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Abstract: Aquatic vegetation has important ecological and regulatory functions and should
be monitored in order to detect ecosystem changes. Field data collection is often costly and
time-consuming; remote sensing with unmanned aircraft systems (UASs) provides aerial images
with sub-decimetre resolution and offers a potential data source for vegetation mapping. In a
manual mapping approach, UAS true-colour images with 5-cm-resolution pixels allowed for the
identification of non-submerged aquatic vegetation at the species level. However, manual mapping
is labour-intensive, and while automated classification methods are available, they have rarely
been evaluated for aquatic vegetation, particularly at the scale of individual vegetation stands.
We evaluated classification accuracy and time-efficiency for mapping non-submerged aquatic
vegetation at three levels of detail at five test sites (100 m × 100 m) differing in vegetation complexity.
We used object-based image analysis and tested two classification methods (threshold classification
and Random Forest) using eCognition®. The automated classification results were compared to
results from manual mapping. Using threshold classification, overall accuracy at the five test
sites ranged from 93% to 99% for the water-versus-vegetation level and from 62% to 90% for the
growth-form level. Using Random Forest classification, overall accuracy ranged from 56% to 94%
for the growth-form level and from 52% to 75% for the dominant-taxon level. Overall classification
accuracy decreased with increasing vegetation complexity. In test sites with more complex vegetation,
automated classification was more time-efficient than manual mapping. This study demonstrated
that automated classification of non-submerged aquatic vegetation from true-colour UAS images was
feasible, indicating good potential for operative mapping of aquatic vegetation. When choosing the
preferred mapping method (manual versus automated) the desired level of thematic detail and the
required accuracy for the mapping task needs to be considered.

Keywords: aquatic vegetation; drone; growth form; object-based image analysis (OBIA); random
forest; remotely piloted aircraft system (RPAS); species identification; sub-decimetre spatial resolution;
unmanned aerial vehicle (UAV); unmanned aircraft system (UAS)

1. Introduction

Aquatic vegetation has important ecological and regulatory functions in aquatic ecosystems.
Aquatic plants serve as food and habitat for many organisms, including microflora, zooplankton,
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macroinvertebrates, fish, and waterfowl [1]. As major primary producers, aquatic plants are important
for nutrient cycling and metabolism regulation in freshwater systems [2] and can transfer nutrients
and oxygen between the sediment and the water [3,4]. In the littoral zone, aquatic vegetation alters the
composition of its physical environment by absorbing wave energy, thereby stabilizing sediments [1].
It forms an interface between the surrounding land and water, and intercepts terrestrial nutrient
run-off [1,5]. Aquatic plant species are also important indicators for environmental pressures and
hence are integrated globally in the assessment of ecological status of aquatic ecosystems [6–8].

Aquatic ecosystems are under increasing pressure from climate change, intensification of land
use, and spread of invasive alien species [9–11]. As a result, the need to monitor changes in aquatic
ecosystems is greater than ever. However, field data collection is often resource demanding and
the desired monitoring cannot effectively be achieved by field work alone. Remote sensing data
have been used successfully as an alternative and/or a complement to field data collection in a wide
range of applications [12], for example, by increasing the surveyed area as compared to field work
alone [13,14]. However, due to the need for calibration and validation of remote sensing data, field
work cannot be completely replaced. The recent development of unmanned aircraft systems (UASs) has
improved the prospects for remote sensing of aquatic plants by providing images with sub-decimetre
resolution [15]. In a previous study based on visual interpretation, we found that true-colour digital
images collected from a UAS platform allowed for the identification of 21 non-submerged aquatic and
riparian species [16].

Species identification is a requirement for ecological status assessment of lakes and rivers
as implemented in different parts of the world, including Europe [6], USA [7], and Australia [8].
Traditionally, such assessments are based on submerged vegetation (e.g., [17]) which is more difficult
to detect with a UAS than non-submerged vegetation, especially using true-colour sensors. Recent
studies show that helophytes, i.e., emerging vegetation, are valuable indicators in bio-assessment of
lakes (e.g., [18,19]), especially at high latitudes, where helophytes form a significant share of the species
pool in lakes and wetlands. Birk and Ecke [20] demonstrated that a selection of non-submerged
aquatic plants identifiable using very-high-resolution remote sensing was a good predictor for
ecological status in coloured boreal lakes. Determination of lake ecological status should be based on a
whole-lake assessment [7,21]. Common praxis is to choose a number of field-survey transects meant
to be representative for the whole lake [21,22]. Here, UAS-remote sensing could contribute critical
information, both in the planning process (e.g., placement of transects) and in providing an overview
of the whole lake area facilitating vegetation cover estimates. Differentiation among growth forms
of aquatic vegetation helps in describing the character of lakes and rivers, for example, in relation to
aquatic plant succession and terrestrialization [23], and in assessing their value as habitat for a variety
of species from invertebrates to migrating waterfowl (e.g., [24–26]), as well as undesired invaders.
Ecke et al. [27] demonstrated that lakes rich in nymphaeids (floating-leaved vegetation) and with wide
belts of helophytes (emergent vegetation) showed a higher risk than other lakes of being invaded by
muskrat (Ondatra zibethicus), an invasive species in Europe.

Visual interpretation and manual mapping of aquatic vegetation from UAS-images is
labour-intensive [16], restricting implementation over larger areas such as entire lakes. Automated
methods for image analysis are available, but have rarely been evaluated for aquatic vegetation
when applied to very-high-resolution images, particularly at the scale of individual vegetation stands.
The segmentation into image-objects (spectrally homogenous areas) prior to automated image analysis,
referred to as object-based image analysis (OBIA), is particularly effective in automated classification
approaches on very high spatial but low spectral resolution images [28–30]. In addition to spectral
features, textural, geometric, and contextual features of these image-objects can be included in the
automated classification [31–33].

The aim of our study was to investigate whether an automated classification approach using
OBIA would increase the time-efficiency of the mapping process compared to manual mapping, and
to assess the classification accuracy of the automatically produced maps. Based on a true-colour
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UAS-orthoimage with 5-cm pixel resolution taken at a lake in northern Sweden, we mapped
non-submerged aquatic vegetation at three levels of detail (water versus vegetation, growth form,
and dominant taxon) at five test sites (100 m × 100 m each). The five sites had varying levels of
vegetation complexity. The fifth test site was used to evaluate classification robustness given poor
image quality. Two classification methods were used, namely threshold classification for simple
separation of spectrally distinct classes (e.g., water and vegetation), and Random Forest [34] for
classifying several spectrally similar classes. We compared the results to manual mapping, discussed
them in relation to classification accuracy and time-efficiency, and inferred on the potential of the
methods for ecological assessment.

2. Materials and Methods

2.1. Study Area

Lake Ostträsket (64◦55′N, 21◦02′E) is located in the middle boreal subzone [35] in northern
Sweden at the land-uplift coast of the Gulf of Bothnia about 20 km north of Skellefteå. The lake has a
surface area of 1.8 km2 and is classified as humic with moderate ecological and good chemical status,
except for the presence of mercury [36]. The lake was chosen as the study area because of its variety in
species and cover of non-submerged aquatic plants; the lake and its surroundings are protected as a
Natura 2000 nature reserve and are an important resting place for migrating waterfowl.

2.2. Image Acquisition

The littoral zone of Lake Ostträsket was surveyed on 12 to 14 August 2011 with the Personal Aerial
Mapping System (PAMS) by SmartPlanes AB (Skellefteå, Sweden), a miniature flying wing aircraft with
a maximum take-off weight of 1.5 kg. The PAMS was equipped with a lightweight off-the-shelf digital
compact camera, a Canon Ixus 70® (Canon Inc., Tokyo, Japan), with a seven megapixel charge-coupled
device sensor (5.715 mm × 4.293 mm), an image size of 3072 × 2304 (columns × rows), a focal length
of 5.8 mm, and an F-number of 2.8. The camera recorded data in the visible spectrum (380–750 nm)
using an RGB colour filter. Weather conditions ranged from sunny to overcast with light to moderate
winds at ground level. To reduce solar reflection, no images were acquired 2.5 h before and after
solar noon. The surveyed area was divided into eight overlapping flight blocks with an average size
of about 0.25 km2 per block. The along- and across-track image overlap was set to 70%. The image
data were processed by GerMAP GmbH (Welzheim, Germany) using software from Inpho (Stuttgart,
Germany). Due to the high overlap between images (both along and across track) the resulting image
mosaic (here referred to as UAS-orthoimage) consisted almost entirely of close-to-nadir portions of
the individual images. The UAS-orthoimage was georeferenced to the Swedish National Grid using
ground control points identified in orthophotographs from the Swedish National Land Survey, with
a spatial resolution of 0.5 m. The UAS-orthoimage had a ground sampling distance of 5 cm and an
internal planar accuracy of 4–5 cm. For more details on PAMS and orthoimage production, see [16].

2.3. Plant Species Inventory and Image Interpreter Training

We carried out a plant species inventory of the lake and, in order to perform the manual mapping
from the UAS-orthoimage, a human image-interpreter was trained in species recognition. Therefore,
we randomly distributed 50 points in the vegetated zone of Lake Ostträsket with a minimum distance
of 20 m between points using ArcGIS® software (v. 9.3, ESRI Inc., Redlands, CA, USA). Twenty-five
of these points were randomly selected as inventory and training points, and 25 were selected
as control points. Training points were visited on 11 and 12 July 2012 by boat. For navigation
we used a carrier-phase enhancement global positioning system (GPS) with a locational error of
<5 cm. We identified the species of all emergent and floating-leaved vegetation stands (except for
Sparganium spp. which only occurred with floating leaves, making identification difficult) within a
10 m radius circle plot by marking up printouts of the orthoimage (scale of 1:200). All species observed
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during the inventory are listed in Table 1. After the field training, the image-interpreter looked at the
printouts of the control points (scale of 1:200), manually delineated the vegetation stand closest to each
point and predicted its species composition (except for Nymphaea/Nuphar and Sparganium spp. where
the genus level was used) including all species that contributed at least 25% to the vegetation cover
of that stand. A vegetation stand was defined as a homogenous patch that deviated visually from
surrounding vegetation patches (and water) in colour, texture and/or shape [16]. The predictions were
verified in situ on 13 July 2012. At 24 out of 25 control points, species identification was correct. At one
point, Nymphaea/Nuphar spp. was mistaken as Potamogeton natans.

Table 1. Species inventory list of non-submerged vegetation at Lake Ostträsket with number of
observations (NO) within 25 circle plots, radius 10 m.

Species NO

Helophytes
Equisetum fluviatile 13
Schoenoplectus lacustris 13
Phragmites australis 3
Carex rostrata 1

Nymphaeids
Nuphar lutea 18
Potamogeton natans 15
Sparganium spp. 7
Nymphaea alba ssp. candida 4
Nuphar pumila 2

Based on the experience from the species inventory and the image-interpreter training we
created a classification scheme for manual mapping (Figure S1). Except for Nymphaea/Nuphar
and Sparganium spp., classes were on the species level: Equisetum fluviatile, Schoenoplectus lacustris,
Phragmites australis, and Potamogeton natans. Sparse and dense stands of E. fluviatile looked very
different and we therefore divided them into two classes: sparse E. fluviatile having 10%–50% area
coverage and dense E. fluviatile having >50% area coverage. Carex rostrata was omitted due to low
occurrence (Table 1).

2.4. Test Sites and Manual Mapping

From the UAS-orthoimage we chose five test sites (100 m × 100 m each, Figure 1a). Four test
sites were selected to represent the natural variability of the lake (Figures 1b and 2a–c), where we
selected sites with varying vegetation complexity including the proportion of mixed vegetation stands,
vegetation cover and density, and taxa composition. The fifth test site showed medium vegetation
complexity, but it had poor image quality caused by wave action, blur, specular reflection of clouds,
and sunglint (Figure 2d); despite this, it was included in order to test classification robustness given
poor image quality.

Visual interpretation and manual mapping of the test sites was carried out according to the
classification scheme (Figure S1) using ArcGIS® software (v. 10.0, ESRI Inc., Redlands, CA, USA) by
the image-interpreter who was trained in the field (Figure 1c). We used a minimum mapping unit of
1 m2 and a minimum area coverage of 10% vegetation to be defined as a vegetated area. Vegetation
stands were delineated and classified according to the dominant taxon (i.e., the taxon with the highest
cover). When a second taxon accounted for at least 25% of the present vegetation, we registered the
non-dominant taxon by adding it to the class name (e.g., “S. lacustris & Nymphaea/Nuphar spp.”).
Hence, in one-taxon classes, the dominant taxon accounted for >75%–100% of the vegetation cover.
In two-taxa classes, the non-dominant taxon accounted for 25%–<50% of the vegetation cover and the
dominant taxon for ≥50% but maximum 75%. In two cases, there were two non-dominant taxa that
covered 25%−<33% each, thus the dominant taxon accounted for ≥33% but maximum 50% of the
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vegetation cover. In total we found 20 two-taxa classes and two three-taxa classes (Table 2). Not all
taxa were represented at all sites (Table 2).
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Table 2. Test site description including vegetation classes as derived from the manual
mapping; dense Equisetum fluviatile (ef_d), sparse E. fluviatile (ef_s), Nymphaea/Nuphar spp. (ny),
Phragmites australis (pa), Potamogeton natans (pn), Schoenoplectus lacustris (sl), and Sparganium spp. (sp).

Site Taxa Vegetation Classes
(in Order of Decreasing Area)

Vegetated
Area (%)

Mixed Vegetation (%
of Vegetated Area)

I ef, ny, pn, sl, sp water, sl, ny, ef_d, ef_s, pn, sp, ef_d & sl, sl & ef, sl
& ny, ny & sl, ny & ef 36 2

II ef, ny, pn, sl, sp sl, water, ny, sp, pn, ef_d, ef_s, ny & sl, pn & ef, ny
& ef, sl & ny, ny & pn, pn & ny, sl & pn 61 4

III ef, ny, pn, sp water, ny, ef_s, ny & ef, ef_d, ny & pn, pn, ef_d &
ny, sp, ef_s & ny, pn & ef, sp & ny, pn & ny, ny & sp 55 26

IV ef, ny, pa, pn, sl
sl, pa, pa & sl, pn, ny, sl & pa, water, sl & ny, ny &
pn, ef_d, pn & sl, ny & sl, ef_s, ny & ef, ef_d & sl,
pn & ny, pa & ny, ef_d & ny, sl & pn, ef_s & ny & pn

96 26

V ny, pa, pn, sl
sl, pn, pa, water, ny & pn, ny, pn & sl, sl & pn, sl &
pa, pa & sl, sl & ny, pn & ny, pa & pn, pa & ny, pa &
pn & ny, ny & sl, pn & pa

86 21

2.5. Object-Based Image Analysis of Test Sites

An OBIA approach was used, where we first performed an image segmentation on each test site
with the software eCognition Developer® (v. 9.1, Trimble Germany GmbH, Munich, Germany), using
“Multiresolution Segmentation” [37]; scale parameter 30, shape 0.3, and compactness 0.75. The borders
of the automatically created segments differed from the borders of the manually mapped polygons
representing vegetation stands. In order to assess the accuracy of the automated classification and to
select training samples for the Random Forest classification, we created a reference dataset (referred to
as the “Reference Map”, Figure 1d) for each test site. This was done by overlaying the automatically
created segments onto the manual mapping result, and assigning a class name to each segment. Each
class name was derived from the manual mapping polygon with which the segment had the largest
overlap [38]. Classes were assigned according to the dominant taxon; this led to a total of eight classes,
namely dense E. fluviatile, sparse E. fluviatile, Nymphaea/Nuphar spp., P. australis, P. natans, S. lacustris,
Sparganium spp., and water.

Automated classifications were done on each test site at three levels of detail (Table 3):
water versus vegetation (Figure 1e), growth form (Figure 1f,g), and dominant taxon (Figure 1h).
The growth-form level had two classes: Helophyte (E. fluviatile, P. australis, and S. lacustris) and
nymphaeid (Nymphaea/Nuphar spp., P. natans, and Sparganium spp.). Sparganium spp. was treated as
a nymphaeid because it only occurred in its floating form. For the water-versus-vegetation level, a
simple threshold classification (“assign class” algorithm in eCognition®) was used. The thresholding
method relies on expert-knowledge and is suitable for simple separation of two spectrally distinct
classes, such as water and vegetation [39]. For the growth-form level, two classification methods were
tested, namely, the threshold classification and Random Forest (classifier algorithm “random trees”
in eCognition®; [34]). Random Forest is a suitable method for more complex classification tasks when
several spectrally similar classes need to be distinguished [39,40]. Since the dominant-taxon level
included more than two classes, only the Random Forest method was applied. For dominant taxon,
initial tests showed that using a threshold first and applying it as a water/vegetation mask gave better
results than classifying water and dominant taxon in one step. To avoid the summation of classification
errors, we decided to derive the water/vegetation mask from the Reference Map instead of using the
results from the water-versus-vegetation classification. The water/vegetation mask was also applied
for the growth-form classification with thresholds to keep the number of classes at two (Table 3).
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Table 3. Object-based image analyses (OBIAs) performed on each individual test site. Class names
have been abbreviated as follows: dense Equisetum fluviatile (ef_d), sparse E. fluviatile (ef_s),
Nymphaea/Nuphar spp. (ny), Phragmites australis (pa), Potamogeton natans (pn), Schoenoplectus lacustris (sl),
and Sparganium spp. (sp).

OBIA Level of Detail Classes Classification Method Applied to

(a) water versus vegetation water, vegetation threshold entire test site
(b) growth form nymphaeid, helophyte threshold vegetated area
(c) growth form water, nymphaeid, helophyte Random Forest entire test site
(d) dominant taxon ef_d, ef_s, ny, pa, pn, sl, sp Random Forest vegetated area

The thresholds used in the threshold classification were determined empirically based on expert
knowledge of the trained image-interpreter. By activating the “Feature view” button in eCognition®

all segments were depicted in different grey-shades corresponding to the value of the chosen feature,
and an appropriate threshold was identified by trial and error.

Random Forest is an appropriate method for handling a high number of input features [41].
The features used in the Random Forest classification were determined based on the literature and our
expectations to provide information. Thirty-eight features were derived (Table 4), including intensity,
hue, and saturation as well as several texture features (from the group “Texture after Haralick”
in eCognition®) calculated from both the grey-level co-occurrence matrix [42] and the grey-level
difference vector. Those features have been proven to increase classification accuracy in images with
low spectral resolution [31,43,44]. An infrared band to calculate the normalized difference vegetation
index was not available. Therefore, we used instead normalised difference indices (NDIs) of the red,
green and blue bands: NDI Green–Blue, NDI Green–Red, and NDI Red–Blue [45,46]. The Random
Forest classification was first run using all 38 features. To test whether the number of features could
be reduced, the classification was also run using only features with an importance factor >0.03 as
determined by eCognition® after the first run. We found, however, that the second run resulted in
lower classification accuracies in 85% of all cases and we dismissed the results. As stopping criteria
we used a maximum number of 1000 trees. For all other settings the default was used, including
“number of active variables” (i.e., the number of features to build a random subset at each node) which
was √N, where N = total number of features. To train the Random Forest classifier, at each test site,
40 sample-segments per class were randomly selected from the Reference Map. An exception to this
was at site I for dominant taxa, where only 30 samples were selected because two classes had a total of
only 59 and 60 segments.

Table 4. Object features used in the Random Forest classification.

Spectral Features “HSI Transformation” 1 “Texture after Haralick” 1,2 Normalised Difference Index

Individual for each band: • Hue derived from GLCM: derived from GLCV: • NDI Green–Blue
•Mean • Saturation • Ang. 2nd moment • Ang. 2nd moment • NDI Green–Red
•Mode (median) • Intensity • Contrast • Contrast • NDI Red−Blue
• Quantile (50%) • Correlation • Entropy
• Standard deviation • Dissimilarity •Mean
• Ratio • Entropy
•Max. pixel value • Homogeneity

For all bands combined: •Mean
• Brightness • Standard deviation
•Max. difference

1 as termed in eCognition®; 2 mean of all bands, all directions; Ang.: Angular, GLCM: Grey-level co-occurrence
matrix, GLCV: Grey-level difference vector.

2.6. Accuracy Assessment

Polygons served as the assessment unit which is the most appropriate for maps created by
OBIA [38]. We randomly selected 350 sample-segments per site from the Reference Map excluding
those that were used as training samples. In cases where a class was represented by only a few
segments, we randomly selected more samples so that there were at least ten segments for that class.
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Because segments varied in size, we produced two error matrices as proposed by Radoux et al. [47]:
one based on the number of correctly classified segments (i.e., segment-based) and one based on
the area of the same segments (i.e., area-based, related to the number of pixels inside the selected
segments). The first evaluates the success of the classification process, while the second evaluates
the map’s usability by assessing the correctly classified area. We calculated overall, Producer’s and
User’s accuracy [48]. Producer’s accuracy is the probability that a sampled polygon on the map is
that particular class, while User’s accuracy is the probability that a certain reference class has also
been labelled that class. For the segment-based error matrix, we also calculated Cohen’s Kappa
coefficient [48]. The Kappa statistic takes into account the fact that even assigning labels at random
results in a certain degree of accuracy. Given that the Kappa coefficient can be misleading [49] we also
calculated the overall quantity disagreement and the overall allocation disagreement as suggested
by Pontius and Millones [49]. Overall quantity disagreement is defined as the difference between
two data sets due to an imperfect match in proportions of the mapped categories. Overall allocation
disagreement is defined as the difference between two data sets due to an imperfect match between
the spatial allocations of the mapped categories.

“While there is usually a best map category for each site, there are clearly some categories that are
more wrong than others” [50]. This applies when crisp categories are used to describe a continuum of
varying land cover [50] like in mixed vegetation stands. For example, when in the dominant-taxon
classification a segment that should have been classified as S. lacustris was wrongly classified as
Nymphaea/Nuphar spp., it is valuable to see if Nymphaea/Nuphar spp. was registered as non-dominant
taxon in the manual mapping. If this is true, the magnitude of error is minor. To investigate the impact
of those non-dominant-taxon classifications, we counted their number (Xnon-dom) among the validation
sample-segments at each test site and calculated a modified overall accuracy (OAnon-dom) according to:

OAnon-dom =
Xdom + Xnon-dom

n
(1)

where Xdom = number of correct dominant-taxon classifications, Xnon-dom = number of
non-dominant-taxon classifications, and n = total number of validation segments. We then calculated
the increase in accuracy (Inon-dom) according to:

Inon-dom = OAnon-dom–OA (2)

where OA = overall accuracy after Congalton [48].

2.7. Time Measurement

To assess time-efficiency we measured the time needed to execute manual mapping as well
as automated dominant-taxon classification. Time measurements were performed at site I which
had the lowest vegetation complexity and at site IV which had the highest vegetation complexity.
For manual mapping, time measurement included delineation and identification of vegetation stands.
For automated classification of dominant taxa, time measurement included segmentation, creation
of the Reference Map, random selection of training and validation samples, running the Random
Forest classification, export of results, and accuracy assessment in eCognition®. We also included
the time needed to create a water/vegetation mask using a threshold. We considered this to be a
necessary step in the time-measurement because dominant-taxon classification was applied to the
vegetated area only. Not included in the time measurement were creation of the classification scheme
for manual mapping, creation of the ruleset in eCognition®, selection of segmentation and classification
settings, and selection of features, because we considered the time needed to execute those steps to be
dependent on personal skills and software experience.
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3. Results

The quick and straightforward threshold method successfully separated water and vegetation.
More than 90% of the validation segments were correctly classified at all sites and at least 89% of the
area was correctly mapped (Figure 3a). Kappa coefficients ranged from 0.60–0.83 (Table S1). At the
majority of sites quantity disagreement was larger than allocation disagreement (Table S1). In all cases,
vegetation had a higher Producer’s accuracy than water (Table 5). Differences in User’s accuracy were
less pronounced. The error matrices for all levels of detail at all sites are included in Table S1. We found
the texture feature “GLCM Homogeneity” to be best in distinguishing between water and vegetation
at sites I–IV. In addition, the feature “Brightness” was used at site II and the feature “NDI Green–Blue”
was used at site IV to optimise the classification. At site V, wave action had changed the characteristic
texture of water, and in this case only “NDI Green–Blue” was used.
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Figure 3. Overall accuracy for sites I–IV for (a) water-versus-vegetation classification using
thresholding; (b) growth-form classification using thresholding; (c) growth-form classification using
Random Forest; and (d) dominant-taxon classification using Random Forest. Seg: assessment based on
number of validation segments, area: assessment based on area of validation segments.

Table 5. Producer’s and User’s accuracy (%) of water (W) versus vegetation (V) using a
threshold classification.

Site I Site II Site III Site IV

W V W V W V W V

Segment-based

No. of validation segments 106 244 59 291 53 297 10 343
Producer’s accuracy 79 99 75 100 66 97 50 100
User’s accuracy 98 92 100 95 81 94 100 99

Area-based

Total area of validation segments (m2) 443 212 167 211 152 189 14 241
Producer’s accuracy 97 99 92 100 91 88 59 100
User’s accuracy 99 93 100 94 85 92 100 99
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For growth form, overall accuracy decreased with increasing vegetation complexity (Figure 3b,c).
With the threshold method, the correctly classified area was at least 70% at all sites (Figure 3b).
The percentage of correctly classified validation segments was lowest at site IV (62%) but was around
80% at sites I–III (Figure 3b). Kappa coefficients for the threshold classification ranged from 0.16–0.52
(Table S1). At the majority of sites quantity disagreement was larger than allocation disagreement
(Table S1). The feature “Brightness” was used to separate helophytes and nymphaeids at all sites.
In addition, the feature “Hue” was used at site IV and the feature “NDI Green–Red” was used at site
V to optimise the threshold classification. The two tested classification methods gave similar results,
except at the most complex site IV where the overall classification accuracy was 56% with Random
Forest (Figure 3c). Kappa coefficients for the Random Forest classification ranged from 0.25–0.69
(Table S1). At the majority of sites allocation disagreement was larger than quantity disagreement
(Table S1). Producer’s and User’s accuracies for growth form varied between classes and sites (Table 6).

Table 6. Producer’s and User’s accuracy (%) of the growth forms nymphaeid (N) and helophyte (H)
using a threshold classification and of water (W), nymphaeid, and helophyte using Random Forest.

Site I Site II Site III Site IV

W N H W N H W N H W N H

Threshold classification: Segment-based

No. of validation segments 102 248 108 242 287 63 74 276
Producer’s accuracy 37 98 45 99 90 33 59 63
User’s accuracy 90 79 94 80 86 41 30 85

Threshold classification: Area-based

Total area of validation segments (m2) 59 247 49 210 144 84 44 202
Producer’s accuracy 52 99 44 100 81 52 56 74
User’s accuracy 93 90 97 88 74 61 32 88

Random Forest: Segment-based

No. of validation segments 106 68 176 57 87 206 52 246 52 10 71 274
Producer’s accuracy 81 82 79 89 59 92 63 78 69 90 82 49
User’s accuracy 97 58 84 89 84 82 85 92 35 25 33 92

Random Forest: Area-based

Total area of validation segments (m2) 458 37 177 162 39 176 145 121 66 18 42 201
Producer’s accuracy 97 83 87 96 54 96 89 70 68 92 77 49
User’s accuracy 99 59 89 97 89 88 87 92 49 35 30 92

At the most advanced level of detail, dominant taxon (Figures 1h and 2b,d,f,h), overall accuracies
decreased with increasing vegetation complexity and 70% correctly classified area was reached only
at sites I and II (Figure 3d). Kappa coefficients ranged from 0.34–0.54 (Table S1). At the majority of
sites quantity disagreement was larger than allocation disagreement (Table S1). Producer’s and User’s
accuracies showed large variation between classes and sites (Table 7). Nymphaea/Nuphar spp. was most
reliably classified with User’s and Producer’s accuracies of at least 61% at all sites (segment-based,
Table 7). Also S. lacustris had a minimum User’s and Producer’s accuracy of 65%, except for the
Producer’s accuracy at site IV (43% segment-based and 51% area-based). The two E. fluviatile classes,
P. natans and Sparganium spp. had in all cases a lower User’s than Producer’s accuracy indicating a
large number of false inclusions (segment-based, Table 7). P. australis, which occurred at site IV–V, was
confused with all other taxa present at site IV, but most frequently with the E. fluviatile classes and
P. natans, resulting in a Producer’s accuracy of 48%.
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Table 7. Producer’s and User’s accuracy (%) of dominant taxa using Random Forest classification,
number of validation segments (N) and total area of validation segments (A).

Segment-Based Area-Based

N Producer’s
Accuracy

User’s
Accuracy A (m2)

Producer’s
Accuracy

User’s
Accuracy

Site I

Sparse Equisetum fluviatile 15 60 41 12 76 33
Dense Equisetum fluviatile 27 48 33 24 41 33
Nymphaea/Nuphar spp. 95 79 78 50 83 71
Potamogeton natans 10 80 47 10 91 66
Schoenoplectus lacustris 206 68 92 214 74 95
Sparganium spp. 10 40 11 5 31 8

Site II

Sparse Equisetum fluviatile 10 50 12 7 63 15
Dense Equisetum fluviatile 10 70 29 4 59 18
Nymphaea/Nuphar spp. 90 70 84 40 71 81
Potamogeton natans 10 20 6 4 13 3
Schoenoplectus lacustris 230 65 92 205 72 96
Sparganium spp. 10 70 27 5 72 23

Site III

Sparse Equisetum fluviatile 40 48 44 61 62 75
Dense Equisetum fluviatile 22 59 24 22 71 32
Nymphaea/Nuphar spp. 273 66 94 131 57 95
Potamogeton natans 12 50 13 11 72 20
Sparganium spp. 10 70 32 7 67 38

Site IV

Sparse Equisetum fluviatile 10 80 17 9 92 19
Dense Equisetum fluviatile 10 40 9 12 23 11
Nymphaea/Nuphar spp. 41 61 68 22 56 70
Phragmites australis 170 48 81 95 43 83
Potamogeton natans 33 88 38 22 89 34
Schoenoplectus lacustris 100 43 69 97 51 77

Overall accuracies at site V were within the same range of overall accuracies at the other test sites
for all performed OBIAs (Table S1), except for the area-based accuracy assessment for dominant-taxon
(Figure 2h) where site V surprisingly showed the highest overall accuracy among all sites (75%).
The segment-based overall accuracy was 65%.

The increase in accuracy (Inon-dom) owing to non-dominant-taxon classifications for segment-based
and area-based accuracy assessment, respectively, was 0.3% and 0.1% at site I, 0.8% and 0.2% at site
II, 8.4% and 6.2% at site III, 3.3%, and 3.4% at site IV, and 4.6% and 3.5% at site V. The increase was
most pronounced at sites III–V which had a high proportion of mixed vegetation stands (Table 2).
Including non-dominant-taxon classifications, site III showed the highest segment-based accuracy of
all sites (71%).

The manual mapping took 2.06 h at site I and 5.39 h at site IV. The automated dominant-taxon
classification took 2.25 h at site I and 2.12 h at site IV.

4. Discussion

Our results demonstrate that it is feasible to extract ecologically relevant information on
non-submerged aquatic vegetation from UAS-orthoimages in an automated way. The automatization
increases time-efficiency compared to manual mapping, but might decrease classification accuracy with
increased vegetation complexity. The classification accuracies achieved in our study lie in the range of
accuracies reported from other OBIA studies in wetland environments as reviewed by Dronova [33].
The exception to this is for the growth-form and dominant-taxon level at the most complex site IV.
Here, presence of P. australis increased the number of misclassifications on the dominant-taxon level
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and the growth-form level, where P. australis was to a large extent classified as nymphaeid, probably
due to its light green colour. Site IV also has the highest number of mixed-vegetation classes in
the manual mapping, but non-dominant-taxon classifications were only of minor importance in
explaining misclassifications. The two taxa that were most reliably classified regarding all sites,
Nymphaea/Nuphar spp. and S. lacustris, typically covered large areas. High within-taxon variation of
S. lacustris (as also observed by Husson et al. [16]) posed problems for the automated classification.
Bent stems with high sun exposure, typically at the edge of vegetation stands, as well as straight stems
with low area coverage were repeatedly misclassified. Because these areas were small in comparison
to the total area of S. lacustris, accuracies for this taxon were not highly affected. However, these
misclassifications had a major impact on the classification accuracy of taxa with smaller total areas
(E. fluviatile, P. natans, and Sparganium spp.) by increasing the number of false inclusions, giving low
User’s accuracies.

At four out of five test sites, OBIA combined with Random Forest proved to be an appropriate
automated classification method, in most cases giving good classification accuracies at a high level
of detail (i.e., >75% for growth forms and >60% for dominant taxa). One way to raise classification
accuracy (even at site IV) could be to manually choose training samples of high quality. The inclusion
of segments with mixed vegetation as training samples due to random selection might have influenced
the result because Random Forest is sensitive to inaccurate training data [39]. The threshold method
is more intuitive compared to Random Forest and can be quick when expert-knowledge for feature
selection is available. No samples and no ruleset are needed, which makes thresholding easier to
use. A drawback of the threshold method is the limited number of classes. In contrast to Random
Forest, two thresholding steps were necessary to get to the growth-form level. For more complex
classification tasks, empirical determination of thresholds is not time-efficient. Empirical determination
also increases subjectivity and limits the transferability of classification settings to other sites. A more
automated approach to determine thresholds should be evaluated in the future.

The results for site V indicate that the method used here could cope with poor image quality.
The surprisingly high overall classification accuracy at the dominant-taxon level at site V was
probably caused by a favourable species composition that reduced the risk for confusion between
taxa. There was a large difference between segment-based and area-based accuracy assessment, likely
because some of the correctly classified segments at site V covered a large area.

A challenge in OBIA is the relative flexibility in the framework (e.g., [33]). Segmentation
parameters, classification method, and discriminating object features influence the classification result;
routines for an objective determination of these parameters are still missing. We used a relatively small
scale parameter, resulting in segments that were smaller than the objects (i.e., vegetation stands) to be
classified (over-segmentation). This is advantageous in comparison to under-segmentation [51],
because if one segment contains more than one object, a correct classification is impossible.
Kim et al. [44] and Ma et al. [52] found that the optimal segmentation scale varied between classes; by
using multiple segmentation scales, classification results could be optimised.

Time-measurement revealed that manual mapping of dominant taxa can be faster than OBIA
in cases where vegetation cover and complexity level is low. However, regarding time-efficiency in
general and for areas larger than our 100 m × 100 m test sites, automated classification out-performs
manual mapping. This is because manual-mapping time is proportional to the mapped area, i.e.,
if the area doubles so does the time needed for manual mapping. A doubling of the area would,
however, have only a small effect on the time needed to execute the OBIA, mainly through an increase
in processing time and potentially an increase in the time needed for the assembly of reference data
over a larger area. However, when applying OBIA to large or multiple image files, there may be
limitations due to restrictions in computing power.

Heavy rains after the image acquisition forced us to postpone the field work to the next growing
season. The one-year time lag between image acquisition and field work is a potential source of error.
However, during field work the aquatic plants were in the same development stage as during image
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acquisition and the vegetation appeared very similar to the printed images. We were able to locate
both training and control points selected on the UAS-orthoimage in 2011 in the field in 2012 without
problems. This is confirmed by the high number of correct predictions during the image interpreter
training. Another potential source of error relates to misclassifications of taxa during manual mapping
which might have caused incorrect training and validation data. In a comparable lake environment
but with a larger variety of taxa, Husson et al. [16] achieved an overall accuracy of 95% for visual
identification of species.

Lightweight UASs are flexible and easy to handle allowing their use even in remote areas
which are difficult to access for field work. UAS-technology is also especially favourable for
monitoring purposes with short and/or user-defined repetition intervals. Our automated classification
approach for water versus vegetation and at the growth-form level is highly applicable in lake
and river management [53] and aquatic plant control, such as in evaluation of rehabilitation
measures [54]. Valta-Hulkkonen et al. [55] also found that a lake’s degree of colonisation by helophytes
and nymphaeids detected by remote sensing was positively correlated with the nutrient content in
the water. For a full assessment of ecological status of lakes, it is, at the moment, not possible to
replace field sampling by the method proposed here, partly due to uncertainty in the classification
of certain taxa (which might be solved in the future) but also because submerged vegetation is not
included. The latter is a considerably larger problem in temperate regions, where hydrophyte flora
dominates, than in the boreal region where the aquatic flora naturally has a high proportion of emergent
plants [18]. In the boreal region with its high number of lakes, the proposed method has large potential.
Most boreal region lakes are humic [56] with high colour content which increases the importance
of non-submerged plants because low water transparency hinders the development of submerged
vegetation [57]. The taxonomical resolution achieved in our classification allows calculation of a
remote-sensing-based ecological assessment index for non-submerged vegetation in coloured lakes,
as suggested by Birk and Ecke [20].

UASs are still an emerging technology facing technical and regulatory challenges [58]. In the
future, a systematic approach to explore image quality problems associated with UAS-imagery
is needed. Compared to conventional aerial imagery, the close-to-nadir perspective in the
UAS-orthoimage reduced angular variation and associated relief displacement of the vegetation.
We used high image overlap and external ground control points for georeferencing. Therefore, the
geometric accuracy and quality of the produced orthoimage in our study was not affected by autopilot
GPS accuracy or aircraft stability (see also [16]). However, of concern for image quality was that
the UAS-orthoimage was assembled from different flights undertaken at different times of the day
and under varying weather conditions. This resulted in different degrees of wave action, cloud
reflection, and sunglint, as well as varying position and size of shadows in different parts of the
orthoimage. The high image overlap allowed for exclusion of individual images with bad quality from
the data set prior to orthoimage production. In Sweden, UASs that may be operated by registered
pilots without special authorisation at heights above 120 m can have a maximum total weight of
1.5 kg [59]. A challenge with those miniature UASs is limited payload [15]. Therefore, we used
a lightweight digital compact camera. Here, very-high-resolution true-colour images performed
well, without compromising UAS flexibility. However, due to recent technical development and
progress in miniaturisation of sensors, lightweight UAS with multispectral and hyperspectral sensors
are becoming available (e.g., [60]), even if such equipment still is relatively expensive. Inclusion of
more optical bands (especially in the (near-)infrared region [39]) in UAS-imagery will likely increase
classification accuracy at a high taxonomic level. Another relevant development is deriving 3D data
from stereo images or UAS LiDAR sensors, enabling inclusion of height data together with spectral
data, potentially improving the accuracy of automated growth-form and taxon discrimination [61].



Remote Sens. 2016, 8, 724 15 of 18

5. Conclusions

True-colour images taken by UASs with sub-decimetre spatial resolution will be increasingly
available for ecological applications in the future. We demonstrated that ecologically relevant
information on non-submerged aquatic vegetation can be automatically extracted from these images.
The classification of water versus vegetation, growth form, and certain taxa was feasible at test sites
with varying vegetation complexity and image quality using object-based image analysis (OBIA)
on a UAS-orthoimage with 5-cm pixel resolution. At sites of more complex vegetation, OBIA in
combination with the Random Forest classification was more time-efficient than manual mapping.
When choosing the preferred mapping method (manual versus automated) the desired level of thematic
detail and required accuracy for the mapping task needs to be considered. When information on a
high taxonomic level is crucial and the area to cover is not too large, manual mapping is superior to
automated classification in terms of accuracy and resolution of information (e.g., possibility to map
non-dominant taxa, see also [16]). However, when the focus is on covering larger areas, OBIA offers a
more efficient alternative.

Supplementary Materials: The following are available online at www.mdpi.com/2072-4292/8/9/724/s1,
Figure S1: Classification scheme for the manual mapping, Table S1: Error matrices for all sites at all levels
of detail.
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