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Abstract: Shoreline information is fundamental for understanding coastal dynamics and for implementing
environmental policy. The analysis of shoreline variability usually uses a group of shoreline indicators
visibly discernible in coastal imagery, such as the seaward vegetation line, wet beach/dry beach line,
and instantaneous water line. These indicators partition a beach into four zones: vegetated land, dry
sand or debris, wet sand, and water. Unmanned aircraft system (UAS) remote sensing that can acquire
imagery with sub-decimeter pixel size provides opportunities to map these four beach zones. This
paper attempts to delineate four beach zones based on UAS hyperspatial RGB (Red, Green, and Blue)
imagery, namely imagery of sub-decimeter pixel size, and feature textures. Besides the RGB images,
this paper also uses USGS (the United States Geological Survey) Munsell HSV (Hue, Saturation, and
Value) and CIELUV (the CIE 1976 (L*, u*, v*) color space) images transformed from an RGB image.
The four beach zones are identified based on the Gray Level Co-Occurrence Matrix (GLCM) and
Local Binary Pattern (LBP) textures. Experiments were conducted with South Padre Island photos
acquired by a Nikon D80 camera mounted on the US-16 UAS during March 2014. The results show
that USGS Munsell hue can separate land and water reliably. GLCM and LBP textures can slightly
improve classification accuracies by both unsupervised and supervised classification techniques.
The experiments also indicate that we could reach acceptable results on different photos while using
training data from another photo for site-specific UAS remote sensing. The findings imply that
parallel processing of classification is feasible.

Keywords: color space transformation; hyperspatial remote sensing; shoreline change; feature texture;
UAS remote sensing; beach zones partition

1. Introduction

The coast comprises the interface between land and sea, and the shoreline is represented by the
margin between the two [1]. At any given time, an instantaneous shoreline position is influenced
by the short-term effect of the tide and a wide variety of long term effects such as relative sea-level
rise and along shore littoral sediment movement [2,3]. Due to the dynamic nature of the shoreline
coast, investigators often use shoreline indicators to represent the true shoreline position [4]. The three
widely used indicators include seaward dune vegetation line, wet/dry line, and instantaneous water
line. These indicators partition a beach into four zones from fore dune to sea, including vegetated land,
dry sand or debris, wet sand, and water. The four beach zones have different spectral and geometric
properties so that they are visibly discernible on coastal imagery. The vegetation line is the extreme
seaward boundary of natural vegetation that spreads continuously inland and is typically used to
determine the landward extent of the public beach [5]. The wet/dry line can be interpreted on both
color and grey scale aerial photographs [2,6,7]. The wet/dry line represents the landward extent of
the most recent high tide and is characterized by a change in sand color due to repeated, periodic
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inundation by high tides [4]. The instantaneous water line is naturally defined as the water position
on imagery at imaging time.

The hyperspatial UAS (Unmanned Aircraft System) imagery, namely imagery of sub-decimeter
pixel size, has been used for coastal surveying [8]. For example, coastal topography and change were
examined with the structure from motion approach [9–12]. The beach composition (sand, rubble,
and rocks) and sub-surface classes (seagrass, sand, algae, and rocks) were identified by using the
digital surface models and ortho-photos derived from the UAS data [13]. Although the hyperspatial
UAS imagery has been used for coastal studies in recent years, there has been little examination
of this data source for beach zones and shoreline studies. This paper explores a novel method to
delineate four beach zones based on UAS hyperspatial RGB (Red, Green, and Blue) imagery and
textures. On the one hand, the RGB true-color imagery has been used for mapping aquatic vegetation
with the object-based image analysis [14] and adaptive cosine estimator and spectral angle mapper
algorithm [15]. The RGB wide band images acquired by typical off-the-shelf cameras, such as those
found in small UAS remote sensing units, limits the use of conventional remote sensing spectral
indexes, however, the UAS hyperspatial imagery allows geometric properties such as textures to be
used with classification algorithms. This paper investigates different color space transformations from
the UAS RGB imagery on beach zone classification.

On the other hand, the gray level co-occurrence matrices (GLCM) textures [16], the most used
texture for remote sensing classification [17,18], have been extensively used [18,19]. This paper
evaluates GLCM textures and the local binary pattern (LBP) to identify the four beach zones.
The LBP [20] has already obtained great success in computer vision and pattern recognition in recent
years [21]. In this paper, the four beach zones along the south Texas Gulf coast were identified
through GLCM and LBP texture features using four widely used classification techniques, including
the iterative self-organizing data analysis technique (ISODATA), maximum likelihood classification
(MLC), the random forests (RF), and support vector machine (SVM). All of the photos for the analysis
were obtained during a short period to ensure the atmospheric conditions were the same for each
photo. This paper investigates the feasibility of using the training data from one photo for classification
on other photos without radiation calibration or brightness balance among the photos.

2. Background

2.1. Experiment Site

The experiment area is the beach of South Padre Island, a barrier island along the Texas Gulf
Coast (Figure 1). South Padre Island experiences a humid subtropical climate with the average annual
high of 27.2 ◦C and the average low of 19.1 ◦C. The average annual precipitation is 73.7 cm, and
the rainfall tends to be the highest during the summer and autumn months. At the Padre Island,
wind-driven tides are much more important than astronomical tides [22]. Wind stress coupled with
changes in barometric pressure often raises or lowers water levels on Gulf of Mexico beaches as
much as 1 m [23]. Astronomical tides average about 40 cm [24] and range from 45 cm to 60 cm [25].
Sediments deposited high on the Gulf beach are dried and transported landward by persistent onshore
winds. This migrating sand is trapped along the back edge of the beach by salt-tolerant grasses
and flowering plants. The vegetation stabilizes the sand with roots and spreading vines, forming
a relatively continuous dune ridge. However, the vegetation on dunes can be easily damaged by
human activities.
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Figure 1. Experiment site at Padre Island in Kenedy County, Texas, USA. The dark red on the left 
image (geographical extent of Kenedy County) is the area covered by the unmanned aircraft system 
(UAS) photos. 

2.2. Color Features 

Color is perceived by humans as a combination of primary colors, R (red), G (green) and B 
(blue). From RGB representation, we can derive other kinds of color representations (spaces) by 
using either linear or nonlinear transformations. Several color spaces, such as RGB, HSV (Hue, 
Saturation, and Value), and CIELUV (the CIE 1976 (L*, u*, v*) color space), are widely utilized in 
color image segmentation. The HSV (Hue-Saturation-Value) color space can be illustrated as a 
conical object in the three-dimensional form. Hue is represented by the circular part of the cone. 
Saturation is calculated using the radius of the cone，and Value is the height of the cone. CIELUV, 
which is an abbreviation of the CIE 1976 (L*, u*, v*) color space, was developed by the International 
Commission on Illumination (CIE) in 1976 to represent perceptual uniformity. CIELUV meets the 
psychophysical need for a human observer. For an application, selecting the best color space is still 
one of the difficulties in color image segmentation [26,27]. Standard RGB (sRGB) is a standard RGB 
color space created for use on the Internet, computers, and printers. Digital cameras usually use 
sRGB as the default working color space. While RGB is suitable for color display, it is not good for 
color scene segmentation and analysis due to the high correlation among the R, G, and B 
components [26,27].  

The Munsell color system created by Albert H. Munsell was modified by the U. S. Geological 
Survey (USGS) to describe color in digital images [28]. The modified Munsell color system is called 
USGS Munsell HSV color space. Here, RGB coordinates also are transformed into the color 
coordinates Hue, Saturation, and Value (HSV). Hue is expressed as the angle around the central 
vertical axis from 0 to 360 degrees, where 0 and 360 = blue, 120 = green, and 240 = red. Saturation is 
the amount of gray (0% to 100%) in the color; 0 means that the color is gray; and 100% means that the 
color is a primary color. Value is the brightness of the color and varies with color saturation. It also 
ranges from 0% to 100%. When Value is 0, the color space will be totally black. With the increase in 
the value, the color space brightness up and shows various colors. Neutral grays lie along the 
vertical axis between black and white. This paper uses all of these color spaces including RGB, 
CIELUV, and USGS Munsell HSV color spaces. 

Figure 1. Experiment site at Padre Island in Kenedy County, Texas, USA. The dark red on the left
image (geographical extent of Kenedy County) is the area covered by the unmanned aircraft system
(UAS) photos.

2.2. Color Features

Color is perceived by humans as a combination of primary colors, R (red), G (green) and B (blue).
From RGB representation, we can derive other kinds of color representations (spaces) by using
either linear or nonlinear transformations. Several color spaces, such as RGB, HSV (Hue, Saturation,
and Value), and CIELUV (the CIE 1976 (L*, u*, v*) color space), are widely utilized in color image
segmentation. The HSV (Hue-Saturation-Value) color space can be illustrated as a conical object in the
three-dimensional form. Hue is represented by the circular part of the cone. Saturation is calculated
using the radius of the cone, and Value is the height of the cone. CIELUV, which is an abbreviation of
the CIE 1976 (L*, u*, v*) color space, was developed by the International Commission on Illumination
(CIE) in 1976 to represent perceptual uniformity. CIELUV meets the psychophysical need for a human
observer. For an application, selecting the best color space is still one of the difficulties in color image
segmentation [26,27]. Standard RGB (sRGB) is a standard RGB color space created for use on the
Internet, computers, and printers. Digital cameras usually use sRGB as the default working color
space. While RGB is suitable for color display, it is not good for color scene segmentation and analysis
due to the high correlation among the R, G, and B components [26,27].

The Munsell color system created by Albert H. Munsell was modified by the U. S. Geological
Survey (USGS) to describe color in digital images [28]. The modified Munsell color system is called
USGS Munsell HSV color space. Here, RGB coordinates also are transformed into the color coordinates
Hue, Saturation, and Value (HSV). Hue is expressed as the angle around the central vertical axis from
0 to 360 degrees, where 0 and 360 = blue, 120 = green, and 240 = red. Saturation is the amount of gray
(0% to 100%) in the color; 0 means that the color is gray; and 100% means that the color is a primary
color. Value is the brightness of the color and varies with color saturation. It also ranges from 0% to
100%. When Value is 0, the color space will be totally black. With the increase in the value, the color
space brightness up and shows various colors. Neutral grays lie along the vertical axis between black
and white. This paper uses all of these color spaces including RGB, CIELUV, and USGS Munsell HSV
color spaces.
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2.3. Texture Features

The similar land objects may have similar geometric patterns as manifested by grey-level variation
in an image, which is referred to as texture. Among numerous texture measures, the gray level
co-occurrence matrices (GLCM) [16] is the most used texture for remote sensing classification [17,18].
Local binary pattern (LBP) is a new rotation invariant texture analysis method which is theoretically
simple but very powerful [21].

Let g(ρ1, ρ2, h, θ) be the relative occurrence of pixels with grey levels ρ1 and ρ2 spaced h pixels
apart in direction θ. Relative occurrence is the total number of times each grey level pair is counted,
divided by the total possible number of grey level pairs. The GLCM for a region, defined by a
user-specified window, is the matrix of those measurements over all grey level pairs [29]. Generally,
the bigger the window size, the coarser the information that can be provided by texture features.
If there are L grey-level values possible, then the GLCM will be an L × L matrix. Given that L can be
quite large, the brightness value can be binned. The displacement (h) commonly uses one pixel due to
the highly correlated spatial relationship between one pixel and its neighbor. The GLCM computed for
various values of θ are kept separate to see whether the texture is orientation dependent. The common
directions are horizontal, vertical, and diagonal. The commonly used eightGLCM parameters include
mean, variance, contrast, homogeneity, dissimilarity, entropy, angular second moment (energy), and
correlation. GLCM variance is a measure of the dispersion of the values around the GLCM mean.
The range of homogeneity is [0, 1]. If the image has little variation, then homogeneity is high, and if
there is no variation, then homogeneity is equal to 1. If the neighboring pixels are very similar in their
grey level values, then the contrast in the image is very low. High contrast values are expected for
heavy textures and low values for smooth textures.

LBP operator is defined in a circle local neighborhood. With grey-level of the center pixel as
the threshold, the circular neighbors at a certain radius R are labeled as 1 if the neighbor has greater
grey-level than the center or 0. Then, the binary values are multiplied by the corresponding weights
according to their positions. The LBP code of the center pixel is the sum of the weighted binary values.
For a circularly symmetric neighbor set defined by LBP, where R = 1, and P = 8, g0, g2, g4, and g6 are
neighbor pixels at left, upper, right, and lower, respectively. While g1, g3, g5, g7 are interpolated on the
four diagonal directions. The uniformity measure U is defined in Equation (1).

U(LBPP,R) = ∑P
i=1|s(gi − gc)− s(gi−1 − gc)| (1)

where gP = g0. gc and gi denote the grey level of the center pixel and the neighbor pixel, respectively.
s(x) is the sign function. P is the number of pixels around the center pixel and R represents the radius
of the circular neighborhood. Patterns with a U value of less than or equal to two are designated as
“uniform”. Further, a rotation invariant uniform LBP is defined as:

LBPriu2
P,R =

{
∑P

i=1 s(gi − gc) i f U ≤ 2
P + 1 otherwise

(2)

Any uniform pattern is calculated by counting ones in the binary number, while all the non-uniform
patterns are labeled as P + 1. Multi-scale LBP can be calculated by various P and R. Common
combinations of P and R are: P = 8, R = 1; P = 16, R = 2; and P = 24, R = 3.

2.4. Classification Techniques

The following four classification techniques, iterative self-organizing data analysis Technique
(ISODATA), maximum likelihood classification (MLC), support vector machine (SVM), and random
forest (RF), are widely used by the remote sensing community.

ISODATA is an unsupervised classification that merges clusters if their separation distance in
multispectral feature space is less than a user-specified value and includes the rules for splitting a
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single cluster into two clusters. This method makes a large number of passes through the dataset until
specified results are obtained [30,31].

MLC is the most commonly supervised classification method used with remote sensing image
data. The MLC algorithm is based on the Bayes’ theorem of decision making and assumes that the
points of each class sample follow normal distribution. With this assumption, a class response pattern
can be characterized by the mean vector and the covariance matrix. The statistical probability of a
given pixel is computed for each class to determine the membership of the pixel to the class. When the
default equal option for a priori probability weighting is specified, a pixel is assigned to the class to
which it has the highest probability of being a member.

SVM, an advanced supervised classification, generates a separating hyperplane by only those
pixels in its vicinity optimal for the available training data. For linearly non-separable data,
a transformation of the pixel vector x to a higher order feature space can be applied that renders
the data linearly separable. The radial basis function (RBF) kernel exp (−γxi − xj

2) is commonly used
for transformation in remote sensing data. For classification tasks, SVM C-classification with the RBF
kernel is suitable due to its good general performance and the few number of parameters (only two:
C and γ) [32–34]. The C parameter controls the tradeoff between achieving a low training error and
achieving a low testing error which is the ability to generalize the classifier to unseen data. The γ

parameter defines how far the influence of a single training example reaches, with low values meaning
‘far’ and high values meaning ‘close’. The best combination of C and γ is often selected by a grid
search of C and γ [35]. Typically, the parameters with best cross-validation accuracy are selected.

RF, also called random decision forests [36], is an ensemble learning method for supervised
classification. Random forests construct a multitude of decision trees at training time and outputs the
class that is the mode of the classes of the individual trees. Random forests use out-of-bag (OOB) error
as an estimation of the generalization error [37,38]. The number of trees is a free parameter. An optimal
number of trees can be found by observing the out-of-bag error. The OOB error is convergent when
the number of trees is bigger than a certain threshold [34]. Another free parameter is the number
of randomly selected predictor variables, which typically is the square root of the number of input
variables for classification [39].

3. Materials and Methods

3.1. UAS Data

The UAS images were acquired along 12.9 km of shoreline on 4 March 2014 using an American
Aerospace RS-16 owned by the Texas A&M University-Corpus Christi (TAMU-CC) Unmanned Aircraft
Systems Program, and with the support of the TAMU-CC Lone Star UAS Center of Excellence and
Innovation. The March exercise used a Nikon D800 camera with a 50 mm focal length and 0.0049 mm
charge-coupled device (CCD) pixel size. The flight height was 870 m above the ground. In total,
there are 402 overlapping photos with 10 cm ground pixels; the photos were acquired during 30 min
with three flight paths. To rapidly process hundreds of UAS photos, a two-stage approach was
developed. First, we produced ortho-images of 1-m pixel size with raw exterior orientation data
and conducted co-registration with translation to produce a 1-m resolution mosaic image. Second,
using the 1-m mosaic as a spatial constraint, we refined co-registration by adjusting the exterior
orientation parameters. The final mosaic image consists of the ortho-images of 10 cm pixel size
(Figure 2). The workflow of the beach zone classification is displayed in Figure 3.
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Figure 2. The 12.9 km coastal area. The (red, green, blue) RGB mosaic image of the 402 photos over 
the National Land Cover Database 2011 (blue for open water, grey for barren land, and yellow for 
vegetative cover greater than 20%). 

 

Figure 3. Workflow of the beach zone classification. HSV stands for hue, saturation, and value; USGS 
is the U. S. Geological Survey; CIELUV stands for the CIE 1976 (L*, u*, v*) color space; GLCM is the 
gray level co-occurrence matrices; LBP is the local binary pattern. 

Figure 2. The 12.9 km coastal area. The (red, green, blue) RGB mosaic image of the 402 photos over
the National Land Cover Database 2011 (blue for open water, grey for barren land, and yellow for
vegetative cover greater than 20%).
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Figure 3. Workflow of the beach zone classification. HSV stands for hue, saturation, and value; USGS
is the U. S. Geological Survey; CIELUV stands for the CIE 1976 (L*, u*, v*) color space; GLCM is the
gray level co-occurrence matrices; LBP is the local binary pattern.
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3.2. Sea and Land Separation by USGS Munsell Color System

3.2.1. Interaction of Light and Water and USGS Munsell Color Characteristics

As sunlight penetrates a water body, energy at the red band is absorbed more than energy at
the blue band. As a result, water pixels are predominantly blue and green so that water pixels have
hues less than 150 in USGS Munsell HSV color space. Land pixels have 180 to 300 hue due to bare soil
and plant litter being largely yellow and brown. Therefore, water pixels have lower hue than land
pixels in the USGS Munsell color space. The shadows on land generated by terrain and the ones on the
sea created by waves are dark. The white foam is white. Both the shadows and the white foam have
very low hue values in the USGS Munsell color space. The USGS Munsell Value is low for shadows
and high for sand beach. As a result, five classes were identified using the USGS Munsell color space,
and they are vegetated land, sea, shadows, white foam, and sand beach. Their characteristics are
summarized in Table 1. This paper uses MATLAB to implement CIELUV color space transformation
and ENVI to conduct USGS Munsell HSV color space transformation.

Table 1. Color characteristics of the five objects.

Class Munsell Hue Munsell Value Munsell Saturation

Vegetated land high middle low
Sea low middle middle

Shadows very low low high
White foam very low high high
Sand beach high high high

3.2.2. Separation of Water and Land

Initially, the extraction of water was performed by labeling all pixels with Munsell hue that are
higher than a defined threshold to the class of water. The distribution of the Munsell hue of water and
no-water typically is a bi-modal mixture distribution. We used the Gaussian mixture model (GMM),
a suitable model to separate two classes [40], to separate water and land. The GMM is a probabilistic
model that assumes all the data points are generated from a mixture of a finite number of Gaussian
distributions with unknown parameters. For example, for the one-dimensional data, the parameters to
be found are a mean and variance for each component. Based on the previous section, we set 60 and
200 as the initial means for water and land. For that purpose, we used the GMM algorithm to perform
the thresholding that is set by a hue with 1.0 probability for land and 0 probability for water.

The morphology Open operation with an adequate window such as a 31 × 31 pixel window
(approximate 3 m × 3 m) was used to eliminate mislabeled water pixels. This size is empirical. It is
worthy to note that very shallow waters on the swash zone are commonly labeled as land because the
bottom sediment is clear on the UAS photos. Therefore, a sufficient large buffer was generated for the
water pixels. A distance of 80 meters (approximate 800 pixels) is adopted to split the image pixels into
two categories; namely, sea or land. This cut distance was obtained from our knowledge of the south
Texas shorelines. This separation of land and sea is robust because it is based on the difference of light
interactions with land and water. No manual editing was needed in this classification, though a little
tuning was done. Due to limited space, a full description on the fuzzy-set based classification is not
presented here, but it is available upon request.

3.3. ISODATA Identification of Beach Zones with Texture Features on the Same Photo

Co-relationship between the commonly used GLCM parameters were investigated in order
to find independent parameters. The experiments show that there are three distinguished groups:
variance, contrast, and a group including all others, namely homogeneity, dissimilarity, entropy, and
energy. The GLCM mean is independent to the three groups. GLCM correlation cannot contribute to
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the classification. The experiments with horizontal, vertical, and diagonal orientation showed that
orientation dependence of the textures is weak. Therefore, only diagonal dependence of the texture is
used in the experiments.

The highest classification accuracy can be achieved by the inclusion of the optimal scale of
textures where ground objects represent the highest between-class variation and the lowest within-class
variation [18]. To analyze how the accuracy changes with texture window size, we tested five different
sizes: 3 × 3, 7 × 7, 15 × 15, 31 × 31, and 63 × 63. The four GLCM parameters, namely mean, variance,
contrast, and homogeneity, were derived at all the five window sizes on five bands, namely RGB
bands, L of CIELUV and Value of USGS Munsell HSV. Then, they were added separately as additional
ancillary bands to the five band images for the unsupervised classification experiments.

Similarly, the LBP and variance at different resolutions were derived on the five bands, and
added separately as additional ancillary bands for classification experiments. LBP and variance were
calculated by three resolutions, samples = 8 or 16, and radius = 1, 3, 5. In total, LBP and variance were
computed at five scales as follows: P = 8, R = 1 (scale 1), P = 8, R = 2 (scale 2), P = 8, R = 3 (scale 3a),
P = 16, R = 3 (scale 3b), and P = 8, R = 5 (scale 5).

The unsupervised ISODATA classification algorithm was used to partition an image, consisting
of a color band and additional texture features, into clusters. With the aid of the sea and land image
produced by Munsell color space, each cluster was assigned to one of the four beach zones according to
the labeling rules: vegetated land, dry sand, wet sand, and water. One hundred fourteen points on the
beach images were randomly selected and were visual interpreted as ground reference. The confusion
matrix was calculated for each classification experiment.

3.4. Supervised Classification for Beach Zones with Texture Features on the Same Photo

The three supervised classification methods, MLC, SVM, and RF, were used to classify beach zones
with texture features on the same photo. The texture features used by the supervised classifications
are the same as the ones used in the previous section. In summary, both the GLCM parameters at
the five window sizes and the LBP parameters at the five scales were derived on the five bands, and
then added independently as additional ancillary bands to the five band images for the classifications.
The test dataset in the previous section was used to calculate the confusion matrix and total accuracy.
The training set was generated by drawing areas of interest on a photo for each of four classes, and then
randomly selecting approximately 1000 pixels from the areas for each class.

The SVM C-classification with the RBF kernel was conducted under the R statistical computing
environment with package e1071. The RF classification was conducted under the R statistical
computing environment with package randomForest.

3.5. Beach Zone Classification in Different Photos Using a Training Set from Another Photo

In general, remote sensing classification training data are from the same image. If one wants to
use training data for an extended area, good radiation calibration or brightness balance is necessary
for all images in the extended area. This is because satellite images are usually acquired under
different atmospheric conditions. However, for a site-specific UAS observation, for example, 10 km
range, all photos can be acquired within a short period. Thus, we can assume that the atmospheric
conditions remain the same. Our results showed the training data from one photo for another photo
classification is feasible. Three photos were used here. One (DSC_7559) is from the middle of the
flight; the other two photos (DSC_7479 and DSC_7611) are from the beginning and end of the flight,
respectively. The training data was from photo DSC7559 and the classification was conducted on
DSC7479 and DSC7611. To evaluate the accuracy, three classification methods, MLC, SVM, and RF,
were performed. One hundred seven points on DSC-7611 and 116 points on DSC_7479 were randomly
chosen and visually interpreted as the ground reference. The confusion matrix was calculated for each
classification experiment. The distance between training data and target photos are approximately
6km. The distance between the two target photos is approximately 12 km.
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4. Results and Discussions

4.1. Accuracies of Unsupervised Classification

To evaluate the accuracy improvement by the texture features, classifications of the original
five color space bands, namely red, green, blue, L of CIELUV and Value of USGS Munsell HSV, were
first conducted. The classification results (Table 2) are considered as a baseline for the further texture
classifications. Tables 3 and 4 show the accuracy of the three GLCM textures on RGB bands and on the
Value of the USGS Munsell HSV and the L of the CIELUV. Table 5 shows the accuracy of the LBP of
the five scales by the five color space bands. Here, the labeling rules for contrast and homogeneity
on the five bands are the same for all the five window sizes. The GLCM variance for the 3 × 3 and
7 × 7 windows also use the same labeling rules for contrast and homogeneity. The LBP texture uses
the same rules for each scale.

Table 2. Unsupervised classification accuracy of the original values of the five bands.

Band Red Green Blue L of CIELUV Munsell Value

Accuracy 85.8 (0.81)* 82.8 (0.77) 81.3 (0.75) 82.8 (0.77) 83.6 (0.78)

Note: 85.8 (0.81)* means that total accuracy is 85.8% and kappa coefficient is 0.81.

Table 3. Unsupervised classification accuracy of GLCM textures of RGB bands.

Window Size
Contrast Homogeneity Variance

Red Green Blue Red Green Blue Red Green Blue

3 × 3 85.1
(0.80)

80.6
(0.74)

81.3
(0.75)

85.1
(0.80)

82.8
(0.77)

79.1
(0.72)

85.8
(0.81)

83.6
(0.78)

81.3
(0.75)

7 × 7 85.8
(0.81)

79.9
(0.73)

80.6
(0.74)

85.8
(0.81)

79.9
(0.73)

77.6
(0.70)

84.3
(0.79)

79.1
(0.72)

81.3
(0.75)

15 × 15 86.6
(0.82)

79.9
(0.73)

82.8
(0.77)

85.8
(0.81)

82.1
(0.76)

79.1
(0.72)

65.7
(0.54)

62.7
(0.50)

63.4
(0.51)

31 × 31 85.6
(0.82)

76.1
(0.68)

79.1
(0.72)

85.1
(0.80)

79.9
(0.73)

77.6
(0.70)

53.0
(0.38)

57.5
(0.44)

62.7
(0.51)

63 × 63 76.1
(0.68)

73.1
(0.64)

69.4
(0.59)

77.6
(0.70)

72.4
(0.63)

73.1
(0.64)

56.0
(0.42)

58.2
(0.45)

61.2
(0.49)

Table 4. Unsupervised classification accuracy of USGS Munsell HSV and CIELUV color spaces and
their GLCM.

Window Size
Contrast Homogeneity Variance

Munsell V CIELUV L Munsell V CIELUV L Munsell V CIELUV L

3 × 3 82.8 (0.77) 77.6 (0.70) 82.8 (0.77) 78.4 (0.71) 82.8 (0.77) 79.1 (0.72)
7 × 7 81.3 (0.75) 77.6 (0.70) 83.6 (0.78) 78.4 (0.71) 83.6 (0.78) 77.6 (0.70)

15 × 15 79.9 (0.73) 83.6 (0.78) 83.6 (0.78) 82.8 (0.77) 67.9 (0.57) 81.3 (0.75)
31 × 31 76.9 (0.69) 83.6 (0.78) 81.3 (0.75) 82.8 (0.77) 63.4 (0.52) 75.4 (0.67)
63 × 63 71.6 (0.62) 82.8 (0.77) 74.6 (0.66) 82.8 (0.77) 61.9 (0.50) 64.2 (0.52)

Table 5. Unsupervised classification accuracy of LBP at three scales.

Scale 1 Scale 2 Scale 3a Scale 3b Scale 5

Red 87.3 (0.83) 85.8 (0.81) 82.8 (0.77) 82.1 (0.76) 67.2 (0.56)
Green 82.8 (0.77) 81.3 (0.75) 78.4 (0.71) 78.4 (0.71) 70.9 (0.61)
Blue 82.1 (0.76) 80.6 (0.74) 79.1 (0.72) 79.1 (0.72) 73.1 (0.64)

L of CIELUV 82.1 (0.76) 83.6 (0.78) 82.8 (0.77) 82.8 (0.77) 82.8 (0.77)
Munsell Value 82.8 (0.77) 82.1 (0.76) 77.6 (0.70) 79.1 (0.72) 68.7 (0.58)
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As shown in Table 2, the red band has the best performance among the five color space bands for
the beach zone identification. As shown in Table 3, except the window of 63 × 63 pixels, the results by
homogeneity and contrast are affected slightly by the window size, while the variance performance
decreases when window size increases for all three bands. The homogeneity performance is the best
among the three texture factors, and the contrast is better than the variance. The red contrast on the
15 × 15 window size has the best results.

The unsupervised classification map by the red contrast on the 15 × 15 window size (Figure 4)
shows that vegetated land can be separated from dry sand clearly and correctly by the three GLCM
parameters. Identification of instantaneous water areas is a little unclear. The wet and dry sands can
always be separated, however, the boundary location may shift a little bit depending on band and
GLCM parameters. The small convex areas of wet sand are filtered out. In Figure 4, the dry sand forms
a big contiguous region through the debris spots in the dry sand zone create some fragments, which
are typically small and isolated. The instantaneous water line is clearly presented in the landward
envelope of the water zone.

1 
 

 
Figure 4. Comparison of the identified beach zones with manually drawn shorelines on DSC7559
(red for vegetation line, black for wet/dry line, pink for instantaneous water line) by the Universal
Transverse Mercator (UTM) zone 14N.

As shown in Table 4, the three GLCM textures on the USGS Munsell Value and on the L of CIELUV
do not produce better results than those produced using the original RGB band. Except for the L of
CIELUV, all other bands obtain the best results at a scale of 1. This is not surprising due to the local
property of the LBP. Similar to the GLCM cases, the best accuracy is obtained on the red band.
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4.2. Accuracies of Supervised Classification

Based on the results from the unsupervised classification experiments, supervised classifications
only use LBP texture at a scale of 1, namely R = 1 and P = 8, and GLCM homogeneity at the red band
on 5 window sizes. The results by the RGB bands and three classification methods are displayed in
Table 8. The results of LBP and GLCM textures are shown in Tables 6 and 7, respectively.

Table 6. Accuracy of the three supervised classifiers for DSC7559 on the LBP texture. MLC is the
maximum likelihood classifications; RF is the Random Forests classifications, SVM is the support vector
machines classifications.

Red LBP Green LBP Blue LBP

MLC 92.1(0.89) 92.1(0.89) 92.1 (0.89)
RF 88.6(0.84) 88.6(0.84) 93.0 (0.90)

SVM 89.5(0.85) 89.5(0.85) 89.5 (0.85)

Table 7. Accuracy of the three supervised classifiers for DSC7559 on the GLCM texture.

Window Size
MLC RF SVM MLC RF SVM

Red GLCM Homogeneity by Red RGB GLCM Homogeneity by Red

3 × 3 88.6 (0.83) 87.7 (0.83) 86.8 (0.81) 94.7 (0.92) 92.1 (0.89) 93.9 (0.91)
7 × 7 86.8 (0.81) 88.6 (0.84) 89.5 (0.85) 93.9 (0.91) 93.0 (0.90) 94.7 (0.92)

15 × 15 90.4 (0.86) 90.4 (0.86) 91.2 (0.87) 92.1 (0.89) 92.1 (0.89) 93.9 (0.91)
31 × 31 89.5 (0.85) 89.5 (0.85) 92.1 (0.89) 93.0 (0.90) 89.5 (0.85) 94.7 (0.92)
63 × 63 88.6 (0.84) 89.4 (0.85) 91.2 (0.87) 92.1 (0.89) 90.3 (0.86) 92.0 (0.89)

For the SVM classification, the two parameters, C and γ, are searched using a 4 × 5 grid of C
equal to 1, 10, 100, and 1000, and γ equal to 0.5, 1, 2, 4, and 8. Each combination of parameter choices
is checked using 10-fold cross validation, and the parameters with best cross-validation accuracy
are selected.

For the RF classification, the number of trees is searched by three orders from one-digit numbers,
namely from 3 to 9, two-digit numbers including 11, 21, 31, and 91, and three-digit number including
101, 201, and 90l. The OOB error is convergent when the number of trees is bigger than 301. As a result,
301 was chosen as the number of trees for these classification experiments.

As shown in Table 6, LBP textures do not increase in accuracy for the MLC technique; additionally,
they slightly decrease the accuracy for the RF and SVM techniques. Single red band and its GLCM
homogeneity cannot reach the same accuracy of RGB bands for the three supervised techniques at the
5 window sizes (Table 7). When red band GLCM homogeneity is added to the three RGB bands, the
MLC and the SVM can obtain the same or marginally better results for window sizes less than 31× 31 pixels;
the RF cannot obtain better results.

4.3. Supervised Classification on Photos Using Training Sets from a Different Photo

According to the previous supervised classification experiments, only three original RGB bands
are used here. Accuracy of DSC7479 and DSC7611 are listed in Table 8. The results show that training
data from one photo can produce approximate accuracies on different photos. The MLC enjoys the
most stable performance among the three techniques. The underlying reason may be that the MLC
uses statistical characteristics of the training data.

From Tables 9–11, it is not surprising that the main confusion is seen in distinguishing between
the vegetated land and the dry sand and between the wet sand and the water. There is minor confusion
distinguishing between the dry sand, the wet sand, and the water. No misclassifications between the
vegetated land and the water were found due to their significant difference in RGB color space. Due to
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limited space, only error matrices of the MLC on DSC_7559, DSC_7611, and DSC_7479 RGB bands are
provided here. The other error matrices are available from the authors upon request.

Table 8. Accuracy of the three classifiers for RGB bands on three photos.

DSC_7559 DSC_7611 DSC_7479

MLC 92.1(0.89) 94.4(0.92) 91.3(0.88)
RF 93.0(0.90) 89.7(0.85) 91.4(0.88)

SVM 93.9(0.91) 93.5(0.91) 91.4(0.88)

Table 9. Error matrix of the MLC on DSC_7559 RGB bands.

Vegetated Dry Wet Water Row Total User’s Accuracy (%)

Vegetated 15 3 0 0 18 83.3
Dry 0 33 0 0 33 100.0
Wet 0 0 15 4 19 78.9

Water 0 0 2 42 44 95.5
Column Total 15 36 17 46

Producer’s Accuracy 100.0 91.7 88.2 91.3 92.1

Table 10. Error matrix of the MLC on DSC_7479 RGB bands.

Vegetated Dry Wet Water Row Total User’s Accuracy (%)

Vegetated 35 3 0 0 38 92.1
Dry 3 24 0 1 28 85.7
Wet 0 0 7 3 10 70.0

Water 0 0 0 40 40 100.0
Column Total 38 27 7 44

Producer’s Accuracy 92.1% 88.9% 100.0% 90.9% 91.4

Table 11. Error matrix of the MLC on DSC_7611 RGB bands.

Vegetated Dry Wet Water Row Total User’s Accuracy (%)

Vegetated 28 0 0 0 28 100.0
Dry 0 25 3 0 28 89.3
Wet 0 0 7 2 9 77.8

Water 0 1 0 41 42 97.6
Column Total 28 26 10 43

Producer’s Accuracy 100.0 96.2 70.0 95.3 94.4

Our results show that the training data from one photo for classification of another photo is
feasible. The site-scale observations are the most effective fields of UAS remote sensing due to their
quick turnaround and affordable multiple revisits. The relatively short time for image acquisition is an
inherent attribute of site-scale UAS remote sensing. Therefore, no physical barriers exist to hinder using
a training dataset from one photo on other photos. The findings also imply that parallel processing of
classification is feasible for site-scale UAS remote sensing due to no prerequisite brightness balance.

5. Conclusions

In this paper, the experiments demonstrate the capability of identifying beach zones based on
feature textures from UAS hyperspatial RGB imagery through image processing and feasibility of the
classification approach. The unsupervised classification can produce meaningful results for further
supervised classification analysis. The results show that GLCM and LBP textures can improve slightly
the classification accuracy by using both unsupervised and supervised classification techniques for the
beach zones. Additionally, the three supervised classification techniques show essentially the same
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performance. In addition, the experiments indicate that for site-scale UAS remote sensing when we
use a training dataset from a photo, we could reach acceptable classification results on different photos.
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