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Abstract: Estimating ground surface PM2.5 with fine spatiotemporal resolution is a critical technique
for exposure assessments in epidemiological studies of its health risks. Previous studies have utilized
monitoring, satellite remote sensing or air quality modeling data to evaluate the spatiotemporal
variations of PM2.5 concentrations, but such studies rarely combined these data simultaneously.
Through assembling techniques, including linear mixed effect regressions with a spatial-varying
coefficient, a maximum likelihood estimator and the spatiotemporal Kriging together, we develop a
three-stage model to fuse PM2.5 monitoring data, satellite-derived aerosol optical depth (AOD) and
community multi-scale air quality (CMAQ) simulations together and apply it to estimate daily PM2.5

at a spatial resolution of 0.1◦ over China. Performance of the three-stage model is evaluated using a
cross-validation (CV) method step by step. CV results show that the finally fused estimator of PM2.5 is
in good agreement with the observational data (RMSE = 23.0 µg/m3 and R2 = 0.72) and outperforms
either AOD-derived PM2.5 (R2 = 0.62) or CMAQ simulations (R2 = 0.51). According to step-specific
CVs, in data fusion, AOD-derived PM2.5 plays a key role to reduce mean bias, whereas CMAQ
provides spatiotemporally complete predictions, which avoids sampling bias caused by non-random
incompleteness in satellite-derived AOD. Our fused products are more capable than either CMAQ
simulations or AOD-based estimates in characterizing the polluting procedure during haze episodes
and thus can support both chronic and acute exposure assessments of ambient PM2.5. Based on
the products, averaged concentration of annual exposure to PM2.5 was 55.7 µg/m3, while averaged
count of polluted days (PM2.5 > 75 µg/m3) was 81 across China during 2014. Fused estimates will be
publicly available for future health-related studies.

Keywords: fine particulate matter (PM2.5); aerosol optical depth (AOD); community multi-scale air
quality (CMAQ) model; data fusion; exposure assessment

1. Introduction

Many epidemiological studies have associated particulate matter with an aerodynamic diameter of
≤2.5 µm (PM2.5) with adverse health outcomes, including cardiovascular and respiratory diseases [1,2],
infant birth defects [3–5], DNA damages [6,7], cancer mortality [8,9] and many others. Severe
PM2.5 pollution in China has attracted considerable public attention [10–12] and inspired numerous
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epidemiological studies to investigate the health effects of air pollution in China since 2013 [13–18].
Accurately assessing PM2.5 exposure is critical for estimating its health risks in such epidemiological
studies. However, due to the limited number of ground monitors in China, previous studies generally
ignored the spatial variation of PM2.5 and assessed the ambient exposure uniformly using one monitor
or averages of several monitors located within a city or a municipality [13–16], which causes exposure
misclassification. Therefore, accurately estimating the fine-scale spatiotemporal variation of ground
PM2.5 may lay a foundation for future health-related studies of PM2.5 in China.

Three types of numerical values have been applied in exposure assessments of ambient particles:
(1) monitoring observations; (2) satellite remote sensing measurements of aerosol; and (3) air quality
model simulations. Routine monitors were widely used to predict air pollution concentrations across
an area using geostatistical methods such as Kriging [19,20] or land use regression (LUR) to incorporate
external spatial covariates [21,22], but such monitors may be sparsely distributed in sub-urban or
rural areas. The PM2.5 monitoring network has been rapidly spreading over China. In 2013, only
approximately 70 cities or municipalities were covered by official sites of the China Environmental
Monitoring Center (CEMC), whereas by 2015, the number had increased to approximately 330.
However, monitoring data remain inadequate for characterizing the national-scale spatial variability
of PM2.5 in China.

The satellite remote sensing technique can retrieve integrated column concentrations of gases and
aerosol from the bottom to top of the atmosphere and has been applied to assess ground surface air
pollution [23]. Satellite-derived aerosol optical depth (AOD) has been successfully associated with
ground PM2.5 [24] and has thus been used to generate spatiotemporal estimators of PM2.5 by acting as
a primary predictor in statistical models such as LUR [25–27] or being calibrated by ratios (PM2.5/AOD)
simulated by a chemical transport model (e.g., GEOS-Chem) [28,29]. However, due to meteorological
or geographical conditions, non-randomly missing values in satellite-derived AOD caused absent
estimates of PM2.5 in specific periods (e.g., winter [26]) or areas (e.g., deserts [28]).

Air quality models, such as the community multi-scale air quality model (CMAQ), simulate
pollution concentrations based on emission inventories and chemical and physical processes driven
by a meteorological model, such as the weather research and forecasting model (WRF) [30], and can
provide exposure estimates with spatiotemporally complete coverage [31,32]. However, the accuracy
of air quality models depends on the uncertainty of emission inventories and meteorological inputs
and has thus been reported to vary with seasons and locations [33].

Hybrid models have been developed to combine different numerical values of air pollutants to
improve exposure estimates. Beckerman et al. [34] estimated monthly PM2.5 on an 8.9 km × 8.9 km
grid over the contiguous United States (US) through combining LUR of monitors and satellite
PM2.5 derived from GEOS-Chem and AOD. Mcmillan et al. [35] developed a hierarchical Bayesian
spatiotemporal model to bring monitors and CMAQ together and generated daily PM2.5 and O3 on
both 36 km × 36 km and 12 km × 12 km grids over the US. Friberg et al. [36] introduced a method to
fuse CMAQ simulations and monitoring observations for daily estimates of multiple air pollutants
on a 12 km × 12 km grid over Georgia, US. Liu et al. [18] utilized the Ensemble Kalman Filter (EnKF)
to assemble in situ observations with daily stimulations of PM2.5 from an air quality model across
China, and applied the analyzed products in risk assessment of chronic exposure to ambient pollution.
Beloconi et al. [27] mixed spatiotemporal Kriging maps of monitoring data and satellite AOD to
estimate fine-scale (1 km × 1 km) daily estimates of PM2.5 and PM10 during 2002–2012 over London.

To further increase the accuracy of exposure assessments of PM2.5 via making full use of available
data, this study aims to develop a fused estimator to join monitoring, satellite remote sensing and
air quality modeling data together. Our approach incorporated: (1) monitoring records from routine
sites as reference measurements of PM2.5; (2) CMAQ simulations as prior knowledge, which provides
completely spatiotemporal coverage of PM2.5; and (3) satellite AOD as alternative observations with
wider spatial coverage than monitors and higher accuracy than CMAQ. We applied a three-stage
model for the fused estimator. In Step 1, we derived ground surface PM2.5 from satellite AOD and
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calibrated CMAQ simulations by monitoring data using two separate regression models. In Step 2, we
combined AOD-derived PM2.5 and calibrated-CMAQ PM2.5 using a maximum likelihood method. In
Step 3, we incorporated the spatiotemporal autocorrelation of the monitoring data in the final estimator
through interpolating the residuals in Step 2. We illustrated the three-stage model by a practice to
develop daily maps of PM2.5 on a regular grid of 0.1◦ × 0.1 ◦ over China. The performance of the
statistical models was assessed using cross-validation (CV) methods by steps.

2. Materials and Methods

2.1. Data Description

2.1.1. PM2.5 Monitoring Data

We collected hourly PM2.5 measurements from three monitoring networks in the year 2014,
including the CEMC sites [37], the sites of the Beijing Municipal Environmental Monitoring Center [38]
and the sites of the Guangdong Environmental Monitoring Center [39]. Duplicate monitoring sites
among these three networks were removed, leaving a total of 944 sites (Figure 1). According to
the Chinese National Ambient Air Quality Standard (CNAAQS, GB3095-2012) released in 2012, the
ground-based PM2.5 data are measured using the tapered element oscillating microbalance (TEOM)
technique or the beta-attenuation method. For each monitor, we averaged PM2.5 by day and excluded
the dates with less than 19 hourly measurements. Figure 1 presents locations of the monitors.
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Figure 1. Locations of monitoring sites of PM2.5. The diamond points present the sites, which are
held-out in cross-validation.

2.1.2. Satellite Remote Sensing of AOD

Satellite-derived AOD data during 2014 were obtained from moderate resolution imaging
spectroradiometer (MODIS), equipped on two earth observing system satellites, Terra and Aqua,
which are operated by US National Aeronautics and Space Administration (NASA). Terra (Aqua)
scans the earth at 10:30 a.m. (1:30 p.m.) with a global coverage of 1–2 days. They retrieved AOD
from visible and near-infrared electromagnetic signals at nadir. Level 2 MODIS AOD products
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(collection 6) with a spatial resolution of 10 km × 10 km were collected from Atmosphere Archive
and Distribution System [40]. L2 swath data were resampled into a fixed grid, which covers the
whole investigated regions with a spatial resolution of 0.1◦ × 0.1◦ via area-weighted averaging. The
AOD_550_Dark_Target_Deep_Blue_Combined dataset with QA Flag equal to 2 or 3 were utilized in
this study. According to Ma et al. [41], we combined Terra/Aqua MODIS AOD measurements together
to increase the spatial coverage of AOD measurements.

2.1.3. Satellite Remote Sensing Covariates for AOD-Derived PM2.5

Satellite normalized difference vegetation index (NDVI) and fire spots (FS) were obtained from
combined MODIS products. We aggregated monthly products of NDVI with a spatial resolution of
1 km × 1 km into seasonal averages over the regular grid of 0.1◦ × 0.1◦. Daily counts of FS within a
75 km buffer around each centroid of the grid were calculated based on the location and time of fires,
collected from MODIS burned area products. Integrated column concentrations of NO2 were obtained
from Ozone Monitoring Instrument (OMI), launched on Aura. Level 2 products of column NO2 with a
spatial resolution of 13 km × 24 km were prepared into seasonal means with a spatial resolution of
0.1◦ × 0.1◦. The above data can be accessed from Land Process Distributed Active Archive Center [42],
MODIS Active Fire and Burned Area Products [43] and Goddard Earth Sciences Data and Information
Services Center [44].

2.1.4. WRF-CMAQ Simulation

In this study, the WRF model version v3.5.1 [45] and the CMAQ model version 5.1 were used to
simulate the daily variations of PM2.5 over China. The WRF model is driven by the National Centers
for Environmental Prediction Final Analysis (NCEP-FNL) reanalysis data as initial and boundary
conditions (ICs and BCs). Meteorological parameters simulated by WRF model were applied to
drive CMAQ. Our CMAQ simulations utilized CB05 as the gas-phase mechanism, AERO6 as the
aerosol module, and Regional Acid Deposition Model (RADM) as the aqueous-phase chemistry model.
Boundary conditions for our CMAQ model were provided by dynamic GEOS-Chem simulation [46].
The anthropogenic emissions for Mainland China during 2014 are derived from the Multi-resolution
Emission Inventory of China [47]. Detailed model configurations for WRF-CMAQ were presented in
our previous study [48]. We simulated meteorological variables including ground wind speed (WS),
planetary boundary layer height (PBL), ground ambient pressure (PS), and ground relative humidity
(RH) by WRF and PM2.5 by CMAQ with a spatial resolution of 36 km × 36 km, which were further
downscaled to the 0.1◦ × 0.1◦ grid using an offline ordinary Kriging method [49]. The daily means
of simulations were interpolated in spatial dimensions for each variable separately. The purpose
of downscaling is to spatially match WRF-CMAQ simulations with the rest data. Validations for
CMAQ-simulated PM2.5 at both spatial resolutions (0.1◦ and 36 km) were performed using monitoring
data, which are presented in Figures S2 and S3 and briefly illustrated in the Discussion Section. After
downscaling, CMAQ-simulated PM2.5 covered 100% of spatiotemporal coordinates (99,351 pixels ×
365 days), while the in situ observations or AOD measurements only covered 0.54% or 31.56% of
spatiotemporal coordinates, respectively.

2.2. Statistical Analysis

The modeling framework of exposure assessment included three steps, which were presented
in Figure 2. Briefly, we first developed two regression models (Steps 1.1 and 1.2) to associated AOD
or CMAQ with in situ observations of PM2.5, separately; then, the estimates from the two models
were combined based on a maximum likelihood (Step 2); and, finally, we incorporated spatiotemporal
autocorrelations of the monitoring PM2.5 (Step 3).
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Figure 2. Framework for the three-stage model and cross-validation (CV) results by steps: (a) CV
R2s by steps, where R2s were derived based on all available CV samples. (b) CV RMSEs by steps,
where RMSEs were calculated using the records, in which AOD-derived estimates or their averages
exist. Scale of y-axis is logarithm-transformed. Squared RMSE can be divided into two components:
squared bias and variance of the estimates, which are highlighted by rectangles in (b). (c) An example
of observed episodes by a CVIS testing site located in (121.12◦E, 41.12◦N). The corresponding predictors
(dots and lines) are presented with the monitoring observations (the polygons filled by colors, which
reflect air pollution levels.). The location of the site is visualized by the red box in Figure 8.
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2.2.1. Step 1.1: AOD-Derived PM2.5

Based on the mature methodology developed by Ma et al. [41], we first derived PM2.5 from
satellite-retrieved AOD with the auxiliary variables, which were selected according to experimental
findings (e.g., RH [50,51]) or empirical results on PM2.5–AOD associations (e.g., NO2 [52] and FS [26]).
Instead of using the linear mixed effect model (LME) [41], we developed an updated version, a linear
mixed effect model with a spatial-varying coefficient (LMESC) model:

PM2.5,st = µ + [β1 + f (s)]AODst + (β2 + β′2,j)WSst + (β3 + β′3,j)PBLst

+ (β4 + β′4,j)PSst + (β5 + β′5,j)RHst + (β6 + β′6,j)FSst

+ (β7 + β′7,j)NDVIsj + (β8 + β′8,j)NO2,sj + εst,
(1)

where
f (s) = b′1,tη1(s) + b′2,tη2(s) + · · ·+ b′k,tηk(s),

εst ∼ N
(

0, σ2
)

,

[b′i,t=1, b′i,t=2, · · · , b′i,t=T,]
′ ∼ N(0, Φi), i = 1, · · · , k;

[β′i,j=1, β′i,j=2,β
′
i,j=3, β′i,j=4]

′ ∼ N(0, Φi), i = 2, · · · , 9

In the LMESC, s, t and j denote spatial coordinates (longitude and latitude at the centroid of each
pixel), daily and seasonal index, respectively; PM2.5,st denotes in situ observations at spatial location s
and date t; and µ, β1, · · · , β8 denote fixed intercept and slopes for covariates including: (1) daily values
of AOD, WS, PBL, PS, RH and FS; and (2) seasonal values of NDVI and NO2. β′2,j, . . . , β′8,j denote
seasonally-specific random slopes for the other covariates than AOD. f (s) denotes a spatial-varying
coefficient for AOD and is expanded by a given set of k-dimensional basis functions (e.g., local
bisquare functions [53]) and daily-specific random slopes (b′,t). In this study, for computing efficiency,
we expanded f (s) by 2-D splines provided by R package mgcv [54]. ηs became known values depended
on spatial coordinates (s), once the specific form of basis functions was determined. Thus, the inference
of coefficients (b′·,t) in f (s) was done in regression procedure, simultaneously with other parameters
(e.g., βs) in Equation (1). If f (s) is simplified as a one-dimensional daily-specific random slope (β′1,t), the
LMESC will be reduced to a LME, which has been utilized in previous studies to generate AOD-derived
PM2.5 [41]. LME method has disadvantages in generating spatially smoothing predictors, especially
near the provincial boundaries. Through introducing spatial-varying coefficients, LMESC fixed this
problem and was evidenced to outperform LME by our cross-validation results. Detailed comparisons
are presented in the Discussion Section. Spatial and temporal patterns for PM2.5–AOD associations
(β1 + f (s)) are presented in Figure S8. Fitted value and its standard deviation (SD) from Equation (1)
are denoted by PM2.5

AOD and SDAOD, respectively. We named PM2.5
AOD as “AOD-derived PM2.5” in

this study. Equation (1) was fitted based on 92,644 in situ observations collocated with AOD data, and
PM2.5

AOD was estimated at all spatiotemporal coordinates, where AOD existed.

2.2.2. Step 1.2: Calibrated-CMAQ PM2.5

We calibrated CMAQ simulated PM2.5 with the in situ observations by a similar LMESC model:

PM2.5,st = µ∗ + [β∗1 + f ∗(s)]CMAQst + εst (2)

where CMAQst denotes downscaled CMAQ-simulated PM2.5 with a spatial resolution of 0.1◦ × 0.1◦.
In Equation (2), we utilized original scale instead of log-scale of PM2.5 in order to guarantee comparable
error terms (εst) to that in Equation (1), although logarithm transform was usually used to reduce
the bias caused by violation of normality assumption of PM2.5 in the regression analysis. Spatial and
temporal variations of estimated coefficients of CMAQ-simulated PM2.5 (β∗1 + f ∗(s)) are presented
in Figure S9. Fitted value and its SD from Equation (2) are denoted by PM2.5

CMAQ and SDCMAQ,
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respectively. We named PM2.5
CMAQ as “calibrated-CMAQ PM2.5” in this study. Equation (2) was fitted

based on all 294,122 in situ observations collocated with CMAQ data, and PM2.5
CMAQ was estimated

at all spatiotemporal coordinates.

2.2.3. Step 2: Inversed Deviation Weighted Averages

To minimize the uncertainty, we derived a maximum likelihood estimator (PM2.5
ML) for the

collocated AOD-derived PM2.5 and calibrated-CMAQ PM2.5. Assuming the normality for the fitted
values (PM2.5

AOD and PM2.5
CMAQ), the maximum likelihood estimator can be simplified as inversed

deviation weighted averages, shown as follows:

PMML
2.5,st =

PMAOD
2.5,st /(SDAOD

st )
2
+ PMC

2.5,st/
(

SDCMAQ
st

)2

1/
(

SDML
st

)2 (3)

where
(SDML

st )
2
=

1

1/(SDAOD
st )

2
+ 1/

(
SDCMAQ

st

)2

For the places where the AOD is missing, the PM2.5
ML is defined identically as PM2.5

CMAQ.

2.2.4. Step 3: Spatiotemporal Kriging of the Residuals

Taking spatiotemporal autocorrelation of PM2.5 into consideration, we interpolated the residuals
(est = PM2.5,st − PMML

2.5,st) using spatiotemporal Kriging (S/T-Kriging) based on a product-sum
covariance function [55]. Assuming a stationary multivariate normal distribution for the residuals (est),
the variance–covariance matrix can be captured by a function (C) of the spatiotemporal coordinates, as
shown in follows:

[est] ≡ E ∼ MVN(0, Σ),

Cov
(

esiti , esjtj

)
≡ Σi,j = C

(
||si − sj ||2, ||ti − tj ||1

∣∣θ),

where θ denotes the tuning parameters in the covariance function (C) and can be estimated using
variogram approach. For a spatiotemporal point (s*, t*), where in situ observation of PM2.5 does not
exist, the residual can be interpolated as ês∗t∗ = Cov(es∗t∗ , E)Σ−1E. Therefore, the optimal estimates of
PM2.5 can be derived as

PMOptimal
2.5,st = PMML

2.5,st + êst (4)

For more details of S/T-Kriging, please refer to Chapter 6 in Cressie and Wikle [55].

2.3. Model Evaluation

Previous studies usually evaluated statistical performance of PM2.5 estimators by the 10-fold
cross validation (CV10), which randomly divides the monitoring data into ten folds and iteratively
leaves one fold out as the testing dataset to assess the predictions from a model trained by the
remaining data. For independent data, the root of mean squared error (RMSE) has been considered
an unbiased estimator for prediction accuracy [56]. However, for spatiotemporally auto-correlated
PM2.5 data, CV10 may underestimate prediction errors [57]. To fairly evaluate the models, we designed
isolated-site cross-validation (CVIS), in which we held out about 10% of the monitoring sties and
used all measurements from the testing sites to validate the modeling results based on the rest data.
The testing sites were randomly selected with two constraints: (1) they should be separated from
the training sites by more than 25 km; and (2) they should be universally spanned over the study
domain, especially areas with dense population. In this study, we involved 91 testing sites with a
minimum distance from the remained sites of 26.2 km, as shown in Figure 1. The testing set contained
27,800 samples out of 294,122 total daily values of monitoring measurements. We kept multiple testing



Remote Sens. 2017, 9, 221 8 of 19

values located within one grid at the same time point, because the discrepancy among those values
represents the error caused by spatially aggregation, which should not be ignored in model evaluation.
A comparison between CV10 and CVIS was performed based on AOD-derived PM2.5 from a LME
model (Figure S1), and more detailed rationale of CVIS is presented in the Discussion Section. We
also evaluated the three-stage model using the same CVIS data step by step. The CVIS analysis of the
intermediate estimators illustrated how the errors propagate in our data fusion model.

3. Results

3.1. Descriptive Statistics for Inputs of Data Fusion

Figure 3 presents the frequency distributions and summary statistics of in situ observations,
CMAQ simulations and AOD-derived estimates of PM2.5. CMAQ simulated or AOD-derived PM2.5

concentrations were extracted at the same spatiotemporal coordinates of monitoring data, in order to
compare the three types of inputs in our model. During 2014, the overall mean of the monitoring PM2.5

is 61.3 µg/m3, which is slightly higher that of CMAQ-simulated PM2.5 (57.4 µg/m3) but lower than
that of AOD-derived PM2.5 (66.4 µg/m3), which suggests systematic bias in the latter two datasets.
However, after excluding the observational PM2.5 at the time points, when AOD is missing, the mean
of monitoring data is increased to 66.6 µg/m3 (Figure 3b), which is close to that of AOD-derived
PM2.5. A Kolmogorov–Smirnov test indicated that monitoring data presented significantly different
distributions depended on the missing status of AOD. According to our findings, in China AOD
incompleteness occurred non-randomly and was influenced by the ambient concentrations of PM2.5,
which leads to sampling errors in AOD-derived PM2.5. The systemic bias between frequency
distribution of AOD-derived PM2.5 and that of overall monitoring data was partially caused by
the sampling errors of satellite-derived AOD.
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Figure 3. (a) Distributions of in situ observations, CMAQ simulations (0.1◦ × 0.1◦) and AOD-derived
estimates of PM2.5 at the same spatiotemporal coordinates of monitoring data; (b) distributions of the
subsets, conditioned that AOD data are existing; and (c) distributions of the subsets, conditioned that
AOD data are missing. QX% denotes the Xth percentile of a distribution.
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3.2. Cross-Validation Results for the Estimates of the Three-Stage Model

Figure 4a presents the CVIS results of the three-stage model. The final estimator of the model
(PM2.5

Optimal) is in good agreement with the observational data (R2 = 0.72). The root of mean squared
error (RMSE) is 23.0 µg/m3, which accounts for 55% of the SD of observational PM2.5 (defined as
normalized root of mean squared error (NRMSE)) and 41% of the mean of observational PM2.5 (defined
as relative prediction error (RPE)). The mean bias is 4.9 µg/m3, which suggests that PM2.5

Optimal

underestimate the true values. The slope of a linear regression of the predictors against the observations
is 0.76, lower than 1, which indicates that PM2.5

Optimal may be over-smoothed. Among 27,800 testing
observations in CVIS, collocated satellite-derived AOD data are available for 9530 of them. In other
words, at one third of the CV points, PM2.5

Optimal were estimated based on AOD, CMAQ and ground
monitors, while at the other CV points, PM2.5

Optimal were estimated based on the latter two. To evaluate
the capacity of PM2.5

Optimal to assess the long-term exposure to ambient PM2.5, we averaged both
the predicted and the observed values in CVIS by month or by year (Figure 4a). Because averaging
can lower the variance of predictors, the CVIS R2, respectively, increases to 0.81 or 0.87 for monthly
or annually averages, which indicates that PM2.5

Optimal may be more appropriate to study chronic
exposure than acute exposure to PM2.5.

CVIS results for the intermediate estimators (i.e., PM2.5
AOD, PM2.5

CMAQ and PM2.5
ML) of the

three-stage model are shown in Figures 2 and 4b–d. Generally speaking, the predicting errors were
decreased step by step in our modeling process. For example, in daily scale, CVIS R2 increases from
0.62 for either PM2.5

AOD or PM2.5
CMAQ in Step 1, to 0.64 for PM2.5

ML in Step 2 and further to 0.72 for
PM2.5

Optimal in Step 3. The decreasing trend in CVIS RSME is mostly dominated by the shrinkage
in variations of predicting errors due to aggregations of multiple predictors at each testing site. As
the more biased estimator, PM2.5

CMAQ is mixed with the less biased estimator, PM2.5
AOD, in data

fusion, biasness of the combined estimators (PM2.5
ML and PM2.5

Optimal) lays between the former
two. Although PM2.5

AOD is less biased than the others; it may fail to capture some PM2.5 episodes
due to incompleteness of satellite data (Figure 2c). Such weaknesses are partially overcome by data
fusion (Figure 2c). The detailed CVIS scatterplots for the intermediate estimators are presented in the
Figure 4b–d.

We also explored temporal (Figure S6) and spatial (Figure S7) variations of CVIS results.
To evaluate the temporal variation of CVIS errors, we calculated the statistics, including R2, RMSE
and NRMSE by dates. The daily CVIS results reflected the final estimator’s capacity to capture spatial
variations of PM2.5. The CVIS RMSE for PM2.5

Optimal is proportional to the observed value and thus
was varied seasonally (higher in colder season, but lower in warmer season). However, we found
significant trend neither in daily NRMSEs nor in daily R2s (Figure S6), which indicates that the
accuracy of PM2.5

Optimal is temporally constant. Analogously, we also calculated CVIS statistics by sites
to evaluate the final estimator’s capacity to capture temporal variations of PM2.5. CVIS results by sites
displayed significantly spatial patterns, which indicates that PM2.5

Optimal is more accurate in eastern
China, but less in western China (Figure S7). Partial reason is that the accuracy of PM2.5

Optimal tends
to increase with the density of training sites (Figure 5), which are more clustered in eastern China,
especially the urban areas (e.g., Yangtze River Delta or Pearl River Delta metropolitan region).
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grey ribbons present the LOESS smoothing trends with corresponding confidence intervals.

3.3. The Fitted Spatial and Seasonal Patterns of PM2.5 in China

Figure 6 presents the annual maps of PM2.5 fitted by the three-stage model and its intermediate
steps. Different methods displayed consistent patterns in spatial variation of PM2.5, particularly
across eastern China, where PM2.5 pollutants were dominated by anthropogenic sources. During
2014, the hot-spots of PM2.5 (PM2.5

Optimal = 85~120 µg/m3) spanned over North China Plain (the
municipalities of Beijing and Tianjin, and the provinces of Hebei, Henan and Shandong). The
moderately polluted areas (PM2.5

Optimal = 45~85 µg/m3) occupied Sichuan Basin (Sichuan Province
and Chongqing Municipality), Loess Plateau (Shanxi Province and middle of Shaanxi Province),
Yangtze Plain (Shanghai Municipality, the provinces of Anhui, Jiangsu, Hunan and Hubei) and
Northeast China Plain (the provinces of Heilongjiang, Liaoning and Jilin). The major divergence
among these maps exists in the deserted areas of northwestern China. CMAQ-based estimators (i.e.,
CMAQ-simulated PM2.5 and calibrated-CMAQ PM2.5) failed to capture PM2.5 from natural sources and
underestimated the concentrations across the Taklamakan desert. In the fused estimators (i.e., PM2.5

ML

and PM2.5
Optimal), the problem was fixed by introducing AOD data. Figure 7 presents seasonal maps

of PM2.5 fitted by PM2.5
Optimal, which confirms that PM2.5 concentrations are higher during winter

(DJF) and autumn (SON), but lower in summer (JJA) and spring (MAM). The sever pollution of PM2.5

in colder seasons might be attributed by fossil fuel combustions, especially across northern China.
Seasonal maps for the other estimators are presented in supplemental Figure S4.

3.4. Exposure Assessments Based on the Fused Estimates

The fused estimator of PM2.5 (PM2.5
Optimal) will support exposure assessments in future

health-related studies. AOD or CMAQ based estimator of PM2.5 has been utilized to study long-term
rather than short-term exposure to ambient pollution [18,58], because of data availability or data
accuracy on daily scale. For example, we visualized spatiotemporal distributions of CMAQ
simulations and AOD-derived PM2.5 with the corresponding monitoring data during an episode
of haze around Beijing-Tianjin-Hebei region in Figure 8. According to the maps, AOD-based method
overlooked some hotspots due to incompleteness and could not capture the whole polluting procedure;
whereas CMAQ simulations underestimated the severity of haze due to systematic errors. Unlike
them, the fused estimates accurately characterized the growth, expansion and elimination of the
haze. Therefore, PM2.5

Optimal can serves as exposure estimates to study either acute or chronic
effects of PM2.5. For example, combining PM2.5

Optimal with county-level data of China’s sixth
census, we assessed both annual and daily exposures to PM2.5 across China in 2014. Accordingly,
population-weighted concentration of annual exposure to ambient PM2.5 was 55.7 µg/m3 and 82%
of total population inhabited in the places exceeding WHO Air Quality Interim Target-1 (35 µg/m3),
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whereas population-weighted count of polluted and heavily-polluted days (defined as daily mean of
PM2.5 > 75 µg/m3 or 150 µg/m3 by CNAAQS) was 81 and 14 days, respectively.Remote Sens. 2017, 9, x FOR PEER REVIEW  12 of 19 
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visualized by the dots. The time-series of cross-validated values for the testing site located within the
red rectangle are presented in Figure 2c.
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4. Discussion

In this paper, we developed a three-stage model to estimate spatiotemporal variations of PM2.5

through fusing CMAQ simulations, satellite remote sensing measurements and ground monitoring
data together. We illustrated the method by a practice to generate daily PM2.5 maps with a spatial
resolution of 0.1◦ × 0.1◦ across China during 2014. The CV results evidenced that the fused estimator
(PM2.5

Optimal) was in good agreement with the observational PM2.5, and outperformed the estimators
based on either AOD or CMAQ data alone.

AOD-based methods have been widely utilized to estimate PM2.5 concentrations on regional [52],
national [41] or global scale [29]. Among them, LME or its extension has been more widely used
because of computing efficiency. For example, in China, Ma et al. [41] developed high-quality estimates
of PM2.5 covering a long-period from 2004 to 2013, through joining a LME and a generalized additive
model (GAM) to retrieve PM2.5 from MODIS AOD at 0.1◦ resolution; and tested their estimates
by a CV10 of monitoring data in 2013 (RMSE = 27.99 µg/m3, R2 = 0.78 and RPE = 36.3% for the
first-stage estimator from LME; RMSE = 27.42 µg/m3, R2 = 0.79 and RPE = 35.6% for the final
estimator from LME + GAM). In this paper, we fitted a similar LME model through reducing the
spatial-varying coefficient ( f (s)) in Equation (1) to a one-dimensional random slope; and evaluated
it by CV10 (RMSE = 23.3 µg/m3, R2 = 0.69, RPE = 36.7%), which suggests that the LME method
performs equally well on both our datasets and Ma and coworkers’ [41]. However, LME has one
disadvantage in modeling AOD in large scale. To incorporate geographical variations of the fitted
parameters, LME were usually fitted separately by sub-regions (e.g., provinces), which resulted in
spatially non-smoothing predictions near the boundaries of two sub-regions. Ma et al. [41] addressed
this issue by creating buffer zones around each province and averaging the overlapped predictions
from neighboring provinces. The buffer-zone-averaging method introduced a side effect that the
uncertainty (standard errors) of predictions averaged from two different LME models could not be
quantified directly. Our LMESC approach incorporated spatial variations of the modeling parameters
by a nonlinear regression coefficient ( f (s)), rather than fitting separate models, so that it produced
more spatially smoothed estimates than LME. Our CVIS analysis also confirmed that LMESC slightly
outperformed LME in developing AOD-derived PM2.5 (RMSE = 26.2 µg/m3 and R2 = 0.62 for LMESC;
RMSE = 26.8 µg/m3 and R2 = 0.61 for LME).

Another weakness of AOD-based estimators was caused by non-random incompleteness in
satellite measurements. In other words, AOD-derived values are more likely to be absent, when
estimating PM2.5 concentrations within a specific range. At the testing sites of CVIS, AOD-derived
PM2.5 approximately covered 32%, 43%, 44% or 36% of unpolluted (PM2.5 < 75 µg/m3), lightly-polluted
(75 µg/m3 ≤ PM2.5 < 115 µg/m3), moderately-polluted (115 µg/m3 ≤ PM2.5 < 150 µg/m3) or
heavily-polluted (PM2.5 ≥ 150 µg/m3) days, respectively (as shown in Figure S5). In China, rainfalls
AOD data tend to be missing during rainfalls, when particle concentrations are usually lower due
to wet deposition. Such effect partially explains the lower sampling rate of AOD-derived PM2.5 at
unpolluted days (Figure S5). Conversely, hazed episodes, especially in northern China, may be falsely
classified as clouds by satellite and be neglected in current AOD algorithm, so that the sampling rate
of AOD was also lower at heavily or severely polluted days. Long-termed averages of AOD-derived
PM2.5 can be biased from the truth due to the unevenly missing rates at different concentrations, which
is known as sampling bias. Because the extreme values are less captured in their estimates, AOD-based
methods may over-smooth the variability of PM2.5. Previous studies showed sampling bias of AOD
may lead to± 20% error in chronic exposure assessment of PM2.5 [58]. Combining AOD-derived PM2.5

with a spatiotemporally complete estimator, such as CMAQ simulations, can reduce the bias. Our
step-specific CVIS results showed that comparing model performance before and after fusing with
PM2.5

CMAQ, accuracy of intermediate estimator of PM2.5 was considerably improved it in monthly
(R2 = 0.67 for PM2.5

AOD vs. R2 = 0.77 for PM2.5
ML) or yearly scale (R2 = 0.73 for PM2.5

AOD vs. R2 = 0.81
for PM2.5

ML), which may be explained by the reduction of sampling bias.
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Air quality modeling results have been utilized in risk assessment of ambient pollutants [32] but
rarely in epidemiological studies because of their low accuracy and potential bias. Data assimilation
methods have been applied to improve predictability of air quality models. In China, Tang et al. [59]
first developed an EnKF to combine numerical outputs from the Nested Air Quality Prediction
Modeling System (NAQPMS) [60] and in situ observations of Ozone; then Liu et al. [18] applied a
similar method to estimate daily PM2.5 across China during 2013 and reported a RMSE of 30.2 µg/m3

by a five-fold CV, which is as accurate as our intermediate estimator, PM2.5
CMAQ (CVIS RSME =

30.1 µg/m3). In this study, we improved raw CMAQ estimates (CVIS RSME = 33.4 µg/m3, shown
in Figure S3) is three aspects: (1) downscaling spatial resolution of CMAQ simulations to 0.1◦

(CVIS RSME = 33.0 µg/m3, shown in Figure S2); (2) calibrating them with in situ observations (CVIS

CVIS RSME = 30.1 µg/m3 for PM2.5
CMAQ, shown in Figure 4c); and (3) fusing them with AOD-derived

PM2.5 (CVIS RSME = 28.2 µg/m3 for PM2.5
ML, shown in Figure 4d). Although the data fusion

step increased little on CVIS RMSE, but significantly decreased the bias of CMAQ-based estimator
(Bias = 14.8 µg/m3 for PM2.5

CMAQ vs. Bias = 7.7 µg/m3 for the PM2.5
ML, fused by both PM2.5

CMAQ

and PM2.5
AOD), which reflected that AOD played a key role to control systemic error in data fusion.

In the final step of the three-stage model, we incorporated the spatiotemporal variations
unexplained by PM2.5

ML through modeling the residuals by S/T-Kriging, which is analogous to
the GAM stage in Ma et al. [41]. Kriging has been proved to be mathematically equivalent to thin-plate
regression splines, a specific type of GAM [49]. According to CVIS, S/T-Kriging further decreased
modeling error by 18% (RMSE = 28.2 µg/m3 for PM2.5

ML vs. RMSE = 23.0 µg/m3 for PM2.5
Optimal),

which indicated that the spatiotemporal autocorrelations should not be ignored in PM2.5 modeling.
Additionally, we also found that CVIS errors of PM2.5

Optimal tended to be lower at the testing sites,
which were surrounded by more training sites (Figure 5). Similar findings have been reported in
previous studies, which introduced spatial or spatiotemporal autocorrelations into PM2.5 modeling [61].

Spatiotemporally autocorrelation benefits prediction of PM2.5, especially at the unmeasured
locations but makes troubles for model evaluation. In CVs of auto-correlated variables, randomly
selected testing data (e.g., CV10) may not be independent of the training data, so that the predicting
accuracy can be overestimated [57]. Through choosing the isolated monitoring sites in CVIS approach,
we attempted to use the testing records, which were less correlated with training data. We compared
performance of CVIS to that of CV10 in evaluating the AOD-derived PM2.5 from the LME model,
as shown in Figure S1. In comparison, we used a subset of CV10 to make sure that the two CVs
were conducted on the same testing records. We found that CV10 error of the LME was consistent
with the previous studies [41], but considerably lower than CVIS error (CV10 RMSE = 23.3 µg/m3

vs. CVIS RMSE = 26.8 µg/m3). The results suggested that CV10 might overestimate the predicting
accuracy. Lv et al. [57] addressed this issue through leaving out records from all monitors within
a city simultaneously in CV, which is analogous to our approach, considering that monitors are
usually clustered within cities but separated between different cities. Even though the models were
evaluated by CVIS in this paper, the influence of spatiotemporal autocorrelations on CVs cannot be
avoided completely. In other words, the true predicting error of the three-stage model may still be
underestimated in this paper.

The uncertainty of our study sources from three aspects. First, during our study period, the routine
monitoring networks for ambient particles were too sparsely distributed to characterize some polluted
sub-urban areas, such as undeveloped cities in the provinces of Henan and Shannxi. Second,
satellite-derived AOD measurements played a key role to control bias in our approach but were
only available at approximately one third of the predicting points. Increasing the spatiotemporal
coverage of AOD (e.g., combining AOD from multiple satellites) will be considered in our future
studies to reduce modeling uncertainty. Finally, CMAQ-WRF simulating procedures and inputted
emission inventories may also contribute to the uncertainty of the three-stage model.
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5. Conclusions

We developed a three-stage statistical model to estimate PM2.5 concentrations through fusing
in situ observations, satellite-derived AOD measurements and CMAQ simulations. We applied the
method to produce daily maps of PM2.5 over China at a spatial resolution of 0.1◦. The final estimator
of the three-stage model is shown to highly correlated with daily monitoring data (CVIS R2 = 0.72)
and to outperform CMAQ-simulated PM2.5 (CVIS R2 = 0.51) or AOD-derived PM2.5 (CVIS R2 = 0.62).
Our estimates will support future health-related studies on either acute or chronic exposure to
ambient PM2.5.

Supplementary Materials: The following are available online at www.mdpi.com/2072-4292/9/3/221/s1,
Figure S1: Scatterplots to compare CV10 and CVIS using AOD-derived PM2.5 from a LME model, Figure S2:
Scatterplots of cross-validated values and their monthly or annual averages for downscaled CMAQ PM2.5
(0.1◦ × 0.1◦), Figure S3: Scatterplots of cross-validated values and their monthly or annual averages for raw
CMAQ PM2.5 (36 km × 36 km), Figure S4: Seasonal maps of PM2.5 in 2014 over China, produced by CMAQ,
intermediate and final estimators of the three-stage model, Figure S5: Comparisons of coverage rate (CR) of
AOD-derived PM2.5 by groups of observational PM2.5 at the CVIS testing sites, Figure S6: Temporal variations of
CV results for the final estimator (PM2.5

Optimal), Figure S7: Spatial distributions of CV results for the final estimator
(PM2.5

Optimal), Figure S8: Distributions of coefficients for AOD by months (upper panel) and their spatial patterns
by seasons (lower panel) in Equation (1), Figure S9: Distributions of coefficients for CMAQ-simulated PM2.5 by
months (upper panel) and their spatial patterns by seasons (lower panel) in Equation (2).
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