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Abstract: Wetland inundation is crucial to the survival and prosperity of fauna and flora communities
in wetland ecosystems. Even small changes in surface inundation may result in a substantial impact
on the wetland ecosystem characteristics and function. This study presented a novel method for
wetland inundation mapping at a subpixel scale in a typical wetland region on the Zoige Plateau,
northeast Tibetan Plateau, China, by combining use of an unmanned aerial vehicle (UAV) and
Landsat-8 Operational Land Imager (OLI) data. A reference subpixel inundation percentage (SIP)
map at a Landsat-8 OLI 30 m pixel scale was first generated using high resolution UAV data (0.16 m).
The reference SIP map and Landsat-8 OLI imagery were then used to develop SIP estimation models
using three different retrieval methods (Linear spectral unmixing (LSU), Artificial neural networks
(ANN), and Regression tree (RT)). Based on observations from 2014, the estimation results indicated
that the estimation model developed with RT method could provide the best fitting results for the
mapping wetland SIP (R2 = 0.933, RMSE = 8.73%) compared to the other two methods. The proposed
model with RT method was validated with observations from 2013, and the estimated SIP was
highly correlated with the reference SIP, with an R2 of 0.986 and an RMSE of 9.84%. This study
highlighted the value of high resolution UAV data and globally and freely available Landsat data in
combination with the developed approach for monitoring finely gradual inundation change patterns
in wetland ecosystems.

Keywords: wetland; subpixel inundation percentage (SIP); Landsat-8; unmanned aerial vehicle
(UAV); linear spectral unmixing (LSU); regression tree (RT); artificial neural networks (ANN);
Zoige Plateau

1. Introduction

Wetlands act as one of the most important types of ecosystems and perform many vital functions,
including water storage and purification, flood and erosion control, shoreline protection, conservation
of biological diversity, and as a habitat for wildlife and fishery resources for human communities [1–3].
As one of the most important abiotic factors, the wetland inundation extent greatly dominates the
function of the wetland ecosystem and its consequent effects on the interactions between the land and
atmosphere system [4]. In addition, it is well known that even small inundation regime changes may
result in a substantial impact on the ecosystem characteristics and function [5]. Therefore, accurately
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mapping the wetland inundation is absolutely required to capture the wetland inundation dynamics
to understand the influences from climate change and human activities and to monitor their responses
to the terrestrial ecosystem [6,7].

To ascertain wetland inundation changes at a regional scale, remote sensing has been proven to
be an economical and efficient tool [8,9]. Traditionally, land cover classification for remote sensing
images is one popular way of defining the land surface characteristics of each observed pixel. However,
this approach is usually ineffective or involves a high level of uncertainty due to the assumption
that a single land cover type is assigned to each pixel, especially for moderate spatial resolution
pixels. Compared to classifying each pixel as the water surface or non-water surface, it would be
more appropriate and important to label the proportion of the wetland inundation for each pixel at a
subpixel scale. To estimate the subpixel land cover proportion from remotely sensed data, different
methods have been developed based on the pixel signal from remote sensing observation and the
spectral differences between different land surface components [5,10–12].

Generally, according to the method of simulating the pixel signal, the methods can be grouped
into three categories: physical-based models, spectral mixture models, and regression models [13].
Physical-based models are often complex and are generally premature for application to land cover [14];
therefore, it was not used in this study. For spectral mixture models, the linear spectral unmixing
(LSU) method is commonly used. It is based on the assumption that there is no significant occurrence
of multiple scattering between the different surface components, which allows the pixel signal to
be linearly composed by the signals from each surface component (endmember). Meanwhile, each
endmember should be predefined with this method. LSU is originally designed to identify the percent
distribution of different land covers in coarse/medium resolution imagery (e.g., Moderate Resolution
Imaging Spectroradiometer (MODIS) and Landsat-8 Operational Land Imager (OLI) image) [15–17].
This method has been widely used to derive the proportions of each endmember in a mixed pixel
because of its ease of use and with reasonable physical meaning in interpreting spectral mixing [18,19].
Compared to physical-based and spectral mixture models, regression models do not require prior
knowledge and are able to directly yield interpretable results on the subpixel proportions. Therefore,
many regression models have been developed to downscale the mixed pixels, including linear and
nonlinear methods [20]. Among these methods, the artificial neural network (ANN) and regression tree
(RT) are part of typical nonlinear regression methods, which have been used to retrieve subpixel surface
component proportions in a variety of studies and have obtained satisfactory results [5,10,21,22].

To assess the performance of the three model types, Halabisky et al. [11] used LSU methods
to reconstruct semi-arid wetland surface water dynamics based on a time series of Landsat satellite
images from 1984 to 2011, and LSU method worked well for even small wetlands (<1800 m2). Weng
and Hu [23] applied both ANN and LSU methods to estimate impervious surfaces with medium spatial
resolution satellite images from the Terra Advanced Spaceborne Thermal Emission and Reflection
Radiometer (ASTER) and Landsat-7 Enhanced Thematic Mapper plus (ETM+). The result clearly
demonstrated the superior performance of ANN to LSU method due to ANN’s ability to handle the
nonlinear mixing of the image spectrum. Huang et al. [5] applied RT method to retrieve the wetland
subpixel inundation percentage with Landsat data and airborne Light Detection and Ranging (LiDAR)
intensity data and found that RT model performed better than the stepwise linear regression. It is clear
that the aforementioned methods have been applied often in different fields. However, few studies
have been conducted to examine and compare the effectiveness of current typical subpixel unmixing
methods for wetland subpixel inundation percentage (SIP) estimations. Meanwhile, an efficient,
accurate, and robust method for monitoring the continuous distribution of wetland inundation over
a large area is urgently needed to track the wetland dynamics and monitor its degradation [24].
Therefore, this study aims to assess the potential and effectiveness of the three typical methods (LSU,
RT, and ANN) for estimating wetland SIP and to propose the best method to map wetland SIP.

In this study, highly accurate reference SIP data are essential for the reliability of assessing the
performance of the different methods. Huang et al. [5] used LiDAR intensity data to produce 1 m
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resolution inundation maps and to obtain the reference SIP at a Landsat 30 m resolution scale. This
procedure had been approved as an optional method based on their multi-year estimation results.
However, the routine use of LiDAR data for mapping wetlands and their dynamics in many areas
is not feasible due to the high cost and limited availability of data, which obviously is a significant
obstruction for the method application. The emergence of unmanned aerial vehicle (UAV) technology
in recent years offers a new opportunity to activate wetland inundation at the sub-meter scale. As an
important complementary platform to traditional remote sensing platforms, UAV technology exhibits
significant advantages because it is small, has low to moderate costs, is flexible, and does not need
highly trained pilots. In addition, the high spatial resolution images from UAVs partly ensures the
purity of the image pixel and provide a direct way to recognize water bodies and non-water bodies,
such as small inundations, grass, and soil patches, which cannot be detected with conventional manned
aerial photography or satellite imagery [25]. UAV-based images can be used to produce high-resolution
inundation maps to bridge the gap between ground-based wetland inundation information and middle
resolution satellite data. Therefore, another purpose of this study is to investigate the feasibility of the
UAV-based data in wetland SIP mapping work when combined with medium resolution Landsat data.

Based on the purposes mentioned above, the Landsat-8 OLI data and the UAV-based data of
a typical wetland region on the Zoige Plateau in China were used in this paper as a performance
comparison of the three typical methods (ANN, LSU, and RT) for estimating the SIP of wetlands on
a Landsat pixel scale. The ultimate goal is to provide a reliable approach for long-term wetland
monitoring to help management decision making in terms of balancing economic interests and
nature conservation.

2. Materials and Methods

2.1. Study Area

A typical wetland degradation transect in the Zoige Wetland National Nature Reserve on the
Zoige Plateau, the largest high-altitude marsh area in the world, which is located in the northeast
area of the Tibetan Plateau in China [26], was selected as the study area in this study (Figure 1).
The transect, from the southwest to the northeast, has an obvious water gradient inducing land surface
changes from the large water surface of the lake, permanent wet marshes close to the lake, a transition
zone covered by meadows that are temporary inundated by water, and permanent dry grasslands
(Figure 2). The vegetation species in this region are dominated by Kobresia tibetica, Carex muliensis
and Festuca nivina [27]. It should be mentioned that the inundation of the transition zone is highly
impacted by climate conditions, especially by precipitation of the region. Meanwhile, the regulation of
the dam of the lake also greatly influences the water level of the lake and the inundation of the wetland.
The Zoige wetlands, which have an important ecological function of retaining water upstream of the
Yellow River [28], are inundated or saturated for a relatively short period in the summer. The period
of this area has the highest groundwater level and is largely inundated, which usually occurs around
July or August due to the monsoon climate conditions, with maximum precipitation (approximately
220 mm) in July and minimum precipitation (50 mm) in December. Stream flows are typically high
from July to September.
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Figure 1. Location of the Zoige Plateau (a); the Zoige Wetland National Nature Reserve (ZNWNR) 

(b); and the typical wetland degradation transect studied in this work (c).  

  

  

Figure 2. Photographs of the typical land cover types over the transect: (a) permanent wetland; (b,c) 

intermittent wetland in wet and dry condition; and (d) dry grassland. 
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Figure 1. Location of the Zoige Plateau (a); the Zoige Wetland National Nature Reserve (ZNWNR) (b);
and the typical wetland degradation transect studied in this work (c).

Remote Sens. 2017, 9, 31  4 of 22 

 

 

Figure 1. Location of the Zoige Plateau (a); the Zoige Wetland National Nature Reserve (ZNWNR) 

(b); and the typical wetland degradation transect studied in this work (c).  

  

  

Figure 2. Photographs of the typical land cover types over the transect: (a) permanent wetland; (b,c) 

intermittent wetland in wet and dry condition; and (d) dry grassland. 

2.2. Overview of the Approaches 

In this paper, the proposed approach for modeling SIP using the Landsat-8 OLI data and UAV 

data consisted of three major steps. In the first step, the UAV image was prepared, preprocessed, 

and classified by an object-based image analysis to derive the UAV land cover map. The UAV land 

Figure 2. Photographs of the typical land cover types over the transect: (a) permanent wetland; (b,c)
intermittent wetland in wet and dry condition; and (d) dry grassland.



Remote Sens. 2017, 9, 31 5 of 22

2.2. Overview of the Approaches

In this paper, the proposed approach for modeling SIP using the Landsat-8 OLI data and UAV
data consisted of three major steps. In the first step, the UAV image was prepared, preprocessed, and
classified by an object-based image analysis to derive the UAV land cover map. The UAV land cover
map was then aggregated into an OLI pixel, and the reference 30 m SIP map was created. In the second
step, the available surface reflectance of the Landsat-8 OLI image was preprocessed, and the spectral
indices were calculated to in preparation of the modeling. Finally, the UAV-based reference SIP for
2014 was used to train and evaluate the three SIP models (LSU, ANN, and RT) to select the optimal
model. The prediction ability of the best model was validated by the UAV-based reference SIP of 2013.
The best model was then used to predict the wetland SIP beyond the transect across the Zoige Wetland
Nature Reserve of the Zoige Plateau. Figure 3 shows the flowchart on the detailed process concerning
these steps.
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Figure 3. Flowchart of the overall approach for mapping the subpixel inundation percentage (SIP),
using data on the Landsat-8 Operational Land Imager (OLI) and unmanned aerial vehicle (UAV).
The RT, ANN, and LSU are the abbreviations of regression tree, artificial neural networks, and linear
spectral unmixing, respectively.

2.3. Deriving the Reference SIP from the UAV Data

Considering that the Zoige wetland usually has the highest annual inundation level in the summer
and the time consistency in satellite remote sensing, almost simultaneous UAV-based remote sensing
experiments were conducted on 31 July 2013 and 25 July 2014. In 2014, the UAV-based observation
occurred one day prior to the Landsat-8 observation. For 2013, approximately one week lagged for the
UAV observation against the Landsat-8 observation. Due to the acquisition dates between the 2014
UAV dataset and Landsat image being closer than those of 2013, the 2014 UAV imagery was used
for model development and a comparison study, and the 2013 UAV imagery was used for the best
performance method validation.

2.3.1. UAV Data

A fixed-wing UAV (Freebird, China), which has superior capabilities of wind resistance compared
to the rotary wing UAV, was chosen to acquire the image. The onboard sensor is a digital camera
(Canon 5D Mark II) that has three optical bands (red, green, and blue). During the experiment,
the flight height of the UAV was set to 800 m (4250 m a.s.l.) above ground level over the transect to
enable high spatial resolution at ground level (0.16 m). Meanwhile, the 80% forward lap and 60% side
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lap of the photography system guarantee that there is no gap between the nearby images. A total
of 265 pictures were simultaneously obtained to cover the transect area with 7 km long and 1 km
wide. Subsequently, the geometric/topographic corrections was implemented to generate the digital
orthophoto map (DOM) by using MAP-AT software, which can automatically process the acquired
imagery and altitude data using the ground control points (GCPs), synchronized GPS positions, and
the roll, pitch and yaw of each image. In addition, GCPs were collected, in which the surface features
are easily distinguished, distinct, or have a large color contrast compared to nearby features (e.g.,
houses, road intersections, or artificial white plates). The GCPs were collected in the center of the
artificial white plate by real-time kinematic (RTK). Each GCP was measured three times, and the mean
value was calculated as the coordinate of each point. Figure 4 shows the UAV image of the study area
(6.4 × 1.2 km2) acquired in 2014. Five eagle-eye images were selected to show the unique ability of the
UAV data to present fine inundation conditions at different locations. Sites A and B are permanent
wetland located in the lake. Site C is located at the edge of the lake, and sites D and E in the transition
Zone are the meadows that are temporary inundated.
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Figure 4. The UAV image of the transect in Zoige wetland, acquired in July 2014. A and B are the
small patches of grass in the lake, C is the edge of lake, and D and E show the area with mixed water
and grass.

2.3.2. Reference SIP Extraction from the UAV Data

Because of the high spatial resolution of the UAV data, it is reasonable to define the UAV image
pixel to be a water surface or non-water surface, after which the SIP on the Landsat-8 OLI pixel scale is
calculated. An object-based image analysis (OBIA) is used for UAV image classification because the
geometrical and contextual features can be incorporated into the classification [29,30]. The approach
segments the UAV image into ecological patches, is combined with a decision tree model at the object
level, and is able to improve the classification accuracy.

Based on the UAV classification map, the reference SIP can ultimately be obtained through spatial
aggregation. The general form of the spatial aggregation is as follows:

SIPr = (
n

∑
i=1

Sw,i)/Soli (1)

where SIPr is the reference SIP for the 30 m grids of the Landsat image; Sw,i represents the area of the
water pixel for UAV (m2); n stands for the number of water pixels of the UAV classification map in
the 30 m grids of the Landsat image; and Soli represents the area of 30 m grids of the Landsat-8 OLI
image (m2).
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2.4. SIP Modeling

2.4.1. Landsat-8 OLI Data

Two scenes in the Landsat-8 OLI data were acquired on 26 July 2014 and 23 July 2013, from
path 131 and row 37. They were used as satellite data to derive the wetland SIP mapping in this
study. They were downloaded from the USGS National Center from Earth Resources Observation
and Science (EROS) [31], where the Landsat-8 Surface Reflectance and Spectral Indices are provided.
Therefore, there is no need for further radiometric calibration or atmospheric correction for the datasets.
Although the geolocation accuracy of the Landsat-8 OLI image is better than 0.4 pixels [32], the subpixel
systematic geometric correction should not be ignored. The Landsat-8 OLI images were georeferenced
using the easily distinguished houses and road intersections from the UAV images. Meanwhile,
co-registration was also implemented for Landsat 8 OLI according to the coherence feature in the
spectral-spatial feature space based on the Landsat image.

2.4.2. Variables Derived from Landsat Data

Previous studies had found that the original Landsat bands and a suit of indices were useful
for inundation modeling [5]. Therefore, the surface reflectance (band 1–7), two vegetation indices
(normalized difference vegetation index (NDVI) and enhanced vegetation index (EVI)), and four
normalized different water indices (NDWI_1, NDWI_2, NDWI_3, and MNDWI) were ultimately
selected as the explanatory variables for the estimation model construction with ANN and RT methods.
The equations for calculating the other indices are provided in Table 1.

Table 1. Spectral indices calculated by the bands of Landsat-8 OLI data used in this study.

Spectral Index Definition Reference

NDVI (band 5 – band 4)/(band 5 + band 4) Tucker [33]
EVI 2.5 × (band 5 – band 4)/(band 5 + 6 × band 4 − 7.5 × band 2 + 1) Huete et al. [34]
NDWI_1 (band 5 – band 6)/(band 5 + band 6) Gao [35]
NDWI_2 (band 4 – band 6)/(band 4 + band 6) Rogers and Kearney [36]
NDWI_3 (band 3 – band 5)/(band 3 + band 5) McFeeters [37]
MNDWI (band 3 – band 6)/(band 3 + band 6) Xu [38]

Note: band 2 to band 6 are the surface reflectance of each band.

2.4.3. Modeling Approaches

Among the three methods to be investigated in estimating the SIP on the Landsat pixel scale,
LSU method was used to derive the SIP directly from the Landsat data by finding the spectral
endmembers with the help of UAV data, and the other two methods were used to find a functional
relationship between the spectral data and spectral indices acquired from Landsat-8 and the UAV-based
reference SIP.

(1) LSU method

LSU is a commonly used approach to derive fractions of each land cover (endmember) in the
mixed pixels of remotely sensed imagery. The approach assumes that the spectral signal of a pixel
measured by sensors is a linear combination of the pure spectra of different endmembers that are
weighted by their corresponding fraction cover in each pixel [12,39].

In this study, the image-based method, which selects endmembers from the satellite image itself,
was adopted due to its ease of use, and the spectra of the endmembers were derived at the same
scale as the original image. Once the proportion of one land cover type of UAV classification maps
accounted for more than 95% within each 30 m grid of Landsat data, the corresponding Landsat pixel
was treated as a pure pixel and as an endmember. A set of candidate endmember spectra were then
prepared. Finally, four endmembers were chosen: (1) Soil; (2) Grass1; (3) Grass2; and (4) Water to
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represent the overall land cover condition of the study area. Two grass classes were separately defined
to account for the water underneath the grass. Grass1 represents one hundred percent of the grass
coverage on the land, while Grass2 is the full cover grassland living in the water. The LSU method
was then used to decompose the image based on the four endmember spectra. The equation can be
described as:

SIP =
ρ(λi)− fsoilρsoil(λi)− fgrass1ρgrass1(λi)− fgrass2ρgrass2(λi)− ε(λi)

ρwater(λi)
(2)

where i=1, . . . , 7 is the number of spectral bands; ρ(λi) is the spectral reflectance of band i of a pixel
that contains four endmembers; ρsoil(λi), ρgrass1(λi), ρgrass2(λi), and ρwater(λi) are the known spectral
reflectance of the four endmembers within the pixel of band i; fsoil, fgrass1, fgrass2 and SIP are the
proportion of the endmembers soil, grass1, grass2 and water within the pixel, respectively; and ε(λi)
is noise or can be interpreted as a measurement error for band i [12]. During the fitting process, the
additional boundary condition should be imposed to obtain a physically meaningful result such that
the fractions of endmembers should be positive and add up to 1.

(2) ANN method

The back-propagation neural network (BPNN) is one of the most widely used artificial neural
networks (ANN) in the remote sensing community [40]. As for the BPNN structure in this study,
13 variables, including band 1 to band 7, EVI, NDVI, NDWI_1, NDWI_2, NDWI_3, and MNDWI,
formed the 13 neurons in the input layer. The node in this output layer was SIP. The number of nodes
in the hidden layer was optimized by separating the whole dataset into training and validation data.
To minimize the undesired effects related to the random initialization of the optimization routine, the
entire cross-validation procedure was repeated 1000 times. All parameters represented the average
values of these 1000 simulations by trial and error. From the validation results shown in Figure 5,
the root mean squared error (RMSE) became stable when the number of nodes was set to 12 or greater.
Therefore, the number of hidden layer nodes was 12 in this study. The unipolar sigmoid transfer
function between the input layer and hidden layer was selected, and a linear transfer function in the
output layer was used. During the network training process, Levenberg–Marquardt (TrainLM), which
shares a common training algorithm with BPNN, was used. The early stopping technique was used to
avoid overfitting problems [41].
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(3) RT method

RT method, which produces a rule-based regression model based on training data, can fit a
complex nonlinear relation under different rules. Each rule contains one or more conditions under
which a linear sub-model is established. RT method can approximate a nonlinear relationship between
predictive and target variables without a priori knowledge, and allow both continuous and discrete
variables as input variables [5,42]. These approaches have been proven to be more effective than
simple techniques, including multivariate linear regression, and are also easier to interpret than
the neural network [13]. In this study, the Cubist was used to implement the function of RT and
the model SIP [43] The Cubist is a powerful tool for generating rule-based predictive models that
balance accurate predictions against intelligibility. This package had been used successfully in many
studies [5,41,42,44,45].

In this paper, the approach for modeling SIP using RT method consisted of data preparation,
modeling, and model application. First, the 30 m reference SIP data were derived from the UAV
classification map by using the spatial aggregation method. The UAV-based reference SIP was then
divided into training (70%) and evaluating (30%) data. Second, the Cubist was chosen to model the
SIP based on the reference SIP and the 13 variables (including band 1 to band 7, EVI, NDVI, NDWI_1,
NDWI_2, NDWI_3, and MNDWI), and the accuracy of the reconstructed model was evaluated by the
remaining data. Finally, the constructed model was applied to the area beyond the transect area.

2.4.4. Evaluation Metrics

During the method comparison study, the training and test accuracy of LSU, ANN, and RT
methods were measured by using the coefficient of determination (R2) and RMSE. R2 can reflect the
correlation relationship between the reference SIP and the predicted SIP. RMSE is a measure of the
absolute difference of the estimation results. Additionally, to validate the spatial accuracy of the
prediction, the mean absolute error (MAE) was adopted to compare the predicted SIP map to reference
SIP map at the pixel level and image level. The MAE can be calculated as:

MAE =
n

∑
j=1

∣∣∣SIPp,j − SIPr,j

∣∣∣/n (3)

in which j = 1, 2, . . . , n is the total number of pixels, and SIPp,i and SIPr,i are the predicted and reference
SIP values, respectively.

3. Results

3.1. Reference SIP

Based on the UAV image, the classification result was derived using the OBAI and decision tree
methods. The area percentages of water, grass, and soil are 14.36%, 71.22%, and 14.42%, respectively,
as illustrated in Figure 6. From southwest to northeast, we can see a large water surface on the
lake, some small ditches, bare soil that is temporarily inundated by water, and grass distributed
among them. An independent accuracy assessment was performed using a stratified random sample
of 236 points within the classification transect. Table 2 shows the producer’s accuracy (PA), user’s
accuracy (UA), overall accuracy, and the kappa coefficient. It is clear that all categories have relatively
high PA, from 91.07% to 95.65%. This is mainly because the alpine land cover condition is relatively
simple and homogeneous. Soil has the lowest accuracy (91.07%) for both PA and UA. It can be partly
explained by the fact that the spectral response from the soil has some signal confusion with low grass
coverage and shallow water. For the overall accuracy and kappa coefficient, their values are 93.34%
and 0.9, respectively. In addition, the retrieval accuracy and efficiency of the classification map were
further validated with ground-based measurements which were taken in the satellite- aircraft-ground
synchronous experiment over the transect. The high accuracy of classification map also shows the
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consistent with the field conditions. The accuracy assessment generally confirms the reliability of the
classification result to be used to produce the reference SIP on Landsat-8 OLI pixels for further analysis.

Remote Sens. 2017, 9, 31  10 of 22 

 

also shows the consistent with the field conditions. The accuracy assessment generally confirms the 

reliability of the classification result to be used to produce the reference SIP on Landsat-8 OLI pixels 

for further analysis.  

 

Figure 6. Classification map of the transect based on the UAV image acquired in July 2014. 

Table 2. Confusion matrix and accuracy estimates for the classified map. 

Reference 
Classified 

Total Producer’s Accuracy (%) 
Grass Water Soil 

Grass 104 3 4 111 93.69 

Water 2 66 1 69 95.65 

Soil 3 2 51 56 91.07 

Total 109 71 56 236  

User’s accuracy (%) 95.41 92.96 91.07   

Overall accuracy: 93.64%; Kappa coefficient: 0.9 

Note: The numbers of correctly classified testing samples are in boldface. 

To obtain the reference SIP map, the aforementioned classification map was then overlaid on 

the 30 m grids of the Landsat data to calculate the SIP at the 30 m resolution using Equation (1). The 

pixel values of the SIP map range from 0% (non-water surface) to 100% (water surface) (Figure 7). 

From the statistical histogram of the SIP value distribution, the water surface and non-water surface 

at a 30 m resolution occupy a large amount of the map. Thus, 75.82% of the pixels have an SIP value 

of less than 5%, and 6.27% of the pixels have an SIP value that is greater than 95%.  

As mentioned above, there are too many pixels located at the two ends (close to 0% and 100% of 

the SIP value). If all the pixels are involved in the estimation process, the easily recognizable water 

and non-water of the methods will result in high accuracy for the water and non-water estimation. 

The influence of the large amount of these pixels in the map will ultimately result in an 

unrealistically high accuracy of the overall accuracy assessment for the methods. It is clear that the 

results cannot represent the real performance of the methods. It is important for the methods to 

estimate the correct SIP value of the surface with the water surface partly covered. Therefore, a 

stratified sampling method was adopted in this study according to the distribution of the SIP. In the 

stratified sampling method, the different binning ranges were chosen based on a heuristic analysis of 

the SIP predictions to ensure that each SIP bin represents spectral and spatial variability of different 

SIP values.  

Figure 6. Classification map of the transect based on the UAV image acquired in July 2014.

To obtain the reference SIP map, the aforementioned classification map was then overlaid on the
30 m grids of the Landsat data to calculate the SIP at the 30 m resolution using Equation (1). The pixel
values of the SIP map range from 0% (non-water surface) to 100% (water surface) (Figure 7). From the
statistical histogram of the SIP value distribution, the water surface and non-water surface at a 30 m
resolution occupy a large amount of the map. Thus, 75.82% of the pixels have an SIP value of less than
5%, and 6.27% of the pixels have an SIP value that is greater than 95%.

Table 2. Confusion matrix and accuracy estimates for the classified map.

Reference
Classified

Total Producer’s Accuracy (%)
Grass Water Soil

Grass 104 3 4 111 93.69
Water 2 66 1 69 95.65
Soil 3 2 51 56 91.07

Total 109 71 56 236

User’s accuracy (%) 95.41 92.96 91.07

Overall accuracy: 93.64%; Kappa coefficient: 0.9

Note: The numbers of correctly classified testing samples are in boldface.

As mentioned above, there are too many pixels located at the two ends (close to 0% and 100% of
the SIP value). If all the pixels are involved in the estimation process, the easily recognizable water
and non-water of the methods will result in high accuracy for the water and non-water estimation.
The influence of the large amount of these pixels in the map will ultimately result in an unrealistically
high accuracy of the overall accuracy assessment for the methods. It is clear that the results cannot
represent the real performance of the methods. It is important for the methods to estimate the correct
SIP value of the surface with the water surface partly covered. Therefore, a stratified sampling method
was adopted in this study according to the distribution of the SIP. In the stratified sampling method,
the different binning ranges were chosen based on a heuristic analysis of the SIP predictions to ensure
that each SIP bin represents spectral and spatial variability of different SIP values.
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Figure 7. The reference SIP map of the transect in 2014 derived from the UAV classification map.

3.2. Correlation Analysis between the Reference SIP and the Landsat-8 OLI Spectral Data

A correlation analysis was conducted to study the relationships between the SIP and the surface
reflectance of individual Landsat bands and the spectral indices. As shown in Table 3, EVI had the
highest R2 value, with a 75% SIP variance explained by this variable. The bands 5, 6, 7, NDWI_2, and
MNDWI were also highly correlated with SIP, with the R2 value above 0.6. NDWI_1 and NDWI_3
had the lowest correlation with SIP (0.26 and 0.26, respectively). The correlation analysis provides a
general idea about the relationship between SIP and the variables, giving useful information related to
the choice of variables that are more suitable to be used in the SIP estimation.

Table 3. Coefficient determination (R2) of the linear relationship between the SIP and Landsat bands
and derived indices.

B1 B2 B3 B4 B5 B6 B7

0.40 0.41 0.59 0.49 0.74 0.64 0.60

EVI NDVI NDWI_1 NDWI_2 NDWI_3 MNDWI

0.75 0.48 0.26 0.67 0.26 0.68

3.3. Performance of LSU, ANN, and RT Methods

3.3.1. SIP Estimation with LSU Method

The LSU method has been directly used to uncouple the reflectance of each image pixel into the
actual fractional cover of the components on the ground [15]. Therefore, all the reference SIP values
with the water surface partially included were used to validate the predictive performance of LSU
method. Figure 8 shows the correlation between the Landsat-derived SIP under LSU method and
reference SIP. The regression line reveals that the predicted SIP based on LSU method fits well with the
SIP calculated from the UAV data with an R2 value of 0.869 and RMSE value of 10.55%.
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Figure 8. The R2 and root mean squared error (RMSE) of the relationships between the UAV-based
reference and Landsat-predicted SIP using LSU method in 2014. The red dotted lines are the 1:1 lines,
and the blue solid lines are linear regressions between the predicted and UAV-based reference SIP.

3.3.2. SIP estimation with ANN and RT Method

According to the results from the correlation analysis in Section 3.2, 13 predictor variables (band 1
to band 7, EVI, NDVI, NDWI_1, NDWI_2, NDWI_3, and MNDWI) were selected to be used in ANN
and RT methods. In the estimation process, 70% of the UAV-derived SIPs were randomly selected
as training data for both methods. The remaining 30% were used as validation data to evaluate the
models derived from ANN and RT method with the training data.

(1) ANN performance

Figure 9 shows the correlation between the Landsat-derived SIP using ANN method and the
reference SIP. The regression line reveals that the predicted accuracy of ANN method is better than
LSU method. From the prediction results and with the training data shown in Figure 9a, the result
shows a significant improvement in the overall performance, with an R2 value of 0.927 and RMSE
value of 8.95%, when compared to LSU method. When the estimation model, generated by ANN
method, was applied to the validation data, a similar result can be obtained with a slightly lower R2

(0.926) and RMSE (8.87%) (Figure 9b).
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Figure 9. The R2 and RMSE of the relationships between the reference SIP and Landsat-predicted SIP,
under ANN in 2014 for the: training data (a); and validation data (b). The red dotted lines are the 1:1
lines, and the blue solid lines are linear regressions between the predicted and UAV-based reference SIP.
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(2) RT performance

Regarding the performance of RT model that was used to estimate the SIP of the transect, similar
patterns were found in their estimation accuracies with ANN method (Figure 10a). However, from the
training data evaluation result, it can be seen that RT method had a higher R2 value (0.935) and lower
RMSE value (8.54%). When the estimation results were validated by the remaining 30% reference SIP,
the R2 value improved slightly from 0.926 to 0.933, and the RMSE reduced from 8.87% to 8.73% when
compared to the validation results of ANN method (Figures 9b and 10b). From the compared statistics
among the above three methods, it can be concluded that RT method is able to derive the best results
when evaluated either by the training or the validation data.
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3.4. Spatial Pattern of the SIP Estimation Error Using LSU, ANN, and RT Methods

To understand the spatial performance of the three models, LSU, ANN, and RT methods were
used to obtain the spatial patterns of the SIP map of the transect, respectively (Figure 11a–c). A common
SIP pattern can be derived from the transect to depict the SIP variation with the water gradient.

Based on the validation with the UAV-based reference SIP, the absolute differences between
the reference SIP and the Landsat-derived SIP on the three methods were calculated and shown in
Figure 11d–f, respectively. A common phenomenon can be observed for these three methods in which
the transition areas between the water and the grassland have high uncertainty in the SIP estimation.
The MAEs of the predictions are 4.97%, 4.90%, and 3.49% for LSU, ANN, and RT methods, respectively.
The LSU method shows high uncertainty in the peatland SIP estimation because of the mixture of
the spectra of shallow water and the peat soil (Figure 11d). This is consistent with the scatterplot in
Figure 8, in which the SIP is generally overestimated when the value is lower than 20%. Although
ANN method performs better on the SIP estimation than LSU method according to the scatterplot
shown in Figure 9, high uncertainties still exist for the bare soil area (Figure 11e). When compared to
the other two methods, RT method greatly outperforms the other methods and makes the absolute
error smaller.

In addition to the absolute error map, Figure 12a–c present the estimation error histogram of these
three methods. The negative value of the SIP error indicates that the method has an overestimation
in the SIP. The mean (ME) and standard deviation (SD) values of the SIP error are provided for each
method to compare the method performance. The smaller the ME and SD values are, the better the
method’s performance is. From the ME values, it can be concluded that the estimation results from
the three methods, and all show a slight overestimation with the ME values of −3.17%, −2.89%, and
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−1.57%, respectively. The results from the comparison suggest that the estimation with RT method is
highly correlated with the reference SIP map and with the smallest ME (−1.57%) and SD (5.55%).Remote Sens. 2017, 9, 31  14 of 22 
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In conclusion, comparisons between the spatial patterns of the estimation results of the three
methods suggest that RT method can provide more reasonable estimation results, with the errors
falling with in a relatively small range. There are few areas related to the over/under estimation of this
method. Most of the remaining errors are often located around small inundation patches or along the
edge of large patches, which appeared to be associated with residual mis-registration errors between
the UAV data and Landsat image (see more details in Section 4.4).

4. Discussion

4.1. Comparison of the Performance of the Three Methods

The results of comparison between the SIP estimation results and the UAV-based reference SIP
revealed that RT method outperformed LSU and ANN methods with the highest R2 (0.933) and the
lowest RMSE (8.73%) when the derived model was evaluated by the validation data. The LSU and ANN
methods showed relatively poorer performance with RMSE values of 10.55% and 8.87%, respectively.

For LSU method, the optimal selection of endmembers was the most essential part in the
application of LSU, and the endmember should comprehensively represent local land cover with high
accuracy. Although the land cover condition of this study area seems to be homogeneous at the satellite
pixel scale, it is still highly complex due to the differences in the inundation condition. Taking the
surface condition shown in Figure 2a as an example, Grass2 is an emergent aquatic plant in or near the
lake. Although the grass coverage of Grass2 accounts for 100% of the UAV image on the pixel of the
OLI image, the water can be seen beneath the grass from the nearby environment. Figure 13 shows the
spectra of these two grass types (dry grass and waterlogged grass) as measured by a spectrometer in
the field. It was found that the spectra are quite different, although they maintain the spectral pattern
of the vegetation. Therefore, it is reasonable to select Grass2 as an independent endmember because
this type of grass cannot be simply unmixed with Grass1 and water spectra. Although the grass was
separated into Grass1 and Grass2 to consider the waterlogged effect based on the UAV image, the
mixture of Grass1 and Grass2 within the relatively coarse Landsat-8 OLI pixel causes a significant
difficulties in defining or selecting a pure endmember. Consequently, this spectral confusion would
lead to incorrect unmixing between them and introduce high uncertainty in the final SIP calculation.
In addition, the linear assumption of LSU method is another factor that influences the accuracy.
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Compared to LSU method, ANN and RT methods do not need to select endmembers and thus
avoid the uncertainty in this process. Meanwhile, the nonlinear relationship established with these
two methods has a greater advantage than the linear assumption in LSU method. Additionally, the
stratified sampling method applied in the training data selection greatly reduces the impact from the
non-uniform distribution of the SIP values. Therefore, the estimation results of ANN and RT methods
are generally better than those of LSU method.

Although ANN method is a widely used algorithm and is successful in retrieving the SIP with
acceptable accuracy in this study, there is no complete unified theory that can determine the structure
of the network. First, the number of hidden layers and hidden-layer nodes need to be significant, which
is impacted by many factors, including the training samples and the number of input/output nodes.
It was proven that a single hidden layer of networks could enable arbitrary nonlinear mapping simply
by increasing the neurons. Therefore, a trial-and-error technique was used to find the appropriate
number of hidden-layer nodes. The whole process of calibration was repeated 1000 times to avoid
random errors related to the random initialization at the start of the optimization, and the average
results of the 1000 replicates were chosen. Second, the proper setup of parameters for ANN method
still faces challenges. Although some heuristics have been developed for designing and implementing
ANN, these methods were not straightforward. For instance, the selection of too great a learning rate
could make the model unstable, whereas the selection of too small of a learning rate would result
in a locally optimal phenomenon [10]. Although the final network was chosen by trial and error,
the selection of suitable network architecture is an important issue and needs further research in the
future. It also greatly affects the application of ANN method in wetland inundation monitoring.

Meanwhile, RT method can approximate complex nonlinear relations by partitioning a dataset
into subsets, and the relationship within each subset can be simplified to a linear model [5,13].
In general, it outperformed others in all cases, which was not only more effective than simple
techniques, such as multivariate linear regression and LSU, but was also easier to comprehend than
the neural networks. This conclusion was consistent with previous studies [5,45]. Because RT method
was mostly automated and required only limited computing time, this method shows the increasing
potential for mapping SIP in large area cost effectively.

4.2. Validation of the Best Prediction Model in 2013

As concluded in Section 3, RT method outperformed both LSU and ANN methods, and the
prediction model generated with RT method in 2014 was selected to produce the SIP map in 2013 to



Remote Sens. 2017, 9, 31 17 of 22

evaluate the model performance. Similar to the comparison study with the data in 2014, a reference
SIP map was also generated with the UAV image. The prediction model was then applied directly to
the Landsat-8 OLI in 2013 to obtain the predicted SIP map in 2013, and the estimation results were
validated by the reference SIP map in 2013. To present the general feature of the estimation results, the
UAV-based SIP values of 2013 were divided into 2% bins. The mean UAV-based and Landsat-predicted
SIP values were then calculated separately for each bin with the corresponding standard deviation.
Figure 14 presents the linear fit results between the mean SIP values from the estimation results and
the reference SIP. A relatively good correlation was found between the two datasets, with R2 at 0.986
and RMSE at 9.84%, and the standard deviations of the 2% bins were generally within 20%. However,
considerable overestimation and minor underestimation can be observed in the low SIP value region
and high SIP value region, respectively. The reasons can be partly explained by the fact that the
acquisition date of the UAV image was 8 days after the Landsat-8 OLI observation time. During these
eight days, there were four days with rain, according to the meteorological data, which induced the
inconsistency between the estimation results and the reference data. Meanwhile, the Landsat-8 OLI
data of the study area in 2013 was partly covered by a thin cloud that might distort the spectra of the
land surface and influence the accuracy of the SIP estimation.
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Figure 14. Comparison of the mean SIP values of RT prediction for 2013, with the mean reference SIP
values within 2% bins of the 2013 reference SIP map. The mean prediction and its standard deviation
in each 2% bin are shown in as a black dot and a gray bar, respectively. The red dotted and blue solid
lines represent the 1:1 line and the fitted line.

4.3. Application in the Zoige Wetland National Nature Reserve

Validation regarding the above section confirmed the strong capabilities of RT method in SIP
estimation. Therefore, RT method was applied to generate the SIP map for the Zoige Wetland National
Nature Reserve in 2014. The predicted result shown in Figure 15 presents a reasonable spatial pattern
of the SIP associated with the spatial distribution of the major wetlands. Because of the lack of field
investigation of the wetland inundation condition during the satellite overpass time, it is hard to
validate the estimated SIP map of the whole region. However, from the comparison between the
original Landsat-8 true color image and the estimated SIP in the three zoom-in windows, it is clear
that an obvious change in the gradient of the SIP did exist in all three windows from the grassland
to the water bodies (lake and river). The lake and river are predicted with the highest SIP values.
When the 30 m pixel of Landsat-8 data cover the edge of the water body, the SIP values of the pixels
are approximately 50%. The reasonability of the SIP estimation can also be reflected from the width
change of the river shown in Figure 15C, F. When the width of the river is greater than one Landsat
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pixel (30 m), the SIP is 100%. In other cases, the SIP values vary from 0% to 100%. The SIP of the small
branch in the figure below confirms the result derived from the 2014 RT model.Remote Sens. 2017, 9, 31  18 of 22 
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Figure 15. The SIP map of the Zoige Wetland National Nature Reserve that was derived based on the
Landsat-8 OLI data using the prediction model with RT method in 2014. The OLI image (1) and three
zoom-in windows (A–C) are shown with bands 6, 5, and 4 in red, green, and blue, respectively; and the
corresponding SIP estimation of the SIP map (2) and three regions of interest (D–F).

4.4. Uncertainty Analysis

The performance comparison and the application study indicated that the proposed approach
based on RT method is a good way to integrate the UAV image and Landsat-8 images for the wetland
inundation mapping. However, this approach is still highly influenced by two uncertainties.

(1) Spectral uncertainty of the UAV data

Although the high spatial resolution of the UAV data greatly helps the classification of the land
cover condition, the results from classification assessment on accuracy reflected that the land cover
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map based on UAV data achieved a high accuracy level with an overall accuracy of 93.64% and kappa
coefficients of 0.9. However, some misclassifications occurred during the process. As a typical highland
peatland, the dark color of the peat soil of the Zoige wetland caused some confusion with the water
surface due to the similar spectral characteristics. The emergent grass in shallow water will also
cause difficulty in determining whether it is water surface or grassland. In addition, the three bands
of the true color UAV images can only provide limited spectral information about the land surface.
The commonly used NDVI and NDWI, which are important for vegetation and water extraction,
cannot be calculated from these three bands. Consequently, these factors introduce some uncertainties
in the classification results and influence the reference SIP accuracy. In the future, we can develop
an approach that can obtain the portion of each class of the UAV mixed pixel or obtain multispectral
UAV images.

(2) Uncertainty of geolocation matching between the UAV and satellite image

Although the GCPs were collected through real-time kinematic (RTK) to perform the UAV image
geometric correction, they also inherit sub-meter levels of error. Meanwhile, the geolocation accuracy
of the Landsat-8 OLI image is scarcely better than 0.4 pixels [32]. To match the two datasets, the
commonly used image-to-image registration was first performed by using the easily distinguished
houses, road intersections, and white plates. Due to the one order of magnitude difference in the
spatial resolution between the two images, the further co-registration was implemented by manually
adjusting the Landsat-8 OLI image according to the coherence feature in the spatial spectral-spatial
feature based on the UAV image. It is obvious that the subjective adjustment of the Landsat-8 OLI
image cannot fully handle the geometric errors between two datasets, and the mismatch will finally
induce the pixel inundation condition, which calculated from the UAV image, cannot represent the
real condition of the corresponding Landsat pixel. In addition, a likely source of error is caused
by the submerged plant, which is frequently distributed over the transition of the water and land.
Therefore, there are overestimations in low value and underestimations in high value (Figure 12a–c),
and most of the errors are located around small inundation patches or along the edges of larger patches
(Figure 11d–f). Despite the existence of underestimation and overestimation, the proposed method
still provides useful information on the hydrology of small wetlands (Figure 15).

5. Conclusions

Reliable and updated inundation information is essential to improving the conservation and
management of wetlands to ensure their provision for sustained ecosystem services. In this study, we
compared the ability of three common methods (LSU, ANN, and RT) to extract the SIP information
with the combination use of the Landsat-8 data and the UAV image. RT method outperformed the other
two methods when the method was applied to the validation data in 2014, with the R2 at 0.933 and the
RMSE at 8.73%. The results from the spatial pattern analysis on the estimation using the three methods
also indicated the good performance of RT method. Data from the comparison study suggested
that the introduction of a UAV image with RT method is appropriate for wetland SIP investigation.
To further validate the proposed method, the model was applied to 2013. The result revealed that RT
method could yield the SIP values with a high correlation (R2 = 0.986) and low RMSE (9.84%) with
the reference SIP. Meanwhile, the application of the method for the Zoige Wetland National Nature
Reserve SIP mapping also confirmed that the method was useful in obtaining data on the regional
distribution of the SIP.

With the successful operation of the Landsat-8 satellite, global Landsat data will be acquired
continuously with no additional charge. At the same time, the UAV is more suitable for obtaining
rapid observations since it provides the advantages of low cost, flexible launch and landing options,
safety, and ultra-high spatial image resolution. Such data will be increasingly adopted with more
applications. Therefore, the approach developed in this study has the potential to track previous
inundation changes and continuous monitoring of ongoing and future inundation changes in more
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areas than those demonstrated in this study. Finer SIP maps and the change products derived under
RT method may be useful in improving the model studies on wetland hydrology, evapotranspiration,
and stream runoff. The related research is still ongoing, and further investigation is urgently needed.
More UAV images will be provided over a longer period when the proposed model is further verified
using different spatial and temporal scales.
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