red rectangles in Figure 5d, there are some discontinuities in this binary road 
map caused by the inference of trees, lane markings (e.g., zebra crossing) and shadow casts. CTV is 
employed to tackle this problem. Results of applying CTV on the binary road map with σ = 13 (cf. 
Section 2.4) is illustrated in Figure 5e. As mentioned earlier, σ is the only free parameter of the TV 
algorithm. An investigation on selecting the optimum value for σ follows at the end of this section.  

After filling gaps, vectorization and pruning are performed in order to evaluate the results as 
polylines. The resulting polylines are shown in Figure 6c. 

  
(a) (b) (c) 

Figure 6. Extraction results of the first study area: (a) result of the proposed method; (b) result of 
Poullis 2014 (adapted from [12]); (c) result of Miao 2013 (adapted from [13]). 

To assess the performance of our approach, the three metrics noted in Section 2.6 are calculated. 
Furthermore, the results are quantitatively and qualitatively compared with the methods proposed 
by Poullis et al. [12] and by Miao et al. [13], hereafter referred to as “Poullis 2014” and “Miao 2013”, 
respectively. For visual comparison the results of Poullis 2014 and Miao 2013, as well as the result of 
our method, are depicted in Figure 6.  

Figure 6. Extraction results of the first study area: (a) result of the proposed method; (b) result of
Poullis 2014 (adapted from [12]); (c) result of Miao 2013 (adapted from [13]).

To assess the performance of our approach, the three metrics noted in Section 2.6 are calculated.
Furthermore, the results are quantitatively and qualitatively compared with the methods proposed
by Poullis et al. [12] and by Miao et al. [13], hereafter referred to as “Poullis 2014” and “Miao 2013”,
respectively. For visual comparison the results of Poullis 2014 and Miao 2013, as well as the result of
our method, are depicted in Figure 6.

It can be seen from Figure 6 that all three approaches extracted most parts of the road network
quite well. Non-extracted road segments (false negatives) are marked by yellow boxes and erroneous
extracted road segments (false positives) are marked by green boxes. Obviously, the number of false
negatives in Poullis 2014 and Miao 2013 is significantly higher than in our approach. How this shows
up in the quantitative metrics is summarized in Table 1.

Table 1. Quantitative comparison of the proposed method with two state-of-the-art approaches in the
first study area. The highest values with respect to the evaluation criteria are highlighted.

Evaluation Criteria Miao 2013 Poullis 2014 Proposed

Completeness (%) 94.17 96.2 97.14
Correctness (%) 99.20 98.3 98.85

Quality (%) 93.46 94.6 96.06

Table 1 indicates that the roads extracted by the proposed method have the highest completeness
and quality values. Miao 2013 achieved the highest correctness. However, the lowest completeness of
Miao 2013 also led to the lowest quality of extraction. According to [8] a “practically useful method”
for road extraction should fulfill the lowest limits for completeness and correctness of 0.6 and 0.75,
respectively. In this regard, all three approaches yield great performance on this dataset.

3.2. Second Experiment

For the second experiment, we apply the proposed method on a satellite image of an urban area
in Las Vegas, NV, USA [27], which was taken in 2004. Figure 7a,b demonstrate this dataset and its
corresponding hand-drawn ground truth, respectively. The nominal spatial resolution of this image is
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1.2 m and contains three spectral bands. At a first glance, this dataset looks simple. However, trees and
their shadow cast on the road surface and the color change of the road pavement make it challenging.
The long, rectangular buildings on the right side of the image lead to shape properties that are similar
to those of the road segments. Furthermore, the playground in the lower left part of the image provides
challenges to the extraction, as it has line marks and it is attached to two adjacent road segments.
The segmentation parameters are set to 40, 0.5, and 0.4 for the maximum fusion factor, shape, and
compactness weight, respectively.
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Focusing on the main roads, the result of our extraction approach is compared with the results of
Poullis 2014 as well as two other methods proposed by Wang et al. [15] and Poullis et al. [27], which
henceforth we cite them as “Wang 2015” and “Poullis 2010”. In Table 2, completeness, correctness,
and quality are listed for the results of all four methods. The evaluation results verify the efficiency of
our method in terms of all three metrics and clearly show that it outperforms the other methods in
this dataset.

Table 2. Quantitative comparison of the proposed method with three other methods in the second
study area.

Evaluation Criteria Poullis 2010 Poullis 2014 Wang 2015 Proposed

Completeness (%) 71.4 68.1 75 89.9
Correctness (%) 80 64.3 70 93.4

Quality (%) 60.6 61.9 74 84.8

With respect to the lowest correctness limit of 75% considered in [8], Poullis 2014 and Wang 2015
did not fulfill the correctness criteria. The apparent differences of our results to the other ones of more
than 10%, with respect to all three evaluation metrics, indicates that our multi-stage approach copes
well with the most challenging parts of this dataset.

For visual comparison, the results reported in Poullis 2010 and Poullis 2014 are depicted in
Figure 8 together with the result of our approach.

As can be seen from Figure 8c, in spite of many local occlusions, our method could extract most
parts of the road network. In areas with a presence of high occlusion, none of the approaches could
extract the road network correctly. Remarkable is the significant difference between the approaches
related to the playground, in which only our approach is successful.
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contains wide and narrow roads, including different types of junctions and many dead ends. Trees 
occlude some parts of the roads and shadow areas lead to an oversegmentation of road segments. 
Furthermore, there are many parking lots and building roofs which are spectrally similar to the roads. 
This IKONOS dataset, which is publicly available by the International Society for Photogrammetry 
and Remote Sensing (ISPRS), has four spectral bands i.e., red, green, blue, and near infra-red with 4 
m resolution, as well as one panchromatic band with 1 m resolution. 

In this experiment, Gram-Schmidt pan-sharpening [63] is used to achieve a pan-sharpened 
multispectral image with 1 m ground resolution. For this dataset, the segmentation parameters are 
set to the same values as second experiment. SOLI separated very effectively the elongated segments 
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Figure 8. Road extraction results of the second study area: (a) result of Poullis 2014 (adapted from [12]);
(b) result of Poullis 2010 (adapted from [12]); (c) result of proposed method.

3.3. Third Experiment

The residential area shown in Figure 9a is a portion of an urban area in Hobart, Australia.
Ground truth of this dataset (Figure 9b) is again acquired through on-screen delineation. The scene
contains wide and narrow roads, including different types of junctions and many dead ends.
Trees occlude some parts of the roads and shadow areas lead to an oversegmentation of road segments.
Furthermore, there are many parking lots and building roofs which are spectrally similar to the roads.
This IKONOS dataset, which is publicly available by the International Society for Photogrammetry
and Remote Sensing (ISPRS), has four spectral bands i.e., red, green, blue, and near infra-red with 4 m
resolution, as well as one panchromatic band with 1 m resolution.

In this experiment, Gram-Schmidt pan-sharpening [63] is used to achieve a pan-sharpened
multispectral image with 1 m ground resolution. For this dataset, the segmentation parameters are
set to the same values as second experiment. SOLI separated very effectively the elongated segments
from all others. However, our method lost two parts of the road network on the right side of the image
(cf. Figure 9c). In these parts, adjacent trees partially occluded the road and the shadow of the trees
divided the remaining parts of the road into very small regions.Remote Sens. 2016, 8, 637; doi:10.3390/rs8080637 14 of 19 
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Table 3. Quantitative comparison of the proposed method with three other methods in the third
study area.

Evaluation Criteria Ameri 2015 Miao 2015 Nikfar 2015 Proposed

Completeness (%) 89 94 89.3 93.4
Correctness (%) 94 92 84.6 95.9

Quality (%) 84 87 76.8 89.8

All methods fulfilled the lowest limits for completeness and correctness recommended in [8].
Moreover, Miao 2015 and our approach also achieved a good balance between completeness and
correctness. The high correctness of our method stems from fewer false positives and results in the
highest quality index among all four approaches, close to 90%.

3.4. Discussion on Tensor Voting

In the discussion of customizing the TV algorithm (cf. Section 2.4) we mentioned that we
limited the voters to pixels that lie on the boundary of the extracted road segments to improve the
computational efficiency of TV. Figure 10 illustrates the achieved improvement with respect to all
three datasets.
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It can be seen from Figure 10 that the customization of TV for road gap filling boosted the
computational performance of TV, in our experiments by a factor of 4–5.

The only free parameter in the TV algorithm is the scale of voting σ that essentially controls the
range within which tokens can influence other tokens [57]. Some research works [20,50,64] analyzed
the effect of σ on the overall efficiency of road extraction results. We test this parameter in our approach
as well and select an optimum for it.

The investigations with all three data sets show a similar trend. The most obvious of this is in the
first data set in which CTV has to deal with many gaps. Figure 11 depicts the scale dependency of all
three evaluation criteria for different σ values.
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It can be seen from Figure 11 that with increasing σ the correctness will decline gradually. But for
large values of σ, the input tokens start to “cross talk” too much with the consequence that correctness
will decrease suddenly. This observation is in line with the concept of TV [53] and with the results
of [50]. As σ increases, more gaps will be filled. As expected and can be seen in Figure 11, completeness
increases up to a certain value. Despite our initial expectation, for large values of σ, completeness
decreases. The reason is that for large σ values, the cross talk of voters attaches some neighboring areas
to the road map and deviates the extracted centerlines, especially near junctions, from their previous
correct position.

For selecting the optimum value for σ two issues are important. With respect to completeness the
minimum value for σ should be large enough to allow for filling the gaps. With respect to correctness,
the maximum σ value should be small enough to avoid cross talk of separate but neighboring road
segments. Examples for which the high σ values can be critical are parallel roads in the network and
dead ends of roads which are close to adjacent roads. In this regard, one may consider the optimum
value as a compromise between correctness and completeness that maximizes the quality index, as
Figure 11 illustrates. Our experiment indicates that a σ range of [w, 2w] leads to the highest quality
values in which w is the most frequent road width in the dataset.

4. Conclusions

In this paper, a novel multi-stage object-based approach for road extraction from VHR satellite
images is proposed. Edge-preserving guided filtering improves the segmentation quality significantly.
A novel skeleton based linearity index called SOLI is proposed which approximates linearity of objects
very well even if they are curved or include branches. Context aware feature integration based on SOLI,
as well as spectral and textural features, leads to an efficient detection of road segments. For road-filling
network gaps, the TV algorithm is customized to improve its computational efficiency. By limiting the
voters to pixels that lie on the boundary of the extracted road segments, a considerable improvement
of the computational efficiency of TV is achieved. The analysis of the impact of the scale parameter of
TV on the quality of the result indicates that a σ range of [w, 2w] leads to the highest quality values.

The experimental investigations are carried out with three publically available datasets which
have been used by other researchers. In the investigations of the evaluation criteria, we have achieved
quality measures of more than 84% for all datasets which demonstrates that the proposed approach
fulfills the applicability criteria recommended in the EuroSDR test report [8].

By comparing our results with published results of altogether seven state-of-the-art methods, we
found that, with respect to all three evaluation criteria (completeness, correctness, and quality), our
results are always among the two best in all different datasets. The rationale for this lies mainly in the
combination of guided filtering with segmentation, the context-aware integration of SOLI with other
object related features, and the gap filling with CTV. Nevertheless, there are ample opportunities to
improve the road extraction approach. Our future research will focus on three complementary issues:
(1) incorporating edge information of the images to achieve more accurate roadsides; (2) reinforcing
the proposed approach by a graph data structure to improve the quality of the extracted road network,
especially in the case of highly occluded roads and more complex scenes; and (3) analyzing the
topology of the road network to suit the extracted road network for applications which topological
consistency is essential for them.
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Abbreviations

The following abbreviations are used in this manuscript:

DSM Digital Surface Model
CTV Customized Tensor Voting
GLCM Gray Level Co-occurrence Matrix
GSD Ground Sampling Distance
SOLI Skeleton-based Object Linearity Index
TV Tensor Voting
VHR Very High Resolution
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