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Abstract: The accuracy of training samples used for data classification methods, such as support
vector machines (SVMs), has had a considerable positive impact on the results of urban area
extractions. To improve the accuracy of urban built-up area extractions, this paper presents
a sample-optimized approach for classifying urban area data using a combination of the Defense
Meteorological Satellite Program-Operational Linescan System (DMSP-OLS) for nighttime light data,
Landsat images, and GlobeLand30, which is a 30-m global land cover data product. The proposed
approach consists of three main components: (1) initial sample generation and data classification
into built-up and non-urban built-up areas based on the maximum and minimum intervals of digital
numbers from the DMSP-OLS data, respectively; (2) refined sample selection and optimization by the
probability threshold of each pixel based on vegetation-cover, using the Landsat-derived normalized
differential vegetation index (NDVI) and artificial surfaces extracted from the GlobeLand30 product
as the constraints; (3) iterative classification and urban built-up area data extraction using the
relationship between these three aspects of data collection together with the training sets. Experiments
were conducted for several cities in western China using this proposed approach for the extraction
of built-up areas, which were classified using urban construction statistical yearbooks and Landsat
images and were compared with data obtained from traditional data collection methods, such as the
threshold dichotomy method and the improved neighborhood focal statistics method. An analysis of
the empirical results indicated that (1) the sample training process was improved using the proposed
method, and the overall accuracy (OA) increased from 89% to 96% for both the optimized and
non-optimized sample selection; (2) the proposed method had a relative error of less than 10%,
as calculated by an accuracy assessment; (3) the overall and individual class accuracy were higher
for artificial surfaces in GlobeLand30; and (4) the average OA obviously improved and the Kappa
coefficient in the case of Chengdu increased from 0.54 to 0.80. Therefore, the experimental results
demonstrated that our proposed approach is a reliable solution for extracting urban built-up areas
with a high degree of accuracy.
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1. Introduction

In China, the rapid development of the social economy and changes in the industrial structure
have accelerated urbanization. A key characteristic of urbanization is the constant expansion of urban
areas into farm land and forested areas. The loss of agricultural lands threatens and damages the
ecological environment and directly affects the livability of cities and the sustainability of economic
development. Therefore, methods of extracting and evaluating urban spatial information in China are
extremely important.

The Defense Meteorological Satellite Program-Operational Linescan System (DMSP-OLS)
nighttime light data are a valuable resource for regional and global urban mapping, as well as for the
study of human activities [1–3]. On nights without cloud cover, nighttime light sensors can effectively
detect city lights, even low-intensity lights within small-scale residential areas or in cars, and then
quickly extract the city information. Not only do DMSP-OLS data have a small storage capacity, but also
a long time series compared with traditional remote sensing images that can provide a wide range of
urban land use information, thus playing a significant role in the extraction of urban areas and the
analysis of dynamic changes of urban spatial patterns [4–7]. A number of methods have been developed
to map urban areas using DMSP-OLS data, and these approaches can generally be divided into two
categories: supervised classification and un-supervised classification. Experiential threshold, mutation
detection, and comparison methods based on high-resolution data have considerably improved the
acquisition of urban spatial information and are representative of the un-supervised classification of
the nighttime light remote sensing field [8–12], whereas the support vector machine (SVM) method
uses sample selection and nighttime light image classification to acquire urban information, and
is representative of a commonly employed supervised classification method [13–15]. Cao et al. [16]
proposed an SVM-based region-growing algorithm using DMSP-OLS and SPOT normalized differential
vegetation index (NDVI) data to extract the urban extent of 25 Chinese cities with different levels
of economic development, including Beijing, Shanghai, Hangzhou, Zhengzhou, and Lanzhou [16].
This algorithm uses several simple criteria to build initial training sets of urban and non-urban pixels.
In particular, the growth of seed pixels (a window with 3 × 3 pixels), which is involved in the iterative
classification procedure, is capable of running continuous training for the SVM classifier with the
aim of semi-automatically extracting the urban extent. Pandey et al. used a second-order polynomial
regression equation to intercalibrate DMSP-OLS data as a necessary experimental preparation and then
employed the same algorithm as Cao et al. to extract urban areas in India [17]. Yang et al. presented
a stratified SVM-based method to map urban land in China, which addressed the problem of extracting
urban land over a large area with obvious regional variations [18]. However, the above unsupervised
classification methods present a number of limitations in the process of sample threshold selection,
such as excessive subjective interventions (according to statistical data, accumulated experience,
and visual observation-derived assumptions), data sources for selection that present a lack of diversity
and inherent defects, and a low degree of overall automation. All of these limitations have led to
a reduction in the credibility of extraction results based on these methods. Although other methods
have attempted to fully exploit the features of nightlight, the detailed classification of SVM classifiers,
and present classification results that are more accurate than those obtained by unsupervised methods
that rely on thresholds, areas with blooming vegetation and abundant vegetation (and water pixels)
are not totally removed from urban pixels because of the improper selection of samples and human
intervention in the classification processes. Thus, further improvements are required to ensure the
accuracy of SVM classifications.

Optical remote sensing data with high resolution, such as data extracted from remote sensing
image indices and other high-quality land cover data products, are the major datasets used for urban
information extraction [19–34], and such data are far superior to those of DMSP-OLS in terms of image
resolution. However, most of these data products have limited temporal coverage and present limited
usefulness for a dynamic analysis at large scales. For example, although the class accuracy of each
land-cover classification of GlobeLand30 data is generally at a high level [35], this product is still limited
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by time constraints (i.e., it only contains two terms of data with benchmark years of 2000 and 2010); thus,
it cannot meet the practical requirements for monitoring urban spatial change within a long-term time
series. More importantly, problems related to the same objects using different spectra and different
objects using similar spectra remain unresolved, which increases the difficulty of distinguishing
between urban and bare lands simply based on the spectral information obtained from several bands
of surface reflectance data. Furthermore, exploring regional or global areas is labor intensive and time
consuming because of the massive data volumes involved [36]. Thus, to precisely and reliably extract
urban areas, DMSP-OLS data are used as the main data source of the data integration, and spectral
information from the surface reflectance data is only used as an auxiliary source.

To address the problems associated with current extraction methods and to improve the
credibility and effectiveness of classification results, we proposed a sample-optimized approach
that utilizes SVM classification to semi-automatically extract urban built-up areas using an integration
of multi-source data. The proposed approach consists of three main steps: (1) Initial sample generation
and classification based on the maximum and minimum intervals of the digital numbers from the
DMSP-OLS data and the initial training of samples into two-classes of urban built up and non-urban
built up areas, which were selected and entered into the first SVM classification; (2) Refined sample
selection and optimization using a probability threshold for determining pixels that contain vegetation
cover, which uses the Landsat-derived normalized differential vegetation index (NDVI) as a constraint,
and artificial surfaces, which uses the GlobeLand30 product as a constraint. The relationships among
the three data sources as well as with the training sets were established to optimize the process of SVM
classification; (3) An iterative classification and data extraction process for urban built-up areas was
developed based on trials evaluating the relationship between the results obtained here and previous
results using corresponding refined samples, and the iterative optimization process was terminated
when the values reached a certain threshold, which generated the final urban built-up extraction
results. All the ideas of our proposed approach are novel in the nighttime light data application field,
which differs from other SVM-based extraction methods combined with DMSP-OLS data. To validate
the flexibility and robustness of the proposed method, a case study was conducted for several typical
regions in western China in 2010. The aim of this study is not to provide an approach for using Landsat
or other types of global land-cover datasets alone or to apply classification methods based on the
data sources above; rather, the goal is to improve the accuracy of generating training samples for
information extraction with a high degree of automation, rationality, and credibility.

The remainder of this paper is organized as follows. Section 2 describes the study area and data
sources; Section 3 introduces the proposed method; Section 4 provides the experimental and analytical
results; and Section 5 presents the conclusions.

2. Study Areas and Materials

Although China has been experiencing rapid urbanization since the 1980s, large discrepancies
remain in the economic development of different regions, especially in western China. With the
deepening implementation of the “China Western Development” strategy, which is a Chinese
national strategy for economic development and diplomatic efforts, the regional cooperation and
coordinated development of cities located in western China are getting increasingly closer. In this
study, four provincial capital cities, including Yinchuan, Xining, Chengdu, and Kunming, were selected
as typical representative cities of western China, which are regularly among the first echelon of social
economic development in Western China. These cities push forward the strategy steadily and achieve
significant outcomes in many fields. Particularly in 2010, the population of these cities varied from less
than 1.5 million (Yinchuan) to over 11 million (Chengdu), and the per capita gross domestic product
(GDP) ranged from less than 40,000 RMB (or 6100 USD) for Xining to over 70,000 RMB (or 10,000 USD)
for Chengdu [37].
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DMSP-OLS data, GlobeLand30 product data, and Landsat image data were used in this research,
and the major characteristics of each data source are summarized in Table 1. All the selected datasets
were acquired in 2010.

Table 1. Description of the remote sensing data sets used in this study.

Data Source Product Description Spatial Resolution

DMSP-OLS data Yearly stable nighttime light composite 1 km

GlobeLand30 product
Land cover types mainly include water bodies, tundra, bare land,

cultivated land, forest, shrub land, grassland, permanent
snow/ice, artificial surfaces, and wetland

30 m

Landsat image product Seven images covering 4 cities, band 3–5 are selected in our study 30 m

The DMSP-OLS nighttime light data with a 1-km spatial resolution were provided by the National
Geophysical Data Center. Stable nighttime light images (Figure 1), which represent a nighttime
light data product, are annual raster graphic images that show the average nighttime light intensity,
which includes lights in urban and rural areas and permanent lights in other places, but excludes
noise, such as moonlit clouds or fires [38]. The digital number (DN) values of these images represent
the average light intensity, which ranges from 0 to 63. A value of 0 indicates a completely dark area,
which is not the focus of this study, whereas a higher DN value represents greater light intensity in
a particular area. The geographic coordinate projection of the data is the World Geodetic System
1984 (or WGS-84), which is transformed into the Asia Lambert conformal conic projection to more
accurately calculate the scope of the urban built-up areas in the next stages.
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Figure 1. DMSP-OLS image covers four cities in 2010. (A–D) those different experimental areas,
respectively, i.e., Yinchuang, Xining, Chengdu and Kunming.

The primary data source was Landsat data from the benchmark years of 2000 and 2010, and the
supplemental data included China’s Environmental Disaster Mitigation satellite images and Beijing-1
data in partial areas. Compared with DMSP-OLS data with 1000 m resolution, GlobeLand30 was
the latest product with 30 m resolution at a much higher level, which developed based on a pixel
classification-object abstraction-knowledge check (POK) method [39]. Ten types of land cover were
included: forests, grassland, shrub land, wetlands, bare land, tundra, cultivated land, water bodies,
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permanent snow/ice, and artificial surfaces (Figure 2). The data were divided by the attribute values
of these land cover types to extract artificial surfaces as an independent layer. Artificial surfaces
were represented by land cover types covered with asphalt, concrete, gravel, bricks, tiles, and other
building materials resulting from human activity, and they included residential areas, transportation,
telecommunication, industry, and mining infrastructure. The product information officially verified
by GlobeLand30 was reported in the top international scientific journal “Nature” in Volume 514 in
2014. More authoritative information can also be found on the official website of GlobeLand30 [40],
which officially reports that the overall accuracy (OA) of an average GlobeLand30 classification is
approximately 80.33% globally, the Kappa indicator of the classification is 0.75, and the user accuracy
of the artificial surface class for the GlobeLand30 product is approximately 86.70% [39].

In addition, reference data for urban built-up areas are mainly sourced from the China Urban
Construction Statistical Yearbook of 2011 [41]. Information on boundaries of urban administrative
divisions and urban spatial structures is gathered from the 1:4 million scale vector datasets in the
National Fundamental Geographic Information System.
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Finally, Landsat product images were acquired to obtain data on the vegetated areas extracted
according to the NDVI process. Using Landsat 5, Landsat 7, and Landsat 8 satellite data collected
since the 1980s, the Center for Earth Observation and Digital Earth of the Chinese Academy of
Sciences (CEODE) selected images with fine quality and produced several different series of advanced
remote-sensing data products subjected to atmospheric correction, ortho-rectification, projection
transformation, masking, clipping, and other types of processing. According to the study areas,
we used four images from this product (2010) with a spatial resolution of 30 m, which were acquired
directly from the Product Data Service Plan at the CEODE [42].

3. Methods

A sample-optimized approach for SVM classification was proposed to extract urban built-up
areas with a high degree of credibility. The flowchart of the proposed approach is shown in Figure 3,
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and it consists of several steps: (1) preprocessing of the DMSP-OLS and Landsat data; (2) initial sample
generation and classification; (3) iterative sample optimization process; and (4) SVM classification
for urban built-up area data extraction. As the core of this approach, steps 2–4 are introduced in
a single section.
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3.1. Data Pre-Processing

DMSP-OLS datasets currently include images covering the 22 years from 1992 to 2013. Because
satellites are subject to rapid upgrades, the data from different types of satellites present varying quality
and light saturation phenomena [43,44]. Therefore, this article used the calibration method for long
time series DMSP-OLS nighttime light image datasets, proposed by Cao et al. in 2009, to preprocess the
remote sensing data for nighttime lights in 2010 [45]. The major steps are the mutual calibration of the
raw data images and the calibration between each image series (fusion for data in the same year and
calibration for data in different years). A mutual calibration is adopted for long time series datasets
using the regression model presented in Formula (1) after the re-sampling and re-projection processes:
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DNcal = a × DNb (1)

In Formula (1), the DN represents the pixel value of the images ready to be calibrated; DNcal
represents the pixel value of the calibrated images, and a and b are two parameters obtained after
the power regression. The parameter values for the power regression of the calibrated images and
reference images in the test as well as estimates of other relevant coefficients, such as R2, from 2006
to 2012, are listed in Table 2. The corresponding power equation was used to perform a mutual
calibration of the images for each period in China (including the data from 2010). This saturation
correction processing of the DMSP-OLS data generated DN values for the DMSP-OLS data in the
range of (0, 63) to (0, 53). A masking process was then performed for the images resulting from the
aforementioned steps, and were then used against the administrative backdrop of Chengdu, Kunming,
Xining, and Yinchuan.

Table 2. Inter-calibration model coefficients for each image from 2006 to 2012.

Satellite Number Year A b R2

F16

2006 0.8296 1.1883 0.9647
2007 0.7314 1.2132 0.9369
2008 0.7927 1.1487 0.9186
2009 0.6051 1.1525 0.8923

F18
2010 0.3427 1.2188 0.8387
2011 0.7035 1.0872 0.8545
2012 0.4821 1.1866 0.8849

In addition, vegetation-cover data were extracted using the NDVI from Landsat images, and this
information was combined into the sample optimization process in the subsequent steps. The NDVI is
a superior vegetation indicator and can effectively reflect the growth, coverage, and dynamic seasonal
changes in vegetation [46–48]. For remote sensing images, the NDVI in Formula (2) is calculated
as follows:

NDVI =
NIR− R
NIR + R

(2)

Vegetation has strong reflectivity in the near-infrared (NIR) band and weak reflectivity in the red
(R) band, which are represented by band 4 and band 3 in the Landsat images, respectively. After the
normalized ratio calculation, the brightness of the vegetation in the images could be enhanced to the
fullest and other ground objects could be restrained. The NDVI ranges between −1 and 1. Because of
the differences among the distribution of vegetation cover in different regions, the optimal threshold
between vegetated and non-vegetated cover was defined based on a histogram distribution of the
NDVI values after an extensive statistical analysis of the entire number of pixels from the corresponding
regions. Pixels with NDVI values that exceeded this threshold were considered vegetation cover; this is
a required step for the experiment.

3.2. Sample Optimization in SVM Classification

Because greater DN values for lights indicate a greater possibility of a point belonging to an urban
area, researchers have successively combined the SVM classification with nightlight time data [49,50]
and have adjusted and set an “optimal threshold” according to certain features, such as areas or shapes
that cannot be universally applied to cities at different scales, geographical locations, and different
development stages. Accordingly, Cao et al. [16] attempted to utilize the region-growing concept in
SVM sample training, in which the input urban pixels that meet the baseline criteria for a definitive
selection were assigned as seeds. Then, all pixels that utilized a window of 3 × 3 pixels for each seed
were classified simultaneously by the SVM-based classifier in the iterative procedure.

Although the above sample selection approach based on neighboring seeds achieved good results
in the accuracy assessments and avoided the tedious trial-and-error procedure, it could not guarantee
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the accuracy of the training samples in the SVM classification. In addition, the reliability of the
classification results required further improvement. Therefore, a sample-optimized approach was
proposed that combines the SVM classification, a post-probability threshold, and multi-source data
integration. There are three steps within the proposed sample-optimized procedure: generation
and classification of initial samples, selection and optimization of refined samples, and iterative
classification and urban built-up area extraction.

3.2.1. Initial Samples Generation and Classification

Because built-up urban areas are illuminated artificially at night, their corresponding pixels in
nighttime light images have larger DN values than the surrounding dark rural areas [51,52]. Based on
previous results, the DN value range (50, 53) was selected as the maximum interval of the built-up
class, and the DN value range (0, 3) was selected as the minimum interval of the non-built-up class.
Patches with DN values in these ranges served as the initial training sets and were input into the SVM
classifier using a radial basis function kernel. Although patches with DN values within the range
(3, 50) must be further identified, the initial classification results roughly segmented the images into
urban built-up areas and non-built-up urban areas.

3.2.2. Refined Samples Selection and Optimization

The SVM method is capable of identifying the class label and generating the post-probability of
each class, which represents one of the most important indices in SVM classification. Previous studies
have converted the outputs of the SVM into pairwise coupling post-probabilities, and various types of
post-probabilities have been generated from such pairwise coupling post-probabilities. In this paper,
for two categories of land-cover features, the posterior probability of SVM can be obtained by pairwise
coupling according to its predicted output values. Such pixel-specific post-probability can be used as
land cover composition information, which means that every pixel has a different attribute probability
for each surface feature class, and the pixel is assigned to the class with the highest probability as
its class information [53]. Therefore, we defined a post-probability value P to set the likelihood
for each pixel and determined the “true” probability of a pixel belonging to a specific classification
category. Pixels with all rule probabilities less than P are unclassified. In addition, a critical threshold
value T defined as 0.8 represented a highly credible threshold value probability outputted after SVM
classification for both built-up and non-built-up classes (i.e., Pbu ≥ T and Pnon−bu ≥ T), to select
samples with higher credibility from the results of previous classifications. The threshold value T
(i.e., T = 0.8) indicates a high credibility level based on the class probabilities of SVM classification.
It is important to note that the value of T is defined after many trials. Although it may be somewhat
subjective, it is indeed a basic input guarantee for our sample optimization process in the next step,
so as to extract reliable and sufficient results.

For the selection of refined samples, the probability threshold T was defined with two constraints,
i.e., the vegetation cover and artificial surface classifications obtained in the data preprocessing
stage, and then the relationships among the three data sources as well as with the SVM training sets
were established.

As shown in Table 3, the training sets of the urban built-up class were selected as the pixels that
belonged to artificial surfaces, and they also met Pbu ≥ T. Training sets of the non-urban built-up class
included the vegetation-covered pixels based on NDVI processing, and they also met Pnon−bu ≥ T.
In each iteration, the value T was used as a condition that constrains the posterior probability value P.
It also constrains the selection of the training sample together with vegetation elements and artificial
surface elements. After the refined selection process for both classes was completed, these training
samples can be involved in the process of SVM classification. Misclassification alarms and false
alarms will be greatly reduced according to the designed progressive iterative optimization process for
SVM classification.
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Table 3. Rule for refined samples selection by combining multi-source data information.

Rule Properties Pbu ≥ T Pixels Belong to
Artificial Surface Pnon−bu ≥ T Pixels Belong to

Vegetation Cover

Urban built-up class
√ √

× ×
Non-urban built-up class × ×

√ √

3.2.3. Iterative Classification and Urban Built-Up Area Extraction

When each SVM classification was finished, the total areas of built-up patches were easily
calculated from the present and the previous results via the corresponding selected samples, which are
denoted as Areapresent and Areaprevious, respectively. θ is defined as the proportion of the area difference
between Areapresent and Areaprevious to the total area of pattern spots (Areatotal) in Formula (3):

θ =
Areapresent − Areaprevious

Areatotal
(3)

Based on many trials evaluating the relationship among Areapresent, Areaprevious, and θ, the iterative
optimization process was conducted until θ finally reached full convergence, such as θ ≤ 0.08, which
can guarantee the high accuracy requirement for the actual sample iteration and optimization and
allow the continuous sample-optimized classification method to extract the optimal built-up results.
This iterative updating procedure increases the rationality and objectivity of classifications and avoids
possible problems caused by verbose and repeated processes. Thus, the credibility and ability to
automate the classification results are both greatly enhanced.

3.3. Two Methods for Experimental Comparison

In our experiments, two data extraction methods were used to compare the performance of the
proposed method. The first method was the threshold dichotomy method [54,55], which primarily
performs continuous circular comparisons between urban land patterns in a spot area and statistical
data from the varied nightlight DN values until the urban land pattern spot area is extracted by
the specific threshold value that best approximates the statistical data, and this area is where the
urban land is ultimately classified. The second method was the improved neighborhood focal statistic
(NFS) method [56], which primarily identifies central and marginal urban areas using maximum
and minimum NFS calculations of DMSP-OLS data while eliminating vegetated features and water
bodies using multi-source geographic data integration to extract the optimal urban areas. Studies have
indicated that both methods are useful for extracting urban built-up area data.

4. Experimental Results and Analysis

This study focused on four cities with relatively low levels of urban development in western
China: Chengdu, Kunming, Xining, and Yinchuan. Because the spatial resolution of Landsat images is
much finer than that of the nighttime stable light data, evaluating the results using Landsat data is
a feasible and acceptable approach [57,58]. To quantify the performance of the threshold dichotomy
method, the improved NFS method, and our proposed method, we performed accuracy assessments
using Landsat images as the reference data and considered these methods as different schemes of
urban area data extraction. The respective results should be compared with those extracted from
Landsat images according to visual and quantitative comparisons of pattern spots.

4.1. Results of Sample Optimization

By using the sample results for the iterative updating process for Chengdu shown in Table 4,
the quantity of selected samples at different stages could be obtained and the corresponding accuracy
assessment for their training results could be performed. Table 4 shows the iteration time (defined as I),
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the number of selected samples of built-up areas, two classes of non-built-up areas, and accuracy
evaluation indexes for the corresponding training results (i.e., producer accuracy, user accuracy,
and OA). For the initialization (i.e., I = 0), the aforementioned samples were manually selected using
the DN values of the DMSP data; thus, these samples had not been subject to iterative procedures,
which means the training process did not contain any auxiliary data, features, or index factors. As I
increased, the samples in the built-up areas and non-built-up areas were continually selected and
refined according to the iterative updating process, and the accuracy indexes largely increase, especially
the value of OA, which increased from 0.89 to 0.96. Moreover, the producer accuracy changed in
an opposite manner to that of the other accuracy indexes shown in Table 4 because the selection
mechanism of the original samples (when I = 0) was completely different from the mechanisms
(when I ≥ 1) involved in the iterative updating procedure.

Table 4. Sample results in the iterative updating procedure.

Iteration Time (I)
Training Sample (Pixel) Accuracy

Built-Up Area Non-Built-Up Area Producer Accuracy User Accuracy Overall Accuracy

0 572 4684 0.76 0.60 0.89
1 456 9886 0.59 0.95 0.92
2 449 10,058 0.72 0.97 0.96

The results based on SVM training with two optimizations (when I = 2) were much finer than the
results that only included SVM training without sample optimization or auxiliary data (when I = 0)
for certain characteristics, such as the shape and size of the pattern spots (Figure 4). Although
high similarity was maintained with the results obtained by SVM training with one optimization
(when I = 1) and two optimizations (when I = 2), certain nuances that indicated vegetated pixels
could be easily distinguished from urban pixels, and further optimization of the training samples was
sufficient to guarantee an extraction of urban built-up results with a high degree of credibility.
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4.2. Results of Urban Built-Up Areas

Figure 5a–c shows the entire study area based on Landsat images, DMSP-OLS data, and the
GlobeLand30 product. The threshold dichotomy method (Figure 5d) tended to identify continuous
urban built-up extents because of the blooming effect observed using the DMSP-OLS data, whereas
the improved NFS method (Figure 5e) extracted urban built-up areas with the maximum/minimum
NFS calculations and removed natural features (vegetated and water) based on the NDVI criteria and
water body data integration. Figure 5f shows the urban built-up results extracted by our proposed
approach. A visual comparison of the extraction results obtained with the different methods shows
that Chengdu, Kunming, Xining, and Yinchuan were extracted well by any one of the three methods
mentioned above (Figure 5g). However, for the size, shape, and distribution of the urban built-up
patches, the results extracted with the proposed method presented finer details than those with the
improved NFS method and far exceeded the patches produced by the threshold dichotomy method.
Furthermore, the results of the proposed method were generally consistent with the statistical data
of the urban built-up areas in the accuracy assessment, and a low relative error of less than 10% was
observed (Table 5).

Although the four experimental cities are all of a prefecture-level scale, their urban distribution
and characteristics, as well as their levels of development and change, all differ. In addition, deviations
are observed between the surface features derived from remote sensing images at different scales and
the actual features, and these deviations are even more obvious for remote sensing images with low
or moderate resolution. The DMSP-OLS data adopted in this paper have relatively low resolution,
and such an imbalance could not be completely avoided, despite adding the constraint of auxiliary
data, which included the GlobeLand30 product with a 30-m resolution. Overall, these uncertainties
might lead to overestimation or underestimation in the extraction results.
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Table 5. Accuracy assessment of the urban built-up areas based on the statistics and the proposed
method in Chengdu, Kunming, Xining, and Yinchuan in China.

Region City Statistical Areas (km2) Extracted Areas (km2) Relative Error (%)

Western China

Chengdu 455.56 423.55 −7.03
Kunming 295.03 266.48 −9.68

Xining 66.77 73.35 9.85
Yinchuan 120.57 110.62 −8.25

4.3. Assessment of Accuracy for Urban Built-up Areas

For the sake of brevity, the derived urban built-up results of Chengdu and Kunming were
selected for the detailed quantitative analysis of the pattern spots. With respect to the form of the
pattern spots, Figure 6 shows that the results obtained for both Chengdu and Kunming by the
three methods were generally similar and comparable in detail to those obtained using Landsat
images. Although the overall trend of the pattern spots obtained by the threshold dichotomy method
demonstrated a planar tiling distribution and was roughly consistent with the results of the Landsat
images, the classification did not return results for several areas because of light segmentation or
differences between multi-sensor data. Therefore, the precision was not sufficient for conducting
further research on urban built-up areas. The results extracted with the improved NFS method far
exceeded those using the threshold dichotomy method with respect to the overall morphological
distribution or data extraction accuracy; however, the results were significantly different from the
Landsat image results and included various degrees of misclassified pattern spots in several regions.
Compared with the two methods above, the results obtained using our proposed approach were more
consistent than those obtained using the Landsat data. Despite the misclassification or classification
omissions of certain pattern spots in scattered regions, the results showed better performance than
that of the other two methods both in precision and visual effect.
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Although the proposed approach is superior to the other two methods, visual and quantitative
comparisons of the pattern spots indicated that commission errors (CEs) and omission errors (OEs)
were not avoided because of the influence of light saturation and problems associated with the use
of sensors of various quality. However, the results still showed that the proposed method produced
less CEs on average than the threshold dichotomy method and demonstrated an approximately
30% improvement in OEs compared with the other two methods. Although high Kappa and OA
values were obtained with the improved NFS method and the proposed method, the improved NFS
method did not implement correction processing specific to the light saturation phenomenon or data
differences among the various sensors; thus, relatively significant deviations were observed among the
tests. Consequently, significant differences were observed in the CEs and OEs, as shown in Table 6.
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These results indicate that the proposed approach reduced the defects of various data sources and
guaranteed the extraction accuracy and authenticity of the urban built-up pattern spots.

Table 6. Quantitative analysis results of the three methods by cities.

City
Threshold Dichotomy Method Improved NFS Method Sample-Optimized SVM Approach

OA (%) Kappa CE (%) OE (%) OA (%) Kappa CE (%) OE (%) OA (%) Kappa CE (%) OE (%)

Chengdu 89.14 0.54 13.84 53.94 91.93 0.67 32.64 21.43 96.20 0.80 3.27 28.13
Kunming 96.25 0.63 1.21 51.48 97.45 0.69 3.94 45.25 97.98 0.83 13.02 18.95

5. Conclusions

This paper presented a sample-optimized approach for SVM classification based on a combination
of DMSP-OLS nighttime light layer data, artificial surface data from the GlobeLand30 product,
and vegetated regions from Landsat images, which were used as criteria for the selection of training
samples to identify optimized samples that represent built-up areas and non-built-up areas according
to an iterative updating procedure. This method can successfully remove the above land-cover
categories such as vegetation and bare land from the built-up areas, and obtain the areas which
have been developed and constructed with basic municipal utilities and public facilities in the urban
administration region. Our proposed approach is novel in the nighttime light data application field
and different from other SVM-based extraction methods using DMSP-OLS data in the cited literature.
In terms of the overall distribution of extracted built-up urban patches, the samples identified by
the proposed method were finer than those of the threshold dichotomy method and the improved
NFS method.

An empirical experiment and a detailed accuracy assessment indicated the following: (1) the
results extracted using the proposed approach were accurate for pattern spots of urban built-up
areas and highly consistent with those extracted using Landsat images in 2010; (2) the results
of the experimental comparison with the two other methods confirmed the effectiveness of the
proposed approach because it generated improved CE and OE ratios and higher OA and Kappa
coefficients; (3) the proposed approach integrates various factor features into the steps of the SVM
sample configuration, which is superior to a simple overlay analysis of all the feature layers, and the
combination of factor features with the classification probability threshold optimized samples to satisfy
the condition requirements for an iterative updating process that can reduce false and misclassification
errors; (4) by exploiting the classification accuracy of the GlobeLand30 product, the proposed approach
merges the advantages of multi-source remote sensing in representing urban information to obtain
highly accurate final urban extraction results. This paper mainly focused on the relationship between
DMSP-OLS nighttime light data and the SVM classification; thus, our work is highly specific and
unique from an application perspective.

Limitations included the insufficient temporal types in the GlobeLand30 product and the
coarse resolution and blooming effect of the DMSP-OLS data; thus, the accuracy of the urban
spatial information extracted using the proposed approach requires further investigation. However,
this approach optimizes the sample selection process without relying on statistical data and improves
the efficiency and precision of SVM classifications. In addition, the proposed method largely avoids
the drawbacks associated with using a single data source. The proposed approach is a timely and
cost-effective method of monitoring the spatial patterns and temporal dynamics of urban areas as well
as geographic conditions on a national scale. In future works, we will devote additional efforts towards
improving the proposed approach by investigating spatio-temporal variations in some typical regions,
such as ghost towns, as well as regional dynamic monitoring based on updates to the GlobeLand30
products and the availability of additional long time series data.
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