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Abstract: The availability of new fAPAR satellite products requires simultaneous efforts in validation
to provide users with a better comprehension of product performance and evaluation of uncertainties.
This study aimed to validate three fAPAR satellite products, GEOV1, MODIS C5, and MODIS C6,
against ground references to determine to what extent the GCOS requirements on accuracy
(maximum 10% or 5%) can be met in a deciduous beech forest site in a gently and variably sloped
mountain site. Three ground reference fAPAR, differing for temporal (continuous or campaign mode)
and spatial sampling (single points or Elementary Sampling Units—ESUs), were collected using
different devices: (1) Apogee (defined as benchmark in this study); (2) PASTIS; and (3) Digital
cameras for collecting hemispherical photographs (DHP). A bottom-up approach for the upscaling
process was used in the present study. Radiometric values of decametric images (Landsat-8)
were extracted over the ESUs and used to develop empirical transfer functions for upscaling
the ground measurements. The resulting high-resolution ground-based maps were aggregated
to the spatial resolution of the satellite product to be validated considering the equivalent point
spread function of the satellite sensors, and a correlation analysis was performed to accomplish
the accuracy assessment. PASTIS sensors showed good performance as fAPARPASTIS appropriately
followed the seasonal trends depicted by fAPARAPOGEE (benchmark) (R2 = 0.84; RMSE = 0.01).
Despite small dissimilarities, mainly attributed to different sampling schemes and errors in DHP
classification process, the agreement between fAPARPASTIS and fAPARDHP was noticeable considering
all the differences between both approaches. The temporal courses of the three satellite products were
found to be consistent with both Apogee and PASTIS, except at the end of the summer season when
ground data were more affected by senescent leaves, with both MODIS C5 and C6 displaying larger
short-term variability due to their shorter temporal composite period. MODIS C5 and C6 retrievals
were obtained with the backup algorithm in most cases. The three green fAPAR satellite products
under study showed good agreement with ground-based maps of canopy fAPAR at 10 h, with RMSE
values lower than 0.06, very low systematic differences, and more than 85% of the pixels within
GCOS requirements. Among them, GEOV1 fAPAR showed up to 98% of the points lying within
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the GCOS requirements, and slightly lower values (mean bias = −0.02) as compared with the ground
canopy fAPAR, which is expected to be only slightly higher than green fAPAR in the peak season.

Keywords: fAPAR; validation; PROBA-V GEOV1; MODIS C5; MODIS C6; beech forest; up-scaling;
GCOS requirements; in-situ comparison and evaluation

1. Introduction

Ecosystems are continuously changing due to both natural and anthropic factors. Monitoring biophysical
variables is fundamental to describe vegetation dynamics, disturbances, and responses to changing
environmental conditions [1]. The Fraction of Absorbed Photosynthetically Active Radiation (fAPAR)
is recognized as an Essential Climate Variable (ECV) by the Global Climate Observing System (GCOS)
as it has a primary role in estimation of carbon balance [2]. fAPAR is generally defined as the fraction
of Photosynthetically Active Radiation (PAR) absorbed by vegetation, where PAR is the solar radiation
reaching the vegetation in the wavelength region 400–700 nm [3]. Consequently, fAPAR is the available
light energy for plant productivity and thus is strictly related to photosynthesis. It is influenced
by illumination condition and varies with sun position, atmospheric conditions, and the relative
contributions of the direct and diffuse illumination [4]. The actual or ‘blue-sky’ fAPAR is the sum
of two terms, weighted by the diffuse fraction in the PAR domain: the ‘black-sky’ fAPAR related
to the direct component of the incident radiation and the ‘white-sky’ fAPAR related to the diffuse
component of the incident radiation [5].

The importance of this variable in the vegetation monitoring is related to (1) the fact that is linked
both to ecosystem function and structure [6] and (2) the possibility that it can be monitored from
space. The growing availability of fAPAR satellite products at a global level make this variable suitable
for monitoring vegetation status [7], phenology [8], drought events [9], and land degradation [10].
The productivity of a vegetated surface is related to fAPAR and remotely sensed fAPAR data are
widely used as input in carbon productivity models [11–13]. One of the most widely used models in
the estimation of carbon productivity is the Light Use Efficiency (LUE) model that describes carbon
sequestration as a product of a structural term determining light absorption (fAPAR × PAR) and
a physiological efficiency term (ε) defining the conversion of solar radiation into biomass or carbon.
In this approach, the accuracy fAPAR data used is relevant, as it has a considerable impact on the fluxes
estimated by the model [14], even more in those cases when ε is assumed to be constant.

The methods used to monitor fAPAR could be divided into ground and satellite methods. Weiss et al. [4]
report that there are primarily four different ground methods, depending on the approximation: (a) assessing
fAPAR directly using quantum sensors that measure all the terms of the radiation balance [15]; (b) assessing
transmitted PAR using ceptometers that compute the instantaneous fIPAR (fraction of Intercepted PAR) [16];
(c) assessing directional transmittance measurements using digital hemispherical photography (DHP) [5] or
LAI-2000 [17]; and (d) simulating fAPAR through a 3D model that accurately takes into account the canopy
structure [18]. On the other hand, the major approaches used to estimate fAPAR from remote sensing
over a large spatial scale are basically two: (a) empirical models based on relationships between
field measurements and satellite-derived vegetation indices as Normalized Difference Vegetation
Index (NDVI) [19,20] or EVI [21,22] and (b) physically-based methods by inversion of radiative
transfer models (RTM) [23,24]. In the last decades, several satellite-based fAPAR products have been
developed from different sensors on a global scale by spatial agencies and earth observation services.
This has made various fAPAR products at different temporal and spatial resolutions of the Earth
available to the scientific community [25–31]. In particular, the Copernicus Global Land Service
(http://land.copernicus.eu/global/) delivers global LAI, fAPAR, and fCOVER products from SPOT
VEGETATION (1999–2014) and PROBA-V observations (2014-present) with a spatial sampling close to
1 km and temporal frequency of 10 days. These products, namely GEOV1 products, were developed
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to capitalize on existing products and its validation results [31], and were globally validated and
compared with existing satellite data and ground reference maps, showing better performance than
other satellite products [32]. Since 2000, NASA has delivered MODIS/TERRA fAPAR Collection 5 (C5)
products that are produced at 1 km spatial resolution [23,33]. Accuracy improvements from 0.2 to 0.1
of Collection 5 over previous Collection 4 were observed in several studies [34–36]. Lastly, the newest
version of fAPAR MODIS product is Collection 6 (C6) which is 500 m spatial resolution and contains
the entire time series from February 2000 to the present [37]. Recent studies [37,38] aimed to assess
product accuracy, uncertainty, and consistency with the previous version. Yan et al. [38] informed
about the absence of valid ground truth for fAPAR measurements over deciduous broadleaf forest and
recommended more efforts in field measurements to further refine remote sensing data performance
in the future. Camacho et al. [32] also pointed out how validation of satellite products is limited by
the ground dataset available and that, presently, a small amount of data exists concerning broadleaf
evergreen and deciduous forests. Recently, studies aimed to evaluate consistency between fAPAR
datasets in forest biomes proved that important differences exist among them and thus further
efforts to improve accuracy in carbon models are needed [34,39–41]. Subsequently, the availability
of new satellite products requires simultaneous efforts in their validation to provide users with
a better comprehension of product performances and uncertainties [42]. To reach this goal, ground
reference fAPAR datasets are essential. However few sites are equipped to generate measurements of
fAPAR useful for the validation of space-borne products [3]. Nevertheless, validation is not simply
equivalent to field measurements. An upscaling strategy to extend the in situ measurements and
match satellite data resolution is needed in order to properly address the spatial variability of the site
at the size of satellite footprints [43]. In situ fAPAR is usually measured using four sensors that
simultaneously measure the downwelling and upwelling PAR both below and above the forest canopy,
representing a value of the fraction of absorbed PAR by the canopy. Differently from short canopies
(e.g., grasslands), access to a tower is required to measure reflected and incident PAR at the top of
a tall canopy [40]. Also, collecting ground datasets is resource intensive and mostly limited in spatial
and temporal sampling extensions [39]. In this respect, if the in validation of satellite data with
accurate field data is generally necessary, that carried out in forest ecosystems is even more valuable
and indispensable.

This paper presents a validation exercise that was carried out at the Collelongo site, a deciduous
broadleaf forest in Italy, which is part of Fluxnet since 1996 (site code IT-Col) and is currently involved in
several European projects such as LIFE+ Smart4Action, eLTER H2020 and networks (LTER, ICP-Forests,
ICP-IM). In 2014, the Collelongo site was selected as part of FP7 ImagineS project (http://fp7-imagines.eu/)
to support the provision of a ground dataset for the validation of Copernicus Global Land products.
The aim of this study is to validate three currently available green fAPAR satellite products: GEOV1,
MODIS C5 (MOD15A2) and the recent MODIS C6 (MOD15A2H) version against ground references
collected using three different devices (i.e., Apogee sensors, PASTIS sensors and digital camera with
fish-eye lens) and to determine to what extent the GCOS requirements on accuracy (maximum 10% or
5%) [44] are met. Both ground sampling and satellite product validation were conducted following
best practices developed within the Land Product Validation sub-group (LPV) of the Committee on
Earth Observing Satellite (CEOS) on Calibration and Validation Working Group (WGCV) [43].

2. Remote Sensing Product

In this section, the principal characteristics of the three different satellite products examined in
this work are presented. Table 1 summarizes the main features of each fAPAR product.

http://fp7-imagines.eu/
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Table 1. Characteristics of the green fAPAR remote sensing products under study. GSD, ANN, RTM,
and CYC stand for “Ground Sampling distance”, “Artificial Neural Network”, “Radiative Transfer
Model”, and “CYCLOPES 3.1”, respectively.

Product Sensor GSD Frequency Compositing Period Algorithm Definition Parametrization Reference

GEOV1 * PROBA-V 1 km 10-days 30-days May 2014
–present (*)

ANN trained
with CYC and

MODIS C5

Green
vegetation,

instantaneous
black-sky

~10:15 a.m.

Global Baret et al.
[31]

MODIS C5
(MOD15A2)

MODIS/
TERRA 1 km 8-days 8-days February 2000

–present
Inversion
RTM 3D

Green
vegetation,

instantaneous
black-sky
10:30 a.m.

8 biomes Knyazikhin
et al. [25]

MODIS C6
(MOD15A2H)

MODIS/
TERRA 500 m 8-days 8-days February 2000

–present
Inversion
RTM 3D

Green
vegetation,

instantaneous
black-sky
10:30 a.m.

8 biomes Yan et al.
[37]

Note: * GEOV1 based on SPOT VGT observations is available from 1999 to May 2014.

2.1. GEOV1

The GEOV1 LAI, fAPAR, and fCOVER products are delivered with a 10-day temporal sampling
and 1/112◦ (about 1 km at the equator) ground sampling distance, in a Plate Carrée projection from
December, 1998 to present. GEOV1 products were based on SPOT VEGETATION (SPOT VGT)
observations until the end of the mission in May 2014, and covered more than 15 years of data.
To provide continuity to the service at 1 km, the GEOV1 processing chain was adapted to the Project
for On-Board Autonomy-Vegetation (PROBA-V) mission [45], launched in May 2013 by ESA. One of
the main objectives of PROBA-V was to ensure the succession of the VEGETATION instruments
acting as “gap filler” between SPOT and Sentinel-3. Thus, since May 2014, the GEOV1 products
are based on PROBA-V observations, with spectral characteristics nearly identical to VEGETATION.
The GEOV1 retrieval methodology relies on neural networks trained to generate the “best estimates”
of LAI, fAPAR, and fCOVER obtained by fusing and scaling MODIS C5 [25] and CYCLOPES 3.1 [29,46]
satellite products to take advantage of their specific performances while limiting the situations where
they show deficiencies [31]. The input data is top of canopy directional normalized reflectance using
a kernel-driven BRDF model that are derived using almost the same CYCLOPES processing chain [46].
The algorithm provides instantaneous black-sky fAPAR value at around 10:15 a.m. solar time under
clear sky conditions, which is a close approximation of the daily integrated black-sky fAPAR value.
Note that conversely to MODIS and similarly to CYCLOPES, no biome classification is required to run
the GEOV1 algorithm, although GEOV1 products are impacted by the eight-types biome dependence
of MODIS C5 algorithm. GEOV1 products from both SPOT VGT and PROBA-V sensors are freely
distributed through the Global Land Service of the European Commission’s Copernicus program
(http://land.copernicus.eu/global).

GEOV1 products based on SPOT VGT data were validated and compared with similar products
following guidelines proposed by the CEOS LPV sub-group, showing improved performance as
compared to previous products [32]. The accuracy (RMSE) of GEOV1 fAPAR products against up-scaled
ground references available at OLIVE (On Line Validation Exercise) tool [42] hosted at the CEOS cal/val
portal (http://calvalportal.ceos.org/olive) was of 0.08 units [32]. The consistency between GEOV1
products based on PROBA-V observations and SPOT VGT was evaluated during the six months
overlap period [47]. The overall consistency achieved between SPOT VGT and PROBA-V GEOV1
fAPAR evaluated over the BELMANIP2.1 network of sites [42] in terms of RMSE was 0.03, better than
the GCOS requirements on accuracy, with no mean bias (−0.007) and overall correlations higher than
0.98. The preliminary accuracy assessment showed an RMSE of 0.11 with a slight positive bias of 0.05
mainly over cropland sites [47].

http://land.copernicus.eu/global
http://calvalportal.ceos.org/olive
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2.2. MODIS C5

Terra MODIS LAI and fAPAR (MOD15A2) Collection 5, available since 2000 from https://lpdaac.usgs.
gov/products/, is produced based on TERRA observations at 1 km spatial resolution and eight-day
step over a sinusoidal grid. The main algorithm is based on Look Up Tables (LUTs) simulated from
a three-dimensional RTM [25]. The MODIS red and NIR atmospherically corrected reflectances [48] and
the corresponding illumination-view geometry are used as input for the LUTs. The output is the mean
LAI and fAPAR computed over the set of acceptable LUT elements for which simulated and measured
MODIS surface reflectances are within specified uncertainties. When the main algorithm fails, a backup
solution based on LAI and fAPAR-NDVI relationships is used. In Collection 5, parameters of both
main and backup algorithms are defined for 8 vegetation types, and a new stochastic RTM was used to
better represent canopy structure and the spatial heterogeneity intrinsic to woody biomes.

Many validation and comparison studies with MODIS fAPAR products can be found in
the literature [5,36,49–52]. Several studies highlight the large differences shown between different
satellite based fAPAR products [34,35,39]. The main drawbacks observed in MODIS fAPAR C5 are its
low temporal stability and the systematic overestimation of fAPAR retrievals over sparsely vegetated
areas [32]. Camacho et al. [32] reported an overall accuracy (RMSE) of 0.11 using the same ground
reference data set than for evaluating SPOT VGT GEOV1 products.

2.3. MODIS C6

The MODIS LAI and fAPAR (MOD15A2H) Collection 6 (doi:10.5067/MODIS/MOD15A2H.006),
is provided at a frequency of eight days and 500 m spatial resolution in which the algorithm chooses
the best pixel available from all the acquisitions of the Terra sensor within the eight-day period.
MODIS LAI and fAPAR C6 uses the same retrieval algorithm and LUTs as C5 [37], but C6 benefited
from improved surface reflectances and biome type inputs at their 500 m version. The consistency
between C5 and C6 was evaluated [37] without finding spatial scale effects due to resolution changes,
with the RMSE between both versions of 0.091 fAPAR units with the same biome input. The accuracy
assessment performed over 45 fAPAR ground measurements showed an overestimation of both
C5 and C6 fAPAR products over sparsely-vegetated areas [38]. Comparisons with GEOV1 showed
similar spatial distributions at a global scale [38], and temporal comparisons for the 2001–2004 period
indicated that the products properly captured the seasonality of different biomes, except in evergreen
broadleaf forests.

2.4. Product Quality Flag

The three products under study provide Quality Flags (QF) information, and users are advised to
consult these layers when using them. In our study, three levels of quality have been defined (Table 2)
according to the QF information. Note that quality control for GEOV1 and MODIS (C5 and C6) products
was not identical because of different QF indicators. In line with previous studies [32,38,53], land pixels
contaminated by ‘snow’, ‘clouds’, ‘shadow’, ‘cirrus’, in the case of MODIS, and contaminated by ‘snow’
or ‘saturated’ in the case of GEOV1 were considered as poor quality. In the case of MODIS, high quality
retrievals correspond to the main algorithm, whereas the back-up algorithm is considered as useful
when no snow/ice or cirrus are detected, and the cloud state is clear or not defined. For GEOV1
‘high quality’ pixels correspond to pixels free of snow and non-saturated. For the ‘useful’ level of
quality, the same approach of ‘high quality’ was considered in terms of snow and saturation by
‘Suspect’ values.

https://lpdaac.usgs.gov/products/
https://lpdaac.usgs.gov/products/
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Table 2. Quality flag for the three products under study.

QF Layer High Quality Useful Poor Quality

GEOV1 QFLAG

‘No Suspect’;
Snow Status = ‘Clear’;
Input Status = ‘OK’;
fAPAR Status = ‘OK’

‘Suspect’;
Snow Status = ‘Clear’;
Input Status = ‘OK’;
fAPAR Status = ‘OK’

Snow Status = ‘Snow’;
Input Status = ‘Saturated or Invalid’;

fAPAR Status = ‘Out or range
or Invalid’

MODIS C5 &
MODIS C6

FaparLaiQC ‘Main Algorithm’;
Cloud State= ‘clear’

‘Back-up Algorithm’;
Cloud State= ‘clear’ or

‘not defined (assumed clear)’

‘Back-up Algorithm’;
Cloud State= ‘mixed’
or ‘significant clouds’

FparExtraQC

‘No snow/ice detected’; ‘No snow/ice detected’; ‘Snow/ice detected’;
‘No cirrus detected’, ‘No cirrus detected’; ‘Cirrus was detected’;

‘No clouds’; ‘No clouds’; ‘Clouds were detected’;
‘No cloud shadow detected’ ‘No cloud shadow detected’ ‘Cloud shadow detected’

3. Materials and Methods

3.1. Study Site

The experiment was carried out at the Collelongo-Selva Piana pure beech forest (Abruzzo region,
Central Italy, 41◦50′58”N, 13◦35′17”E, 1560 m elevation). The site is part of a wider forest area,
included in the external belt of the Abruzzo-Lazio-Molise National Park and its structure and
conditions are representative of Central Apennine beech forests [54]. The site is equipped with
a 28 m scaffold tower geared towards measuring ecosystem H2O and CO2 fluxes using the eddy
covariance technique, as previously described by other studies [55,56]. According to EUNIS (European
Nature Information System) habitat classification, the site is included into the Southern Italian beech
forests type. The vegetation is homogeneous and dominated by European beech (Fagus sylvatica L.)
within the area of approximately 1 km × 1 km around the flux tower. The understory is sparse,
patchy, and mostly formed by herbs (coverage less than 2%, height less than 50 cm). Patches of
mountain prairie are observed, which introduces spatial heterogeneity typically beyond 1 × 1 km.
The topography in that area is gently and variably sloped (with plain areas, hollows, and mountain
sides), with elevation ranging from 1500 to 1650 m. The climate is Mediterranean montane, with cool
to moderately warm summer and cold winters. The mean annual temperature and precipitation
measured at the site for the period 1996–2015 are 6.9 ◦C and 1116 mm; soil has a variable depth ranging
from 40 to 100 cm and is classified as humic soil [57]. In the area of the experimental site, plant density
is 740 trees·ha−1 (starting from trees with 1 cm diameter at 1.30 m), the basal area is 42.2 m2·ha−1 with
a mean diameter at breast height of 25.5 cm and a mean height of 20.7 m (data from the 2012 periodic
five-year stand survey). At the peak of the growing season, the Leaf Area Index (LAI) in 2014–2015
was 5.5–5.9 m2·m−2 [58]. Previous works [56,59,60] provide a detailed description of the site and of
the stand structure. The Collelongo-Selva Piana experimental site is currently part of the following
projects: LIFE+ Smart4Action, eLTER H2020, PRIN 2012 Nitrogen in Mediterranean Forest, and CNR
IBAF Ecology and Dynamics of Forest Systems. It is also part of international networks such as
LTER-Europe, Fluxnet, ICP-Forests, ICP-Integrated Monitoring, and the CONECOFOR program.

3.2. Temporal and Spatial Sampling

The study area used for satellite validation covered 5 km × 5 km and is centered at the flux
tower (41◦50′58”N, 13◦35′17”E). Different temporal and spatial sampling was performed depending
on the three different devices used in the experiment, two PAR sensors (Apogee and PASTIS; details in
the following section) and digital cameras for collecting hemispherical photographs (DHP). The ground
sampling was concentrated over a homogeneous area of approximately 1 km2 around the flux tower,
where 15 spatial units called Elementary Sampling Units (ESUs) were taken as references (Figure 1).
Each ESU is approximately 20 m × 20 m and was selected to cover the variability of the site around
the flux tower area. The center of each ESU was geo-located using a Global Positioning System (GPS).
ESU 1 (centered at the flux tower) was selected for an intensive PAR measurement sampling for its
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proximity to the reference above canopy sensors and thus equipped with Apogee-PAR sensors from
July to December 2014 and from May to December 2015 (Table 3). ESUs 1–9 were equipped with
PASTIS-PAR sensors from May to December 2015. All 15 ESUs were involved in two field campaigns
on 8 July and 25 September 2015 for the spatial characterization of vegetation variables with DHPs
(Figure 1). Manufacturer details are provided in Section 3.3.

Table 3. Specifications of ground data sampling in the study.

Name of the Sensor Spatial Sampling Temporal Sampling Description

Apogee-PAR ESU 1 (tower) July–December 2014
May–December 2015 (daily) 22 PAR sensors—Continuous measurements

PASTIS-PAR ESUs 1–9 May–December 2015 (daily) 10 data logger with 6 PAR sensors
each—Continuous measurements

Digital camera collecting Digital
Hemispheric Photographs (DHPs) ESUs 1-15 8 July 2015

25 September 2015 13 DHPs for each ESU
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3.3. Ground Measurements and Instruments

3.3.1. PAR Measurements from Apogee

Continuous PAR measurements of incident, transmitted, and reflected PAR were collected
according to the protocol for PAR measurements developed within the FP7 ÉCLAIRE Project
(http://www.eclaire-fp7.eu/). In total, 22 PAR sensors (SQ-110, Apogee Instruments, Logan, UT, USA)
were installed around the flux tower (800 m2) [61]. Specifically, 15 sensors pointing upward were
mounted below the canopy to monitor transmitted PAR through the canopy (PAR↓b ) and five sensors
pointing downward were mounted below the canopy to monitor reflected PAR by the soil (PAR↑b ).
At the top of the tower, two sensors were installed on a horizontal 2-m arm to measure incident
PAR above the canopy (PAR↓a ) and reflected PAR from the canopy (PAR↑a ), respectively. To maximize
the radiometric footprint, below-canopy PAR sensors pointing downward were installed on a 2 m
high pole while below-canopy PAR sensors pointing upward were installed on a 1 m high pole.
PAR measurements were acquired every 10 s and stored as 30-min averages as µmol m−2·s−1.

3.3.2. PAR Measurements from PASTIS

At ESUs 1–9, PASTIS device (PASTIS-PAR, INRA-Hyphen, Avignon, France) were installed
to continuously measure transmitted PAR through the canopy (PAR↓b ). In addition, one PASTIS
device was also installed above the flux tower at ESU 1 to measure incident PAR radiation above
the canopy (PAR↓a ).

Each PASTIS system consists in a data logger associated to six wired hemispherical quantum
sensors measuring instantaneous PAR signal in millivolts (http://www.hiphen-plant.com/products/
pastis_18.html) [62]. Below the canopy, the data logger was fixed at a labeled tree while the sensors
were installed at soil level. Each of the six sensors was mounted on a 30 cm long support bar to prevent
falling leaves and other litter from covering the quantum sensors while acquiring data.

PAR measurements were acquired every minute. PASTIS sensors measured downward radiation
both above and below the canopy and an intercalibration against Apogee sensors was performed in
order to combine Apogee and PASTIS measurements for fAPAR computation at the ESUs. Both PASTIS
and Apogee PAR continuous ground measurements were used to qualitatively assess the temporal
courses of the satellite products.

3.3.3. Gap Fraction Estimation from DHP

Two hemispherical digital photography (DHP) cameras were used for estimating fAPAR at
the study area: CANON EOS 6D with a SIGMA 8mm F3.5–EX DG and NIKON Coolpix 995-FCE8.
In order to accurately process the images, the optical center and the projection function of the optical
system were calculated for each camera [63]. At each ESU, 13 DHPs were taken pointing the camera
upward-looking. A measurement was acquired every 10 m along the path (black circles, Figure 2)
to cover the ESU area (20 m × 20 m), in agreement with the VALERI spatial sampling protocol
(http://w3.avignon.inra.fr/valeri).

DHP acquisition was processed using CAN-EYE software version 6.4 developed at EMMAH
Avignon (http://www6.paca.inra.fr/can-eye) for deriving biophysical variables (LAI, fAPAR,
fCOVER) from hemispherical photos. Since CAN-EYE is based on a RGB color classification of
the image to discriminate vegetation elements from the background (i.e., gaps), photos were acquired
with similar illumination conditions to limit the variation of color dynamics between images.
DHPs processing consisted of three steps: (1) image pre-processing aimed to remove undesired objects
(e.g., operator, sun glint) and ensure better visual discrimination between vegetation and background
adjusting image contrast; (2) assignment of the colors to each class (vegetation elements versus
background) after reducing the number of distinctive colors in order to easily manipulate the image;
and (3) realization of a binary image (background versus vegetation elements), using the classification
results [64].

http://www.eclaire-fp7.eu/
http://www.hiphen-plant.com/products/pastis_18.html
http://www.hiphen-plant.com/products/pastis_18.html
http://w3.avignon.inra.fr/valeri
http://www6.paca.inra.fr/can-eye
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Figure 2. Spatial sampling for DHPs collection at each ESU. Every black circle stands for a DHP
acquisition, while arrows indicate the path followed during the sampling at every ESU. PASTIS device
consist of a data logger (green empty circle) and six PAR sensors (red circles). The first DHP acquisition
is made at the PASTIS installation.

3.4. Calculation of Ground Canopy fAPAR

3.4.1. Estimation of fAPAR from Apogee (fAPARAPOGEE)

In this work, the Apogee sensors, given the set-up, the spatial coverage, and the measurements of
all fAPAR components (see Section 3.3.1), provided the reference fAPAR value at the tower site (ESU 1)
against which PASTIS and DHP measurements were compared. Having the four PAR contributions,
fAPAR from Apogee measurements (fAPARAPOGEE) was calculated as reported by Liang et al. [65]:

f APAR =
PAR↓a − PAR↓b − PAR↑a + PAR↑b

PAR↓a
, (1)

where PAR↓a is the incident PAR above the canopy, PAR↑a is the reflected PAR above the canopy, PAR↓b is
the transmitted PAR through the canopy, and PAR↑b is the reflected PAR by the soil [65]; all components
are hemispherical quantities. As temporal mismatching between in situ data and satellite observation
could be critical [66], we calculated fAPAR as averages from 10:00 a.m. to 11 a.m. to guarantee temporal
matching between ground data and the satellites overpass. For the purpose of validating fAPAR
products, only photosynthesizing materials (leaves, needles, or other green elements) should be
accounted for in the calculation (green fAPAR) [41]. Nevertheless, in homogeneous deciduous forests
where LAI reaches maximum values that remain stable during the vegetative season, the influence of
non-photosynthetically active vegetation (NPV) elements (such as trunks and branches) in the fraction
of absorbed PAR by the canopy is expected to be quite small as compared to the green elements.
For instance, Zhang et al. [67] showed that in the Harvard deciduous forest the contribution of NPV
to the fAPAR is lower than 0.1 in spring and summer time, whereas the fAPAR from green elements
reaches 0.85 in summer time. In line with this work, we assume that the largest impact of NPV elements
in our ground dataset occurred during the senescent period.
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3.4.2. Estimation of fAPAR from PASTIS (fAPARPASTIS)

fAPARPASTIS was computed using two sets of measurements in Equation (1): incident and reflected
PAR obtained from Apogee and transmitted PAR obtained from PASTIS (previously intercalibrated,
as reported in Section 3.3.2). The adapted equation was computed as follows:

f APARPASTIS =
PAR↓a APOGEE − PAR↓b PASTIS − PAR↑a APOGEE + PAR↑b APOGEE

PAR↓a APOGEE

, (2)

We used the same method to calculate f APARPASTIS at each of the nine ESUs equipped with
PASTIS sensors. It is worth noting that incident PAR↓aPASTIS was not used in Equation (2) since a long
data gap occurred due to battery loss. f APARPASTIS−ESU n stands for fAPAR computed at ESUn,
while f APARPASTIS−AVG stands for fAPAR computed averaging transmitted PAR (PAR↓b ) of ESUs 1–9.

3.4.3. Estimation of fAPAR from DHPs

Among other measurements related to canopy architecture (e.g., LAI), hemispherical photos allow
the computation of fAPAR by measuring the directional gap fraction [64,68]. In fact, as the photosynthetically
active radiation domain (PAR, 400–700 nm) is characterized by strong absorbing features of
the photosynthetic pigments [69], fAPAR is often assumed to be equal to fIPAR (Fraction of Intercepted
Photosynthetically Active Radiation) [26], and therefore is directly related to the gap fraction.
According to this assumption, CAN-EYE software proposes three outputs for fAPAR: the instantaneous
black-sky (or direct) fAPAR; the daily integrated black-sky fAPAR and the white-sky (or diffuse) fAPAR.
In our study, we selected the instantaneous black-sky fAPAR at 10:00 a.m. ( f APARBS

10h) for consistency
with satellite products and we refer to it as fAPARDHP. According to CAN-EYE output variable
description [70], fAPARDHP was computed using the following Equation (3):

f APARDHP = f APARBS
10h = 1− P0(θS)|S=10h, (3)

where P0 represents the measured gap fraction on each viewing zenith angle θ and θS is the sun zenith
angle at 10:00 local solar time [70].

3.5. Validation Approach

To perform a direct validation of medium-resolution satellite products, we need to account
for the differences in scale between the footprints of the ground measurements and the satellite
sensor. For this reason we followed the bottom-up approach proposed by the CEOS LPV sub-group
summarized in Figure 3. This approach consists of using high-resolution imagery and robust regression
methods to upscale the ground measurements from ESU values to the site level. The resulting
ground-based map can then be aggregated to the spatial resolution of the satellite product to be
validated. The first step was deriving an empirical transfer function (TF) that establishes a relationship
between the canopy fAPARDHP values (the only measurement available at all 15 ESUs), plus additional
control values obtained in prairie and over bare areas, and the multispectral radiometric values from
the high-resolution Landsat-8 imagery [71] (Section 3.5.1). The ground-based high-resolution maps,
derived from the selected transfer function, were then remapped to the spatial support of GEOV1 and
MODIS products (i.e., 1 km and 500 m), taking into account the equivalent Point Spread Function
(PSF) of the satellite sensors [43] (Section 3.5.2). Then, the aggregated maps of canopy fAPAR were
compared to the moderate-resolution green fAPAR satellite products under the assumption that
canopy fAPAR is very close (differences lower than 10%) to green fAPAR during the peak season.
Finally, validation statistics were computed for the accuracy assessment (Section 3.5.3).
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Figure 3. Bottom-up approach for the upscaling process used in the present study. 13 DHPs
measurements were collected at every ESU and 15 ESUs were sampled over the site. Radiometric values
over a decametric image (Landsat-8) were extracted over the ESUs and used to develop empirical
transfer functions for upscaling the ESU ground measurements. The resulting high-resolution map
was aggregated to the spatial resolution of the satellite product to be validated, taking into account
the equivalent Point Spread Function (PSF) of the satellite sensors. A correlation analysis was performed
to accomplish the accuracy assessment.

3.5.1. Empirical Transfer Function

For the up-scaling of the ground measurements at the site level, we need to establish an empirical
relationship (transfer function) between the canopy fAPAR ground values and concomitant radiometric
values of a high-resolution imagery. For this purpose, Landsat-8 top-of the canopy reflectance images
of 30 m spatial resolution were selected. Landsat-8 images are freely available at the USGS earth
explorer portal (http://earthexplorer.usgs.gov/). The acquisition date was 10 July and 27 August 2015,
for the first and second campaign, respectively. For the second campaign, the date of acquisition is
around one month earlier than the ground sampling, due to cloud contamination of concomitant
Landsat-8 acquisitions for the September campaign. However, as ground measurements showed high
stability from July to the end of September, we also assumed stability in the radiometric signal of
the image during this period.

A multivariate ordinary least square (OLS) regression was used for modeling the relationship
between fAPARDHP (our response variable) at the ESU level and the radiometric information of
the Landsat-8 image (predictor variable) [71]. The multivariate OLS function proposed in this work uses
an iteratively re-weighted least squares (IRLS) algorithm in order to minimize the influence of outliers
as proposed by Martinez et al. [71]. This method allows for combining the information provided by
different bands and evaluating the band combination that exhibits the lowest error. This modeling
approach has been recently used for upscaling biophysical variables such as LAI, fAPAR and fCOVER
over a network of cropland sites in the ImagineS project (fp7-imagines.eu/). The basis is that outliers
in the sampling distribution will result in biased estimates of model parameters. The IRLS algorithm
includes an additional scale factor (i.e., weight) in order to adjust the amount of influence each response
value has on the model estimates [71]. The following bands were considered: B3 (green: 0.53–0.59 µm),
B4 (red: 0.64–0.67 µm), B5 (NIR: 0.85–0.88 µm), B6 (SWIR1: 1.58–1.65 µm). Due to the well-known
linear or approximately linear relationship between fAPAR and NDVI [19,72–76], we also used B4 and

http://earthexplorer.usgs.gov/
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B5 to compute NDVI [77] and additionally use it as a predictor variable (Equation (4)). In addition
to the ESU measurements over the forest, additional values over bare areas and prairie were used to
better constrain the model for low fAPAR values. Control points included four bare areas that were
visually selected with GoogleEarth® around the study area, with NDVI ranging between 0.06 and 0.17,
and where fAPAR was set to 0. Furthermore, an additional ESU located over a prairie area with DHP
measurement was used to calibrate the empirical transfer function in order to have intermediate values of
fAPAR. The obtained value with CAN-EYE for the black-sky fAPAR at 10 h over the prairie ESU was 0.73.

In order to assess the model performance and evaluate the optimal predictor three different errors
were computed: the root mean square error (RMSE), the weighted RMSE (RW, using the weights
attributed to each ESU) and the cross-validation RMSE (RC, leave-one-out method). RMSE and RW
provides an estimate of the mean prediction error of the model considering all the observations,
whereas RC provides a more reliable model performance since it gives an indication of how well
the function will predict data not included in the data set used to derive the predictor [78]. The NDVI
was chosen as input for the transfer function because it shows lower RC errors than other band
combinations for the first, the second and the combined campaigns [79]. Table 4 shows the errors
(RMSE, RW, RC) obtained for the selected transfer function using the NDVI for the first and the second
campaign, as well as when the data of the two campaigns were pooled together. It can be noticed that
all the different cases show very low RMSE errors, below GCOS requirement on accuracy [44], and very
high correlation coefficients (>0.99) with almost no mean bias (Table 4). The higher errors obtained
for the second campaign could be partly attributed to the period between the collection of ground
measurements (end of September) and the imagery acquisition (end of August). Finally, we selected
the transfer function based on the two ground campaigns in order to reduce errors of the second
campaign, with a final cross-validation RMSE of 0.049.

The empirical relationship selected for our site is the following linear relationship based on NDVI
computed from Landsat red (B4) and NIR (B5) bands:

f APAR = −0.1799+ 1.2258×
(

ρNIR − ρred
ρNIR + ρred

)
(4)

where ρNIR and ρred is the reflectance in the near infrared and red, respectively.
The high-resolution ground-based maps over the site are shown in Section 4.2.

Table 4. Performance metrics of empirical transfer function. Positive bias indicates overestimation of
the transfer function estimates. RC stands for cross-validated RMSE; RW stands for weighted RMSE.

Field Campaigns R2 Bias RMSE RC RW

8 July 2015 0.999 −0.001 0.015 0.018 0.015
25 September 2015 0.995 −0.009 0.041 0.063 0.062

Both campaigns 0.995 −0.003 0.03 0.049 0.025

Finally, the convex hull technique described by Martinez et al. [71] was applied to characterize
the representativeness of ESUs and the reliability of the empirical transfer function. This technique will
allow us to derive a quality assessment image to highlight areas on the fAPAR maps with higher or
lower confidence of the estimates due to the model errors and sampling strategy. Briefly, this method
defines a convex region delimited by the data set containing the spectral information of the in-situ
measurements and can be applied using multiple spectral bands combinations in agreement with our
multivariate OLS approach for selecting the optimal band combination for the transfer function.
This region delimits the domain where the transfer function behaves as interpolator (namely
‘strict convex hull’). Conversely, outside this domain, the transfer function behaves as extrapolator.
However, the convex hull could be slightly expanded by ±5% of reflectance (namely ‘large convex
hull’) to allow pixels very close to the strict convex hull to be used since they are expected to
provide reasonable results. Hence, this test was carried out using the red (B4) and NIR (B5) bands of
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the Landsat-8 images used for the NDVI computation. In this case the hull is an area on the red-NIR
plane, the spatial distribution for each of the three regions defined is provided in the quality flag
images presented in Section 4.2.

3.5.2. Spatial Aggregation

The comparison between the ground-based maps with moderate-resolution products requires
a consistent statistical support area. This apparently simple problem should be considered carefully if
all uncertainties associated to satellite products are to be recognized [43]. Firstly, the satellite products
and the high-resolution maps were projected to the same coordinate system. The Plate Carrée projection
of GEOV1 product was used for the comparison at both 1 km and 500 m. A spatial window of
5 km × 5 km centered over the tower was selected for the comparison. Secondly, the high-resolution
map was aggregated to the spatial resolution of the satellite product according to the effective point
spread function (PSF) of the satellite product, which improves the performance of the evaluation as
compared to ordinary average [80]. The equivalent PSF results from a number of steps that need to be
considered. The instrument PSF depends on several components: the electronic PSF, the detector PSF,
the image motion PSF, and the optical PSF [81]. According to Duveiller et al. [82], electronic and image
motion PSFs can be neglected. The PSF for the MODIS and PROBA-V instruments can be approximated
by the convolution of a Gaussian function characterizing the optical PSF. The ground-based map
equivalent PSF was computed by maximizing the correlation coefficient between the low-resolution
(LR) product (i.e., GEOV1, MODIS C5 and C6) and the corresponding higher resolution (HR) image.
During the optimization process of the PSF, we used an iterative approach in which we combined
the extension of the pixel size and the PSF characterized by the Full Width at Maximum (FWHM) of
the two Gaussian functions in both the x and y directions. The extension of the pixel was combined in
steps of 30 m (HR) up to the pixel size of the corresponding LR product.

3.5.3. Correlation Analysis

The accuracy assessment between the ground-based maps and the satellite products to be
validated was performed at the resolution of the satellite product to evaluate on a pixel by pixel basis.
The comparison was performed using the closest product date to the field campaign. The accuracy
was quantified by several validation metrics reporting the goodness of fit between the products.
Total measurement uncertainty (i.e., root mean square error, RMSE) includes systematic measurement
error (i.e., bias) and random measurement error (i.e., standard deviation of bias). RMSE corresponds to
the accuracy as there is only one product estimate for each mapping unit [83]. RMSE is recommended
as the overall performance statistic. Linear model fits were also used to quantify the goodness of fit.
For this purpose, Major Axis Regression (MAR) was computed instead of OLS because it is specifically
formulated to handle error in both the x and y variables [84]. Finally, the number of pixels within the GCOS
requirements was quantified. Table 5 summarizes the uncertainty metrics associated with the scatter-plots.

Table 5. Uncertainty metrics for product validation.

Gaussian Statistics Comment

N: Number of samples Indicative of the power of the validation

RMSE: Root Mean Square Error Indicates the Accuracy (Total Error)
Relative values between the average of x and y were also computed

B: Mean Bias
Mean difference between pair of values (y–x)
Indicative of accuracy and possible offset
Relative values between the average of x and y were also computed

S: Standard deviation Indicates precision

R2: Correlation coefficient.
Indicates descriptive power of the linear accuracy test
Pearson coefficient was used

Major Axis Regression (slope, offset) Indicates possible bias

% GCOS requirements Percentage of pixels matching the GCOS requirements
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4. Results

4.1. Consistency of Ground fAPAR Estimates

We investigated the temporal course of PASTIS sensors by comparing fAPARPASTIS-ESU1

with fAPARAPOGEE at ESU1 during 2015. Figure 4 shows synchronism between fAPARAPOGEE,
which represented our benchmark, and fAPARPASTIS-ESU1. At the end of April (DOY 110–120),
fAPARAPOGEE values ranged between 0.55 and 0.65. Starting from the last ten days of May (DOY 139),
until the first ten days of October (DOY 283), fAPARAPOGEE presented fairly constant values of 0.93–0.96
during the whole period. During this phase, both the average of fAPARAPOGEE and fAPARPASTIS was
0.94, with a standard deviation (σ) of 0.007 for fAPARAPOGEE and 0.010 for fAPARPASTIS. The longest
gap in our dataset occurred from DOY 210 to 230, when values were presumably stable, as included
in the peak season. fAPARAPOGEE values started to decline in mid-October, decreasing steadily until
the end of the year, except for the first two weeks of November, when values appeared constant
around 0.78–0.79. While the evolution between fAPARAPOGEE and fAPARPASTIS was in agreement
during the peak season, both fAPAR values fluctuated more evidently during the senescence phase
(DOY 266–280). Peak value detected by both techniques was 0.96 associated to DOY 198 for Apogee
sensors and to DOY 194 for PASTIS sensors. fAPAR values measured with PASTIS sensors strongly
correlated with those measured with Apogee sensor (R2 = 0.84; RMSE = 0.01), although a bigger
fluctuation was observed in the senescence phase (fAPAR < 0.9, Figure 5), as formerly evidenced by
the seasonal patterns (Figure 4).

Data from PASTIS and DHP sensors at the different ESUs were compared for the two DHP
sampling campaigns. fAPARDHP ranged from 0.92 to 0.96 for the campaign in July, while fAPARPASTIS

presented values between 0.95 and 0.96 (Figure 6a). Generally, fAPARPASTIS was higher than
fAPARDHP and in agreement with it, except for ESU 5–8. During September campaign, fAPARDHP

resulted generally lower than fAPARPASTIS (Figure 6b). While fAPARPASTIS varied between 0.94
and 0.96, fAPARDHP spanned from 0.89 to 0.96. Analyzing the standard deviation (error bars) of
the measurements, it appeared that fAPARPASTIS had less variability among the single replicates
compared to fAPARDHP during both campaigns (Figure 6). Nevertheless, fAPAR estimated from DHP
based on gap fraction was consistent with fAPARPASTIS within the range of accuracy required for
satellite products (max[5%, 10%]).
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4.2. High-Resolution Ground-Based Maps

High-resolution ground-based fAPAR maps were computed with a single transfer function for
both dates (Equation (4)). Figure 7a shows the spatial distribution of the retrievals over the study
area, which displayed homogeneous areas of dense vegetation with high fAPAR values and some
patches of low photosynthetic activity that correspond to montane prairie and/or bare rock/soil areas.
Mean fAPAR value over 3-km × 3-km centered at the tower was 0.85 (σ = 0.13) for the July campaign
and 0.85 (σ = 0.14) for the September campaign. The scatter-plot between ground observations (DHP)
and the corresponding transfer function estimate showed the good agreement achieved (RMSE = 0.03)
with a slight over-estimation for bare areas’ control points of less than 0.05 units, and some scattering for
ESUs in the second campaign (Figure 8). The only ESU over prairie shows good agreement very close to
the 1:1 line. The stability of fAPAR values between July and September was supported by net ecosystem
exchange (NEE) values, which also presented a limited difference between the two dates (NEE between
10 a.m. and 11 a.m. equal to −16.9 and −14.1 for 8 July and 25 September 2015, respectively).

The quality assessment images (Figure 7b) derived from the convex hull technique are informative
of the reliability of the estimates, showing higher reliability for those pixels inside of the ‘strict’ (in
clear blue) and ‘large’ (in dark blue) convex hull. Blue pixels are mainly located around the tower
site where the sampling was performed. The ‘strict’ and ‘large’ convex-hulls reached 79% and 65% of
the pixels for the first and second field campaign, respectively. There is a quite consistent red area
at the top and the bottom of the image that corresponds to the pixels where the transfer function
behaves as extrapolator. This red area corresponds to areas with different topography or to montane
prairie areas which were not included in our spatial sampling scheme. Note that the convex-hull test
provides information on the representativeness of the sampling, but does not necessarily imply poor
extrapolation capabilities of the transfer function, mainly on the same land cover type.
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Figure 7. (a) Ground-based high-resolution maps (5 km × 5 km) of instantaneous black-sky canopy
fAPAR at 10:00 a.m. over the Collelongo site (Italy); (b) Convex Hull test over 5 km × 5 km: clear
and dark blue correspond to the pixels belonging to the ‘strict’ and ‘large’ convex hulls, respectively.
Red corresponds to the pixels for which the transfer function behaves as an extrapolator. Left: First
field campaign (8 July 2015). Right: Second field campaign (25 September 2015).
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During the peak season for fAPAR GEOV1 product (Figure 9a), the number of ‘high quality’ 
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Considering also the ‘useful’ level of quality, the percentage achieved 100% for the whole peak 
season except for the first date (DOY = 113) with 24% of pixels classified as ‘Poor quality’. Note that 
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products. 
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9b) and C6 (Figure 9c) provided the highest level of quality corresponding to main algorithm 
retrievals. The reason for triggering the backup algorithm is not specified in the quality flag. A larger 
fraction of pixels was classified as ‘Useful’ in MODIS C6 as compared to C5. This can be explained 
by the most precise resolution of the former, which is more accurate in detecting small clouds or 
shadows. Note that both MODIS versions did not present gaps over this area of 5 km × 5 km during 
the peak season, providing retrievals within the valid fAPAR range. 

 

Figure 8. Scatter-plot of ground-based map data (fAPAR-TF) vs. ground estimates (fAPARDHP).
Filled blue dots: Weight > 0.7. Empty green dots: 0 < Weight < 0.7. Grey crosses: outliers. First field
campaign on 8 July 2015 and second field campaign on 25 September 2015. Number of samples
(N), Major Axis Regression (M.A.R.), correlation (R2 value), RMSE, bias (B), standard deviation (S),
and percentage of values matching the GCOS requirements (%GCOS) are displayed. Dashed lines
correspond to the 1:1 line and GCOS uncertainty levels; the red continuous line corresponds to
the M.A.R.

4.3. Validation of Satellite fAPAR Products

4.3.1. Product Quality Flag Analysis

We investigated the temporal courses of the QF information of GEOV1, MODIS C5, and MODIS C6
(Table 2) averaged over the 5 km × 5 km study area during the peak season (DOYs 113–276) in 2015.

During the peak season for fAPAR GEOV1 product (Figure 9a), the number of ‘high quality’
pixels was highly variable, with values falling between 8% (DOY = 184) and 80% (DOY = 276).
Considering also the ‘useful’ level of quality, the percentage achieved 100% for the whole peak season
except for the first date (DOY = 113) with 24% of pixels classified as ‘Poor quality’. Note that in this case
where GEOV1 classifies ‘Poor Quality’ pixels, no valid or filled data was provided for the products.

On the other hand, for MODIS (C5 and C6) products, the ‘high’-quality pixels correspond to ‘Main
algorithm’ and pixels free of snow, clouds, shadow and cirrus. The ‘useful’ level of quality considers
the ‘Backup algorithm’ with non-contaminated input data whereas the ‘poor quality’ considers ‘Backup
algorithm’ with contaminated input data. In only a few cases MODIS C5 (Figure 9b) and C6 (Figure 9c)
provided the highest level of quality corresponding to main algorithm retrievals. The reason for
triggering the backup algorithm is not specified in the quality flag. A larger fraction of pixels was
classified as ‘Useful’ in MODIS C6 as compared to C5. This can be explained by the most precise
resolution of the former, which is more accurate in detecting small clouds or shadows. Note that
both MODIS versions did not present gaps over this area of 5 km × 5 km during the peak season,
providing retrievals within the valid fAPAR range.
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(total) fAPAR. The observed differences (about 0.1 units) are similar to the contribution of NPV 
elements to the canopy fAPAR reported by Zhang et al. [67] at the Harvard forest in summer. 
However, other uncertainties are present and these discrepancies may be partly attributed to the 
different footprints of satellite pixel (1 km) as compared to ground data (observations at the station 
level). Regarding both MODIS fAPAR products, similar magnitude to ground total fAPAR during 
the peak season were found. In line with previous studies [32,39], noisy temporal retrievals were 
found for MODIS products over forest areas, with variations of ±0.1 fAPAR units.  

Figure 9. Quality layer information averaged over the 5 km × 5 km study area for fAPAR (a) PROBA-V
GEOV1; (b) MODIS C5; and (c) MODIS C6 over the peak season in 2015 (DOY = Day of Year).

4.3.2. Temporal Consistency

The temporal variations of the three satellite products under study was evaluated over ESU 1,
located at the Collelongo flux tower, where continuous fAPAR measurements were acquired (Figure 10)
during the 2014–2015 period. Figure 10 displayed ground and satellite acquisitions at daily temporal
frequency during the stable season (from the end of May till the end of September) and during
the vegetation decrease season (from early October onwards). The initial phase of the growing season
was not captured by ground measurements in either of the two years.

During the stable vegetative season, PROBA-V GEOV1 fAPAR product provided very stable
temporal trajectories, in line with ground acquisitions. Regarding the magnitude of the satellite
retrievals negative bias (PROBA-V GEOV1 green fAPAR < ground canopy fAPAR) was observed,
that could be partly explained due to the different definition between satellite (green) and ground
(total) fAPAR. The observed differences (about 0.1 units) are similar to the contribution of NPV
elements to the canopy fAPAR reported by Zhang et al. [67] at the Harvard forest in summer.
However, other uncertainties are present and these discrepancies may be partly attributed to
the different footprints of satellite pixel (1 km) as compared to ground data (observations at the station
level). Regarding both MODIS fAPAR products, similar magnitude to ground total fAPAR during
the peak season were found. In line with previous studies [32,39], noisy temporal retrievals were
found for MODIS products over forest areas, with variations of ±0.1 fAPAR units.
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Figure 10. Temporal trends of green fAPAR from GEOV1, MODIS C5, and MODIS C6 satellite products
over Collelongo flux tower (ESU 1), and continuous ground values of canopy fAPARAPOGEE and
fAPARPASTIS-AVG. Note that only pixels classified as ‘High Quality’ and ‘Useful’ according to Table 2
are displayed.

4.3.3. Accuracy Assessment

Figure 11 shows the scatter-plots between different satellite products and ground-based
high-resolution maps. The validation metrics are provided in Table 6 considering all data points
or only high-quality and useful pixels.

PROBA-V GEOV1 green fAPAR product showed the lowest RMSE of 0.04 with low negative bias
(−2.6%) mostly observed for the highest values regarding canopy fAPAR data. Almost all the points
(98%) lay within the GCOS requirements on accuracy (dashed lines in Figure 11). On the other hand,
similar accuracy was obtained for MODIS C5 and C6 products, with RMSE of 0.05 and 0.06 respectively,
considering all pixels, almost no mean bias, and a percentage of pixels within the GCOS requirements
of 90% and 88%, respectively. The slightly lower accuracy was expected due to the lower precision
(i.e., higher fluctuations) previously observed in MODIS products. The finer spatial resolution of
MODIS C6 (500 m) as compared to MODIS C5 (1 km) had only a minor impact on accuracy. In terms
of the major axis regression (MAR) lineal model, GEOV1 product has slight better performance as
compared to MODIS C5 and C6, with low offset and slope closer to 1. MODIS C6 and C5 provides
good match for highest values but shows a tendency to provide lower fAPAR retrievals for the lower
values. Note that 100% of GEOV1 were classified as ‘high quality’ or ‘useful’ around the 5 km × 5 km
study area whereas in case of MODIS, only 40% of pixels were classified as ‘useful’ for C5 and 56.5%
for C6, but in none of the cases the main radiative transfer algorithm was used. The validation metrics
were very similar when considering all pixels or only high quality and useful pixels, which indicates
that in this case the MODIS back-up algorithm based on NDVI performs quite well even if the quality
flag informed on cirrus, cloud, or cloud shadow detected.

Table 6. Performance metrics of each green fAPAR satellite product versus ground-based canopy
fAPAR maps. For RMSE and Bias (negative value means underestimation of the satellite product and
vice versa), the relative values are displayed in brackets.

PROBA-V
GEOV1

MODIS C5
(All Points)

MODIS C5 (High
Quality and Useful)

MODIS C6
(All Points)

MODIS C6 (High
Quality and Useful)

N 50 50 20 200 113
RMSE 0.04 (4.2%) 0.05 (5.7%) 0.06 (6.7%) 0.06 (6.5%) 0.06 (6.5%)

R2 0.63 0.6 0.63 0.46 0.41
Bias −0.02 (2.6%) −0.001 (0.2%) 0.005 (0.6%) 0.003 (0.3%) 0.003 (0.3%)

S 0.03 0.05 0.06 0.06 0.06
Offset (MAR) 0.011 −0.21 −0.23 −0.21 −0.23
Slope (MAR) 0.86 1.25 1.26 1.25 1.25

% GCOS 98 90 85 88 88



Remote Sens. 2017, 9, 126 20 of 28
Remote Sens. 2017, 9, 126  20 of 28 

 

(a) (b)

(c)

Figure 11. Direct validation results: comparison of GEOV1 (a), MODIS C5 (b), and MODIS C6 (c) 
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Table 2. Number of samples (N), Major Axis Regression (M.A.R.), correlation (R2 value), RMSE, bias 
(B), standard deviation (S), and percentage of values matching the GCOS requirements (%GCOS) are 
displayed. Dashed lines correspond to the 1:1 line and GCOS uncertainty levels; the red continuous 
line corresponds to the M.A.R. 
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Seasonal dynamics of different ground fAPAR were compared to check their consistency. First, 
we compared fAPARAPOGEE and fAPARPASTIS at ESU 1 (R2 = 0.84; RMSE = 0.01), which are the 
continuous datasets available at the Collelongo site. In general, despite considerable gaps that 
hindered the green-up observation, it was possible to evaluate the temporal evolution from May to 
November. This is also confirmed by the good agreement between the seasonal maximum values of 
fAPAR which are only shifted by four days (DOY 198 for Apogee and DOY 194 for PASTIS). 
Recently, PASTIS sensors were also used to collect continuous ground measurements mainly in 
croplands and grasslands [85]. Although a few studies [85,86] consider PASTIS performance for 
tracking seasonality over crop sites, we are not aware of any study checking PASTIS performance in 
a deciduous forest site. Our study reveals that fAPARPASTIS appropriately followed the seasonal 
trends depicted by fAPARAPOGEE. Fluctuations in fAPAR values within DOY 266 and 280 were due to 
falling leaves, senescence, and gaps that can lead to more variable averages compared to the fully 
leafy season (Figure 4). In our formulation of fAPARPASTIS, we used PASTIS sensors just to calculate 

Figure 11. Direct validation results: comparison of GEOV1 (a); MODIS C5 (b); and MODIS C6
(c) fAPAR products with the fAPAR ground-based maps at the each satellite product resolution
(1 km for both GEOV1 and MODIS C5, and 500 m for MODIS C6). Filled symbols correspond to
‘high-quality’ and ‘useful’ pixels, non-filled symbols correspond to ‘Poor quality’ pixels according
to Table 2. Number of samples (N), Major Axis Regression (M.A.R.), correlation (R2 value), RMSE,
bias (B), standard deviation (S), and percentage of values matching the GCOS requirements (%GCOS)
are displayed. Dashed lines correspond to the 1:1 line and GCOS uncertainty levels; the red continuous
line corresponds to the M.A.R.

5. Discussion

5.1. Consistency of Ground fAPAR Estimates

Seasonal dynamics of different ground fAPAR were compared to check their consistency.
First, we compared fAPARAPOGEE and fAPARPASTIS at ESU 1 (R2 = 0.84; RMSE = 0.01), which are
the continuous datasets available at the Collelongo site. In general, despite considerable gaps that
hindered the green-up observation, it was possible to evaluate the temporal evolution from May to
November. This is also confirmed by the good agreement between the seasonal maximum values
of fAPAR which are only shifted by four days (DOY 198 for Apogee and DOY 194 for PASTIS).
Recently, PASTIS sensors were also used to collect continuous ground measurements mainly in
croplands and grasslands [85]. Although a few studies [85,86] consider PASTIS performance for
tracking seasonality over crop sites, we are not aware of any study checking PASTIS performance
in a deciduous forest site. Our study reveals that fAPARPASTIS appropriately followed the seasonal
trends depicted by fAPARAPOGEE. Fluctuations in fAPAR values within DOY 266 and 280 were due
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to falling leaves, senescence, and gaps that can lead to more variable averages compared to the fully
leafy season (Figure 4). In our formulation of fAPARPASTIS, we used PASTIS sensors just to calculate
PAR transmitted through the canopy at the different ESUs, while other PAR components (incident,
reflected by the canopy and reflected by the soil) were computed from Apogee sensors at ESU 1.
Congruent with the results at ESU 1 (Figure 4), we believe that one PASTIS system made up of
six quantum sensors spatially distributed under a dense canopy cover, such as in our forest, can be
used to monitor transmittance as, especially in the peak season, it gives results in agreement with
the 15 Apogee sensors measuring below canopy transmittance.

Next, fAPARPASTIS and fAPARDHP at the different ESUs were compared for the two DHP
sampling campaigns. DHP is recognized as one of the most robust techniques for studying canopy
transmittance [87] and has been widely used both in forests [88,89] and rangelands/croplands [90,91].
The measurements presented in this study indicate a homogeneous canopy structure for Collelongo
forest site within 1 km × 1 km of ground sampling area, with stable values for fAPARPASTIS over
the ESUs and more varying values for fAPARDHP (Figure 6). This slight dissimilarity could be
primarily attributed to three reasons: (1) different retrieval approach and definition; (2) different
sampling strategy (Figure 2) and spectral range; and (3) the classification errors during image
processing (required to compute gap fraction), which could be the main source of variability in
DHP processing as it is partly subjective (depending on the operator) [68,89]. In general, as highlighted
by Majasalmi et al. [40], few studies have accurate ground truth measurements in forest ecosystems.
Regarding the scarcity of ground reference data, we found that, for example, in the context of the On
Line Interactive Validation Exercise (OLIVE) platform, no ground fAPAR reference data are available in
Italy and only one site outside Europe is available for deciduous broadleaf forest within the 113 DIRECT
sites dedicated to the validation of global biophysical products [42]. As Fagus sylvatica is one of
the major forest trees in Europe [92], our ground reference data results are relevant in the context of
validation of satellite products in this kind of ecosystem. In our work, radiometric values of decametric
images (Landsat-8) were extracted over the ESUs and used to develop empirical transfer functions for
upscaling the ground measurements. As noted by Cohen et al. [93], the selection of the optimal transfer
function is site specific. Our empirical transfer function has a linear relationship with the NDVI,
in agreement with other works [19,20,76], and has been calibrated using the maximum fAPAR values
collected in the forest and minimum values of identified bare soils. This linear relationship also shows
good results for the one control point of the mountain prairie, which seems to confirm the validity
of the empirical function over prairie areas. However, one control point is not enough to verify
the validity of the transfer function over mountain prairie and some uncertainties remain over these
small areas.

5.2. Accuracy Assessment

Previous to the accuracy assessment of the satellite products, the information of the quality flag
was analyzed. GEOV1 provided in most of the cases high-quality or useful retrievals, according to
Table 2. However, MODIS C5 and C6 presented a very low number of best-quality retrievals in this
mountain area. The main algorithm failed in almost all of the pixels and dates examined. In 90% of
the cases where the backup algorithm is applied, the quality flag indicates that the main algorithm
failed due to problems other than geometry. No cirrus, snow, or clouds were reported over useful
retrievals (with backup algorithm). Thus, the main reason for the MODIS algorithm to use the backup
algorithm remains unknown. We investigated the MODIS land cover classification, which reported
a large fraction of pixels (55%) misclassified as broadleaf crops in the study area, and only 37% of
the samples classified as deciduous or mixed forest. However, this misclassification does not seem
not to be related to the use of the backup algorithm. In summary, the analysis of the quality flag
information reveals the difficulty MODIS C5 and C6 have in triggering the main algorithm over
a mountain site with gentle slopes. Hence, our validation results apply mostly to the MODIS backup
algorithm, which is based on NDVI–fAPAR relationships for each main biome [94].
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Seasonal variations of the satellite products have been compared to the Apogee and PASTIS
ground measurements. The three satellite products displayed a rapid increase at the start of the season
as observed in other deciduous forest sites [32]. In addition, slightly smoother variations were observed
in GEOV1 due to its larger compositing period. The decline of the vegetation season started earlier for
satellite products as compared to ground acquisitions, which was mainly observed in 2014. This can
be partly explained by the different temporal composition of satellite products, but also due to the fact
that satellite products are defined as sensitive to photosynthetically active elements whereas ground
devices are measuring total canopy fAPAR, and the contribution of NPV elements is significant during
the fall [67]. Small changes in the concentration of chlorophyll pigments at the end of the season could
have a stronger impact on the satellite products designed to be sensitive to this absorption band than
on the ground fAPAR, where the absorption of PAR in green-to-yellow leaves varies in a smooth way,
as observed in Figure 10. This result shows that satellite fAPAR products are related to green elements
rather than to the total fAPAR canopy.

Accuracy assessment results shows a good agreement with ground-based canopy fAPAR values
for the three satellite products (GEOV1, MODIS C5, MODIS C6) with more than 85% of the samples
within GCOS requirement on accuracy, and up to 98% of the samples in the case of GEOV1. The good
match for highest values confirms the ability of the satellite products under study to retrieve very
high fAPAR values. The largest values obtained for GEOV1 (around 0.9) are slightly lower than
those of the ground-based measurements (around 0.95), whereas MODIS C5 and C6 reached similarly
larger values than ground-based maps with the backup algorithm. The ground measurement is,
however, a measure of the total canopy fAPAR. A limitation of this validation exercise is that we did
not decouple green fAPAR (the quantity corresponding to satellite products) from total canopy fAPAR
in ground measurements. Nevertheless, the relative contribution of NPV elements to the canopy
fAPAR is expected to be less than 0.1 during the peak season [67]. Thus, the uncertainty related to
the NPV elements is around 10%. Green fAPAR ground measurements may be 10% lower than total
canopy. This difference is observed between GEOV1 values and canopy values at the ESU1 (Figure 10).
Also, in the scatter-plots, we can observe for the highest values than GEOV1 shows lower maximum
values, as expected. MODIS, however, is noisier and provides retrievals of similar magnitude to
canopy fAPAR for maximum values. Even with this uncertainty about NPV contribution to the canopy
fAPAR, and other uncertainties regarding ground measurement, the upscaling process, and match-ups,
our validation results for this complex, montane, beech forest, and prairie site are encouraging for
the three satellite products. Our results demonstrate that in a large number of GEOV1 and MODIS C5
and C6 fAPAR retrievals, GCOS requirements are met.

6. Conclusions

In this study PROBA-V GEOV1 (1 km), MODIS C5 (1 km) and MODIS C6 (500 m) green fAPAR
satellite products were validated against ground references at a broadleaf deciduous forest site in Italy.
The ground measurements were collected using Apogee PAR sensors, PASTIS-PAR sensors, and digital
hemispherical photographs (DHPs). The accuracy assessment exercise was successfully carried out
using high-resolution imagery and robust regression methods to upscale the ground canopy fAPAR
measurements from ESU values to the site level.

A good consistency among the three ground devices was found. PASTIS-PAR sensors were
found reliable for monitoring the canopy transmittance, showing very good agreement with Apogee
(RMSE = 0.01). fAPARDHP estimates were also found to be reliable and consistent with PASTIS,
with absolute differences typically lower than 0.03, making this device particularly suitable for
experimental campaigns over forest sites with no permanent instrumentation. To our knowledge,
this is the first time that the performance of PASTIS-PAR sensors has been compared against other
datasets, and this study represents our attempt at its field validation.

The three satellite products under study showed good results over the peak season, with RMSE
values of 0.04, 0.05 and 0.06 for GEOV1, MODIS C5 and MODIS C6, respectively, with slight negative
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values for GEOV1 (−3%) and no mean bias for MODIS. The three fAPAR satellite products meet GCOS
requirements on accuracy in more than 85% of cases for MODIS products, and up to 98% of samples for
GEOV1, in this mosaic of deciduous beech forest and mountain prairie landscape. However, the ground
measurements are an estimate of total canopy fAPAR rather than green fAPAR, which may introduce
slight differences at the peak season. MODIS, on the other hand, has great difficulty in handling this
mountain ecosystem, and almost all retrievals during the studied period were obtained with the backup
algorithm. Very good consistency was found between MODIS C5 and C6, with slightly larger dispersion
found for C6 due to the enhanced spatial resolution, which does not introduce systematic differences.
The temporal courses were also found to be reliable for the three satellite products, showing smoother
GEOV1 profiles due to the longer compositing period. Larger discrepancies were observed at the end
of the season as the contribution of non-photosynthetically active vegetation to the ground canopy
fAPAR values increases, showing that satellite products are related to green fAPAR rather than canopy
fAPAR despite a good agreement with fAPAR canopy being observed at the peak season. A limitation
of our work can be found in the assessment of satellite products accuracy over the period of fully
developed canopy but not over the green-up or senescence phases. However, it should be signaled
that those phenological phases usually require specific validation efforts, due to their inter-annual and
inter-ecosystem variability.

The ground measurements and upscaled ground maps are part of the ImagineS ground database,
freely available. The averaged values over 3 km × 3 km is expected to contribute to the update
of the CEOS LPV Direct database for validation of coarse satellite products. As a concluding
remark, increasing efforts in ground truth collection at more long-term research forest sites is
desirable to increase the accuracy of satellite-derived fAPAR estimation, useful for modeling
ecosystem productivity.
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