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Abstract: Satellite precipitation products from the Global Precipitation Measurement (GPM) mission
and its predecessor the Tropical Rainfall Measuring Mission (TRMM) are a critical data source for
hydrological applications in ungauged basins. This study conducted an initial and early evaluation
of the performance of the Integrated Multi-satellite Retrievals for GPM (IMERG) final run and the
TRMM Multi-satellite Precipitation Analysis 3B42V7 precipitation products, and their feasibility
in streamflow simulations in the Chindwin River basin, Myanmar, from April 2014 to December
2015 was also assessed. Results show that, although IMERG and 3B42V7 can potentially capture
the spatiotemporal patterns of historical precipitation, the two products contain considerable errors.
Compared with 3B42V7, no significant improvements were found in IMERG. Moreover, 3B42V7
outperformed IMERG at daily and monthly scales and in heavy rain detections at four out of five
gauges. The large errors in IMERG and 3B42V7 distinctly propagated to streamflow simulations via
the Xinanjiang hydrological model, with a significant underestimation of total runoff and high flows.
The bias correction of the satellite precipitation effectively improved the streamflow simulations.
The 3B42V7-based streamflow simulations performed better than the gauge-based simulations.
In general, IMERG and 3B42V7 are feasible for use in streamflow simulations in the study area,
although 3B42V7 is better suited than IMERG.

Keywords: GPM; IMERG; TRMM; TMPA; satellite precipitation; hydrological modeling; Xinanjiang
hydrological model

1. Introduction

Precipitation is an important component of the hydrological cycle. Accurate observation
or estimation of precipitation is critical to flood forecasting and warning, drought monitoring,
and water resources management [1]. The accuracy of the precipitation input significantly influences
the performance of hydrological models. Obtaining accurate precipitation data for hydrological
simulations and predictions is a challenging task in regions with complex terrains that have no or
sparse rain gauge networks. Recently, the rapid development of satellite remote sensing technology has
provided hydrologists an unprecedented opportunity to better estimate precipitation for hydrological
applications. A few satellite precipitation products, such as the Precipitation Estimation from Remotely

Remote Sens. 2017, 9, 302; doi:10.3390/rs9030302 www.mdpi.com/journal/remotesensing

http://www.mdpi.com/journal/remotesensing
http://www.mdpi.com
http://www.mdpi.com/journal/remotesensing


Remote Sens. 2017, 9, 302 2 of 23

Sensed Information using Artificial Neural Network [2], the Climate Precipitation Center morphing
method (CMORPH) [3], the Global Satellite Mapping of Precipitation [4], and Tropical Rainfall
Measuring Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA) [5], have been developed.
Among them, TRMM TMPA products have been widely used for hydrological applications [6–24].

Developed by the Goddard Space Flight Center of the National Aeronautics and Space
Administration (NOAA), the TRMM TMPA provides precipitation products derived from multiple
satellites through a calibration-based sequential scheme and monthly gauge analyses, where feasible,
on a high spatiotemporal resolution (0.25◦ × 0.25◦ and three-hour interval) covering the latitude belt
from 50◦N to 50◦S [5]. Its post-real-time products (versions 6 and 7, hereafter referred to as 3B42V6
and 3B42V7) have been widely used in hydrological applications worldwide, such as Italy [6–8],
the USA [9–11], Tunisia [12], Wangchu basin in Bhutan [13], Mod basin in India [16], La Plata basin [18]
and Andean-Amazon River [19] in South America, Laohahe basin [20,21] and Tibetan Plateau [22] in
China, Volta and Baro-Akobo basins [23] in Africa, and the mountainous region in South Korea [24].
These studies proved that TMPA 3B42 products have acceptable or even satisfactory hydrological
prediction capabilities.

TRMM was decommissioned on 8 April 2015 after more than 17 years of data gathering.
The spacecraft reentered the Earth’s atmosphere on 15 June 2015 over the South Indian Ocean.
Meanwhile, the TMPA products will continue to be produced up to early 2018 [25]. As the
successor of TRMM, the Global Precipitation Measurement (GPM) mission was officially launched
on 27 February 2014. GPM was designed to obtain global satellite precipitation estimates based on an
international satellite constellation [26]. The newly released Integrated Multi-satellite Retrievals for
GPM (IMERG) [27] provide global precipitation products at finer spatiotemporal scales (0.1◦ × 0.1◦

and 30-min interval) and with more expansive quasi-global coverage (60◦N–60◦S) than current
TMPA products.

As an extension and upgrade of TMPA, IMERG is currently in the initial evaluation phase.
Huffman et al. [27] and Liu et al. [28] performed a preliminary comparison of the monthly precipitation
products of IMERG and TMPA at a global scale and found that noticeable systematic differences
exist between these two products in various regions of the world. Libertino et al. [29] conducted
a global assessment of timing of extreme rainfall from TRMM and GPM, and found that the IMERG
Day-1 final run products achieve a slightly higher match rate than 3B42V7 in detecting extreme
rainfall. Additionally, the accuracy and error characteristics of IMERG and TMPA products in
comparison with gauge measurements were evaluated in many regions, such as in Xinjiang [20],
Qinghai-Tibetan Plateau [30,31], and Poyang Lake [32] regions in China; Mainland China [33,34];
South Korea [35]; Japan [35]; India [36]; and in four regions with distinct climate and topography in
Iran [37]. These studies reported that IMERG products are generally superior to TMPA [30,31,33–37] or
at least comparable to TMPA products [32]. Moreover, Sahlu et al. [38] found that IMERG products have
a better bias ratio and correlation coefficient at hourly and daily scales as compared to CMORPH in the
upper Blue Nile basin of Ethiopia. Evaluated against a dense gauging network in the US mid-Atlantic
region, IMERG exhibits some misses and false alarms for rain detection, and overestimates drizzle and
underestimates heavy rain with considerable random errors [39]. Gaona et al. [40] assessed IMERG
against gauge-adjusted radar rainfall in the Netherlands and found a tendency for IMERG to slightly
underestimate (2%) countrywide rainfall depths. NASA’s Goddard Space Flight Center used IMERG
to effectively estimate the historic amount of rain that fell in the Carolinas and from hurricane Joaquin
over the Bahamas [41]. However, only a few investigations were performed on the hydrological
utilities of IMERG products at basin scales. Tang et al. [32] performed an early hydrological assessment
of IMERG and found that with the Coupled Routing and Excess Storage hydrological model, the Day-1
IMERG product performs comparably to gauge reference data in the Poyang Lake basin in China and
outperforms TMPA standard products in many cases. Given that topography and climate significantly
influence the quality of satellite-derived precipitation, the accuracy of IMERG and TMPA products,
as well as their feasibility in hydrological applications in other regions of the world, must be assessed
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and compared, particularly in ungauged or data-sparse regions with complex terrains and frequent
flood and drought disasters.

In this study, the IMERG final run and TMPA 3B42V7 precipitation products covering a data-sparse
mountainous watershed in Myanmar (Figure 1) were validated and compared against a few gauge
observations. In addition, streamflow simulations using these two products were evaluated and
compared at daily and monthly scales. Given that GPM is still in the start phase and its calibration
is not yet complete, the main objectives of this study are therefore to: (1) statistically evaluate the
quality of GPM-era IMERG product compared with TRMM-era 3B42V7 estimates in the study area;
and (2) comprehensively explore the feasibility of IMERG data in streamflow simulations in comparison
with that of 3B42V7 in ungauged basins. This initial and early evaluation can provide useful guidelines
for hydrological applications of IMERG data in river basins in Myanmar and other ungauged basins.
It can also facilitate the further improvement of IMERG algorithms in the future.
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2. Study Area and Data Preparation

2.1. Study Area

Myanmar is the second largest country in Southeast Asia, sharing borders with China, Laos and
Thailand in the east, and Bangladesh and India in the north. It has a 2832 km seaboard with the
Indian Ocean to the west and south (Figure 1). There are four main rivers in Myanmar: Ayeyarwaddy,
Chindwin, Thanlwin and Sittoung. Among them, the Chindwin River is the third largest river in
Myanmar and serves as one of the principal water resources of the country and the most important
tributary of Ayeyarwaddy, which is one of the major rivers in Asia. Located in northwestern Myanmar
(Figure 1), the Chindwin River basin has a drainage area of 110,350 km2 and a river length of 985 km.
It is dominated by a mountainous forested terrain, except for the wide flood plain at its lowest southern
part. The river flows into the Central Valley Region, which is the most economically developed area of
the country. Several major biodiversity and conservation areas are located in the basin, such as the
Hukaung Valley and the Htamanthi wildlife sanctuaries, as well as the Upper Chindwin Catchment
Corridor and the Lower Chindwin Forest Corridor with important populations of critically endangered
animals [42]. In general, the Chindwin River basin is economically and ecologically important for the
development of the country [42].
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The Chindwin River basin has subtropical and tropical climates, with distinct humid and dry
seasons. The southwest monsoon season starts from June and lasts until September, with a cloudy,
rainy, hot, and humid summer. Meanwhile, the northeast monsoon season starts from December
and ends in April, with fewer clouds, minimal rainfall, low humidity, and moderate temperature
(Figure 2). Precipitation is generally uneven in space due to the effects of the southwest monsoon
and the complex topography. According to the precipitation data statistics from five weather stations
in the basin (Table 1), the mean annual precipitation exceeds 3700 mm in the northern mountainous
source area (Hkamti station) but sharply drops to 750 mm in the southern part (Monywa station).
The basin has an annual runoff of 1260–2630 mm, and its spatiotemporal pattern of runoff is similar to
that of precipitation (Figure 2). The most dominant land is closed forest (occupying 50% of the basin),
followed by degraded forest and shrubs (covering approximately 33%) and agricultural land (covering
15% of the basin area). Shifting cultivation and swamp account for 2%. During the southwest monsoon
season, the Chindwin River basin is prone to severe floods every year at one place or another, due to
the high rainfall intensities with significant spatial and temporal variations [42–45]. According to the
Department of Meteorology and Hydrology (DMH), Myanmar, flood occurs most frequently in July
and August, accounting for 72% of the total number of floods in the basin [42]. The downstream area
of the basin is located in the central dry zone of Myanmar, which is the country’s major agricultural
region. Owing to less rainfall and higher air temperature, the downstream region is facing frequent
droughts, and severe and extreme droughts hit the region in 1997–1998, 2001, 2005, 2008–2009, and
2012–2014 [46]. Severe flood and drought disasters threaten property, human lives, food security and
ecological biodiversity in the basin, making it important and urgent to assess flood/drought risks
and adopt effective control measures. For flood/drought risk assessment, one fundamental job is to
estimate streamflow regimes at any watershed locations through rainfall–runoff modeling. However,
the rainfall-monitoring network in the Chindwin River basin is very sparse with a limited number of
rain gauges, which likely affects the accuracy of streamflow simulation and forecasting. It is desirable
to adopt the satellite precipitation products at fine spatiotemporal resolutions such as IMERG and
3B42V7 as supplementary precipitation data sources for effective runoff simulations. This requires
validation of the IMERG and 3B42V7 precipitation estimates and assessment of the feasibility of these
two precipitation products in rainfall–runoff modeling.
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Figure 2. Mean monthly: (a) Air temperature; (b) precipitation; and (c) runoff at main weather and
streamflow stations in the Chindwin River basin.

Table 1. Basic information of main weather/streamflow stations in the Chindwin River basin.

Weather/Streamflow Stations Hkamti Homalin Mawlaik Kalewa Monywa

Elevation (m) 387 121 119 126 78
Drainage area (km2) 27,420 43,124 69,339 72,848 110,350

Mean annual precipitation (mm) 3745.5 2184.0 1716.5 1646.4 750.4
Mean annual runoff depth (mm) 2631.0 2319.5 1800.3 1794.8 1260.5
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2.2. Gauge-Based Weather Data

Even though flood and drought hazards prevail in the basin, the local flood/drought management
system remains unsatisfactory, particularly for precipitation observations [43]. As shown in Figure 1
and Table 1, merely five weather stations are sparsely distributed in such an extensive basin with
a controlled area of 110,350 km2. The daily precipitation data at these five stations from 1 April 2014
to 31 December 2015 were collected from DMH. The daily maximum and minimum air temperature
data at these stations for the same period were also obtained. These weather stations collect daily
data from 03:00 UTC (Coordinated Universal Time) of the current day to 03:00 UTC of the next day,
and the daily precipitation and air temperature data at all the stations are complete from 1 April 2014
to 31 December 2015, with no data missing. These five weather stations are not included in the Global
Precipitation Climatology Centre (GPCC) gridded gauge-analysis precipitation data set.

To perform streamflow simulations using a distributed hydrological model, nearest neighbor
method was used to interpolate the gauge-based precipitation and air temperature data to the 0.25◦

spatial scale. The topographical effects were disregarded in the precipitation interpolation, whereas
the near-surface air temperature was assumed to decrease by 0.65 ◦C per altitude rise of 100 m.

2.3. Satellite Precipitation Products

Two types of satellite precipitation products, namely, the TMPA 3B42V7 three-hourly and IMERG
final run half-hourly precipitation products, were adopted in this study.

The TMPA 3B42V7 precipitation products were produced by the TRMM TMPA Version 7
algorithm [5]. TMPA can produce microwave-infrared satellite precipitation estimates combined
with gauge adjustments and has the potential to give the best precipitation estimates for the regions
between 50◦S and 50◦N on a 0.25◦ spatial resolution and a three-hour time interval. In this study,
the TRMM 3B42V7 three-hourly precipitation product from 1 April 2014 to 31 December 2015 was
obtained from the Precipitation Measurement Mission (PMM) website [25], and the three-hourly
precipitation data were accumulated to daily values in the study area. The 3B42V7 three-hourly
precipitation files are centered on the hour in the file name. For example, a “03z”-hour file represents
data from 1:30 UTC to 4:30 UTC. To produce the 3B43V7 daily precipitation data in accord with the
time span of daily precipitation collection at the local weather stations (03:00–03:00 UTC), we assigned
a half weight (0.5) to the “03z” files for the current and next days, and defined a full weight (1.0) for the
“06z”, “09z”, “12z”, “15z”, “18z” and “21z” files for the current day and the “00z” files for the next day.

IMERG is the Level 3 precipitation estimation algorithm of GPM and is intended to inter-calibrate,
merge, and interpolate multiple satellite microwave precipitation estimates, microwave-calibrated
infrared satellite estimates, precipitation gauge analyses, and other precipitation estimators on a finer
spatial resolution (0.1◦) with larger quasi-global coverages (60◦S–60◦N) and a shorter temporal interval
(30 min) than those of TMPA products. In this study, the IMERG final run half-hourly precipitation
product from 1 April 2014 to 31 December 2015 was downloaded from the PMM website [26], and the
IMERG daily precipitation data were produced by simple addition of the 48 half-hourly files covering
the time span of 03:00–03:00 UTC.

Both 3B42V7 and IMERG final run products were already bias-corrected on a monthly basis using
the GPCC precipitation data set. As stated in Section 2.2, no rain gauges in the basin are included in
the GPCC gridded gauge-analysis products. This implies that the GPCC data set covering the study
area might not be accurate enough. Therefore, it is necessary to evaluate the quality of these two
satellite products using the ground observations, and remove their biases to better suit streamflow
modeling. The procedures for quality evaluation and bias-correction of 3B42V7 and IMERG products
are described in detail in Sections 3.1 and 3.2.

To perform hydrological simulations on a spatial resolution of 0.25◦ (detailed discussion in
Section 3.4), the IMERG daily precipitation product was aggregated from a 0.1◦ spatial resolution
to 0.25◦. Given that four IMERG grid cells are completely located within a 0.25◦ grid cell, four fall
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halfway inside, and a ninth falls one-fourth within, we assigned areal weights of 0.16, 0.08 and 0.04 for
these IMERG grid cells, respectively, for precipitation aggregation.

2.4. Streamflow Data

As shown in Figure 1 and Table 1, five streamflow stations are situated in the basin. The daily
streamflow data at these five stations from 1995 to 2015 were obtained from the DMH. These stations
measure daily streamflow data from 03:00 UTC of the current day to 03:00 UTC of the next day.
These historical streamflow data were adopted for the calibration of hydrological models.

3. Methodology

3.1. Evaluation Indicators for Satellite Precipitation Products

The observed historical precipitation records at the five weather stations (Figure 1) in the Chindwin
River basin were analyzed to evaluate the accuracy of IMERG and 3B42V7 products. The IMERG and
3B42V7 precipitation estimates at the grid boxes where the weather stations are located were compared
with the corresponding gauge-based precipitation from 1 April 2014 to 31 December 2015 at multiple
temporal scales.

To comprehensively evaluate IMERG and 3B42V7 precipitation products, six statistical indices
were adopted as follows. The Pearson correlation coefficient (CC) describes the agreement between
satellite precipitation estimates and gauge observations (Equation (1)). A perfect positive fit is
reflected by a CC value of 1, whereas a weak linear correlation is indicated by CC that is close to zero.
The relative bias (BIAS) represents the systematic bias of satellite-based precipitation (Equation (2)).
A positive BIAS indicates an overestimation of satellite precipitation, whereas a negative value implies
an underestimation. The root mean square error (RMSE) measures the average absolute error of satellite
precipitation (Equation (3)). The smaller RMSE is, the closer the satellite precipitation estimates are to
the observations. CC, BIAS, and RMSE are expressed by

CC =
∑n

i=1

(
Po

i − Po
)(

Ps
i − Ps

)
√

∑n
i=1

(
Po

i − Po
)2
√

∑n
i=1

(
Ps

i − Ps
)2

(1)

BIAS =
∑n

i=1
(

Ps
i − Po

i
)

∑n
i=1 Po

i
× 100% (2)

RMSE =

√
∑n

i=1
(

Ps
i − Po

i
)2

n
(3)

where n is the sample size of the satellite or the gauge-based precipitation time series; Ps
i and Po

i
represent the satellite precipitation and gauge-based precipitation amounts at the ith time step (mm);
and Ps and Po are the mean values of satellite precipitation and gauge-based precipitation (mm).
The probability of detection (POD), the false alarm ratio (FAR), and the critical success index (CSI)
represent the contingency of satellite precipitation estimates. POD, which is also known as the hit
rate, describes the fraction of precipitation events correctly detected by the satellite among all real
precipitation events (Equation (4)). FAR denotes the fraction of false events among all the events
detected by the satellite (Equation (5)). CSI represents the overall fraction of precipitation events
correctly detected by the satellite (Equation (6)). POD, FAR, and CSI are expressed by

POD =
H

H + M
× 100% (4)

FAR =
F

H + F
× 100% (5)
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CSI =
H

H + M + F
× 100% (6)

where H denotes the number of real rain events correctly detected by the satellite; M represents the
number of real rain events failed to be detected by the satellite; and F is the number of rain events
detected by the satellite that do not occur actually. The perfect scores of POD, FAR, and CSI are 1, 0,
and 1, respectively.

3.2. Bias-Correction for Satellite Precipitation Products

Several previous studies [31–37] found that, although 3B42V7 and IMERG products effectively
capture the spatiotemporal variations of precipitation in different regions around the world, these
estimates still contain considerable errors when compared with ground observations. Given that
precipitation inputs are among the most dominant uncertainty sources for hydrological models,
satellite precipitation products must be bias-corrected when adopted as the input of a hydrological
model for streamflow simulations. In this study, a simple bias-correction scheme was employed to
remove the biases of satellite precipitation products. This scheme assumes that the bias characteristics
of satellite precipitation at a specified grid box are the same as those at its nearest grid box where a rain
gauge is situated. It supposes that if the satellite precipitation at the grid box with a rain gauge is over-
or underestimated by a certain percentage, the satellite precipitation estimates at the nearby grid boxes
contain the same percentage of biases, and these assumed biases can be removed from the original
satellite estimates. The corrected satellite daily precipitation can be expressed as

Ps′
d,m(x, y) = Ps

d,m(x, y)× r (7)

r =
Po

m(i)
Ps

m(xi, yi)
(8)

where Ps
d,m(x, y) and Ps′

d,m(x, y) denote the original and bias-corrected satellite precipitation amounts
on the dth day of the mth month at the grid box [x, y] with the central longitude x and latitude y
(mm); r is the bias correction factor; Po

m(i) is the observed accumulated precipitation amount in the mth
month at the ith rain gauge which is the nearest rain gauge to the grid box [x, y] (mm); and Ps

m(xi, yi)

is the accumulated original satellite precipitation amount in the mth month at the grid box [xi, yi]
where the ith rain gauge is located. This bias-correction scheme could be problematic as it ignores the
topographical and meteorological effects on the bias features. However, the number of rain gauges is
too limited in this study (five gauges). Thus, deriving the rational relationship between precipitation
biases and topographical and meteorological factors for bias correction is difficult. Moreover, the bias
correction factor r (Equation (8)) is calculated on a monthly basis rather than at daily time intervals.
If r is calculated daily, its value tends to become very large when the gauge-based daily precipitation is
very high and the corresponding satellite estimate is very low. This phenomenon is the likely reason
why the bias-corrected satellite precipitation at nearby grid boxes is irrationally high.

3.3. Xinanjiang Hydrological Model

The Xinanjiang (XAJ) hydrological model is a lumped, conceptual rainfall–runoff model [47]
that is widely applied in humid and semi-humid river basins in China, Vietnam, Japan, and other
Asian countries for flood forecasting, water resources evaluation, and accounting design for water
quality. In this study the modified version of the XAJ model, namely, the grid-based XAJ model [48],
was employed for streamflow simulations, which is a spatially-distributed conceptual hydrological
model. This model uses the parameterization scheme of saturation excess runoff to calculate the runoff
in each grid cell. In the permeable regions of a grid cell, runoff is produced under the condition
that the soil tension water storage reaches its maximum capacity. When precipitation exceeds an
open-water evaporation rate, direct runoff is generated at the impervious part. A three-soil-layer
module is used to calculate evapotranspiration (ET). The module assumes that ET occurs at the
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potential ET (PE) rate in the upper layer. Upon exhaustion of the soil tension water in the upper layer,
ET continues in the lower layer at a decreased rate that is proportional to the tension water content
in that layer. When the total ET in the upper two layers is less than a preset threshold (represented
as a fraction of PE), the soil water in the deep layer is exhausted to maintain this preset minimum
value. The air temperature-based Hargreaves method [49] is used to calculate the daily PE in XAJ.
For runoff concentration and streamflow routing, the XAJ model uses: (1) a gravitational water
reservoir to separate the total runoff into three components, namely, surface runoff, interflow runoff,
and groundwater runoff; (2) three linear reservoirs to represent runoff concentration for the outflow of
each grid cell; and (3) the Muskingum routing method to parameterize the routing effect of the channel
system connecting each grid cell.

3.4. Streamflow Simulation Schemes

In this study, the entire Chindwin River basin was separated into 204 grid cells on a 0.25◦

resolution. Meanwhile, five precipitation data sets were constructed, and they are the gauge-based
gridded precipitation data, the original and corrected 3B42V7, and the original and corrected IMERG
data sets on a 0.25◦ resolution. These data sets were used to drive the XAJ model to perform historical
daily hydrological simulations at each grid cell in the Chindwin River basin from 1 April 2014
to 31 December 2015, for a total of five simulation runs. For each simulation run, the XAJ model
parameters were independently calibrated by fitting the calculated historical daily streamflow time
series against the observed data at the five streamflow stations (Figure 1). The calibration period was
1 April 2014–31 December 2014, and the validation period was 1 January 2015–31 December 2015.
Model calibration was achieved with the aid of the Shuffled Complex Evolution (SCE-UA) automatic
optimization method [50,51]. To derive the model parameters that can comprehensively characterize
both high- and low-flow processes, model calibration was performed using the objective function
given by

f = max(NSE) + max(LogNSE) (9)

NSE = 1− ∑n
i=1
(
Qs

i −Qo
i
)2

∑n
i=1
(
Qo

i −Qo
)2 (10)

LogNSE = 1− ∑n
i=1
[
log
(
Qs

i
)
− log

(
Qo

i
)]2

∑n
i=1

[
log
(
Qo

i
)
− log(Qo)

]2 (11)

where n is the sample size of the observed or calculated streamflow time series; Qo
i and Qs

i denote the
observed and calculated daily streamflow at the ith time step (m3/s); and Qo and log(Qo) represent
the mean observed streamflow and mean log-transformed observed streamflow (m3/s), respectively.
The five sets of simulated streamflow time series using different precipitation inputs were compared
against the observed streamflow to assess the feasibility of 3B42V7 and IMERG precipitation products
in streamflow simulations in the study area. The accuracy of streamflow simulations were evaluated
using four statistical indices, namely, BIAS, CC, NSE, and LogNSE. Detailed description of streamflow
simulation schemes can be found in Supplementary Material S1.

4. Results

4.1. Evaluation of Satellite Precipitation Products

The 3B42V7 and IMERG precipitation products covering the entire Chindwin River basin from 1
April 2014 to 31 December 2015 were evaluated in terms of spatial patterns and errors in daily and
monthly precipitation.
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4.1.1. Spatial Patterns

Figure 3a,b shows the spatial patterns of 3B42V7 and IMERG precipitation estimates from
1 January to 31 December 2015 in the Chindwin River basin. Both products represented a similar
spatial pattern: precipitation tended to decrease from north to south. The amount of maximum annual
precipitation in 2015 appeared in the source region of the basin, reaching 3345.6 mm for IMERG and
3167.6 mm for 3B42V7. The lowest amount generally occurred in the grid cells near the watershed
outlet, reaching 715.2 mm for IMERG and 892.3 mm for 3B42V7. Figure 3c illustrates that the observed
precipitation is in a remarkable decreasing trend from the upper to the lower reach for both periods
(1 April–31 December 2014 and 1 January–31 December 2015). Both IMERG and 3B42V7 manifested
a similar trend but generally underestimated the precipitation in most grid boxes where the rain gauges
are located, particularly at the upstream gauges. For instance, IMERG and 3B42V7 underestimated the
precipitation at the Hkamti station by 44.7% and 19.4% from 1 January to 31 December 2015. Given
that IMERG estimates precipitation on a much finer resolution than 3B42V7, the former can provide
more detailed spatial features of precipitation than the latter (Figure 3a,b). Overall, 3B42V7 provided
considerably higher precipitation estimates than IMERG. From 1 January to 31 December 2015, 3B42V7
estimated the amount of basin-averaged precipitation to be 2014.0 mm, whereas IMERG provided an
estimation of 1720.1 mm, which is 14.6% less than that of the 3B42V7 product.
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Figure 3. Spatial distribution of precipitation estimates from: (a) 3B42V7; and (b) IMERG satellite
precipitation products from 1 January to 31 December 2015; and (c) 3B42V7 and IMERG precipitation
estimates at the locations of main weather stations in comparison with gauge-based daily precipitation
data during the periods of 1 April–31 December 2014 and 1 January–31 December 2015.

4.1.2. Daily Precipitation

To evaluate the quality of 3B42V7 and IMERG products, the daily precipitation estimates of these
two satellite products at the locations of the five rain gauges were derived and compared with the
gauge-based precipitation. Figure 4 shows that both 3B42V7 and IMERG can capture the temporal
variation patterns of daily precipitation at the five rain gauges. However, Table 2 indicates that these
two products still contain considerable errors. The values of CC for both products were considerably
low, ranging from 0.247 to 0.356 between the 3B42V7 estimates and the observations, and from 0.224 to
0.316 between the IMERG estimates and the gauge-based precipitation. 3B42V7 had a much higher
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CC than IMERG at the Hkamti, Homalin and Mawlaik stations, and IMERG had a slightly higher
CC than 3B42V7 at the Kalewa and Monywa stations. IMERG underestimated precipitation at all the
five rain gages, particularly at the Hkamti and Homalin stations, displaying a large negative BIAS of
−37.1% and −41.2%. 3B42V7 presented significant underestimation at Hkamti (14.9% BIAS), a slight
underestimation of daily precipitation at Homalin and Monywa (by 5.2% and 2.7%), and a moderate
overestimation at Mawlaik and Kalewa (BIAS of 6.4% and 5.4%). In terms of RMSE, both products
contained similar magnitudes of errors. Regarding the contingency of satellite precipitation estimates,
the POD values were low at all the rain gauges, ranging from 0.092 to 0.299 for 3B42V7 and from
0.117 to 0.207 for IMERG, implying that 3B42V7 and IMERG correctly identified real rainfall events by
29.9% and 20.7% at most. Moreover, Table 2 indicates that both products had comparatively large FAR
and small CSI values, implying considerable errors in the two satellite products. Comparison of all
statistical indices in Table 2 reveals that 3B42V7 is more accurate than IMERG at the Hkamti, Homalin,
Mawlaik, and Kalewa stations but is slightly less accurate at the Monywa station.
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Figure 4. Comparison of daily precipitation estimates from 3B42V7 and IMERG satellite precipitation
products at the main weather stations against the gauge-based daily precipitation time series from
1 April 2014 to 31 December 2015.

Table 2. Statistical indices of daily precipitation estimates at the five weather stations in the Chindwin
River basin (1 April 2014–31 December 2015).

Weather Stations Satellite Precipitation CC BIAS (%) RMSE (mm) POD FAR CSI

Hkamti
3B42V7 0.335 −14.9 22.8 0.299 0.417 0.246
IMERG 0.232 −37.1 24.7 0.207 0.404 0.181

Homalin
3B42V7 0.320 −5.2 19.3 0.253 0.440 0.211
IMERG 0.301 −41.2 18.6 0.180 0.432 0.158

Mawlaik
3B42V7 0.356 6.4 14.6 0.158 0.480 0.138
IMERG 0.224 −12.3 16.3 0.176 0.445 0.154

Kalewa
3B42V7 0.247 5.4 16.7 0.145 0.494 0.127
IMERG 0.294 −23.7 15.0 0.145 0.457 0.129

Monywa 3B42V7 0.281 −2.7 9.0 0.092 0.626 0.080
IMERG 0.316 −6.3 9.1 0.117 0.608 0.099

Sample size is 640.

To assess the performance of IMERG and 3B42V7 products in detecting historical heavy
precipitation events, we defined the gauge-based daily precipitation exceeding 25 mm as a real
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heavy precipitation event. The observed daily precipitation during heavy precipitation events was
compared with the corresponding satellite estimates (Figure 5). Table 3 shows that both IMERG and
3B42V7 were poorly correlated with the gauge-measured heavy precipitation, having CC values of
less than 0.270. As shown in Figure 5 and Table 3, these two satellite products largely underestimated
precipitation during heavy rain events by over 62%. 3B42V7 presented a slightly smaller magnitude
of underestimation than IMERG, except at the Monywa station. RMSE for both products generally
exceeded 35 mm. According to the POD statistics in Table 3, 3B42V7 captured 20.0%–31.7% of real
heavy rain events, whereas IMERG captured 13.3%–20.0%. In general, both products displayed poor
performance in heavy rain identifications and estimations. 3B42V7 had a slightly higher accuracy than
IMERG, except at the Monywa station.
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Figure 5. Scatter plots of heavy precipitation events from 3B42V7 and IMERG precipitation
products against gauged precipitation data at the five weather stations in the Chindwin River basin
(1 April 2014–31 December 2015).

Table 3. Statistical indices of satellite precipitation estimates of heavy and light rain events at the five
weather stations in the Chindwin River basin (1 April 2014–31 December 2015).

Weather Stations Satellite Precipitation
Heavy Rain Events Light Rain Events

CC BIAS (%) RMSE (mm) POD CC BIAS (%) RMSE (mm) POD

Hkamti
3B42V7 0.193 −65.9 54.4 0.273 −0.025 111.0 20.8 0.325
IMERG 0.209 −77.6 59.4 0.143 −0.058 65.8 25.7 0.325

Homalin
3B42V7 0.157 −63.8 48.0 0.317 0.086 116.1 15.5 0.413
IMERG 0.094 −74.1 53.3 0.133 0.053 22.4 10.8 0.362

Mawlaik
3B42V7 0.184 −63.5 40.1 0.220 0.080 87.5 14.1 0.345
IMERG 0.144 −75.5 42.9 0.171 −0.084 45.1 12.5 0.357

Kalewa
3B42V7 −0.048 −62.8 45.1 0.244 −0.114 114.1 17.2 0.336
IMERG 0.039 −67.6 45.2 0.195 −0.204 46.2 12.2 0.339

Monywa 3B42V7 −0.068 −75.3 37.1 0.200 0.096 27.8 8.5 0.319
IMERG −0.094 −67.5 35.3 0.200 −0.067 24.4 10.3 0.356

Sample size for heavy rain events ranges from 20 to 77; sample size for light rain events ranges from 73 to 117.

To analyze the accuracy of satellite products in light rain estimations, we defined the observed
daily precipitation ranging from 0.1 mm to 10.0 mm as a real light rain event. The gauge-based
daily precipitation during light rain events was compared with the corresponding satellite estimates
(Figure 6). Similar to the situation for heavy rain estimations, both products were poorly correlated with
gauge-based light rain events (Table 3). IMERG and 3B42V7 significantly overestimated precipitation
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during light rain events by 22.4%–65.8% and 27.8%–116.1% (Figure 6 and Table 3). Nonetheless,
more than 30% of actual light rain events were effectively detected by IMERG and 3B42V7. Overall,
both products manifested similar low accuracies for light rain estimations at all the gauges.Remote Sens. 2017, 9, 302  12 of 23 
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Figure 6. Scatter plots of light rain events from 3B42V7 and IMERG precipitation products against
gauge-based precipitation data at the five weather stations in the Chindwin River basin (1 April 2014–31
December 2015).

4.1.3. Monthly Precipitation

The daily precipitation estimates from IMERG and 3B42V7 at the five gauges were aggregated to
monthly time series, and they were compared with the observed monthly precipitation. As shown
in Figure 7, both IMERG and 3B42V7 products generally followed the variation patterns of monthly
precipitation that were similar to those recorded by the rain gauges. Although the aggregation of the
satellite precipitation estimates from a daily scale to a monthly scale cannot change the magnitudes
of their systematic errors (BIAS), the linear correlations between the satellite precipitation and the
observations were significantly improved (Figure 7). The CC values were increased in the range
of 0.882–0.954 for 3B42V7 and 0.903–0.939 for IMERG. The possible reason for this improvement
is that although both IMERG and 3B42V7 were comparatively inaccurate to characterize daily
precipitation variability, they generally captured precipitation seasonality in the Chindwin River
basin, which is indicated in Figure 4. Overall, 3B42V7 performed better than IMERG in estimating
monthly precipitation at the Hkamti, Homalin, and Kalewa stations, whereas IMERG had higher
accuracy than 3B42V7 at the Mawlaik and Monywa stations.

4.2. Evaluation of Streamflow Simulations

As mentioned in Section 4.1, both IMERG and 3B42V7 products contained non-negligible errors.
Their biases must be removed before they can be employed for streamflow simulations to effectively
reduce the uncertainties of hydrological models arising from precipitation inputs. By applying
the bias-correction method described in Section 3.2, both IMERG and 3B42V7 daily precipitation
products on a 0.25◦ resolution were corrected over the entire basin. Consequently, five precipitation
data sets were constructed, namely, the gauge-based precipitation data, the original and corrected
3B42V7 data sets, and the original and corrected IMERG data sets. Subsequently, the XAJ model
was driven by these five data sets to perform daily streamflow simulations from 1 April 2014 to
31 December 2015. The simulated streamflow processes using the five different precipitation inputs
were compared with the observed streamflow to evaluate the feasibility of satellite precipitation
products in streamflow simulations.
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Figure 7. Monthly precipitation estimates from 3B42V7 and IMERG satellite precipitation products at
the main weather stations against the gauge-based monthly precipitation time series from April 2014
to December 2015.

4.2.1. Daily Streamflow

Figure 8 depicts the daily hydrographs at the Hkamti and Monywa stations that were simulated
using different precipitation inputs. All five simulation runs captured the temporal variation patterns
of streamflow that were similar to the observed discharge. Frequent high flows occurred from June to
September, whereas low flows were mainly observed from December to April. Figure 8 and Table 4
show that although rain gauges are sparsely distributed in the Chindwin River basin (merely five
gauges in a controlled area of 110,350 km2), the XAJ model, driven by the gridded precipitation data
set that was interpolated from the five rain gauges, satisfactorily reproduced the daily streamflow
processes at all five stations from 1 April 2014 to 31 December 2015. This simulation run slightly
underestimated the daily streamflow by 0.7%–5.2%, with NSE and LogNSE exceeding 0.82 and
0.85. These findings indicate the sound performance of the XAJ model in simulating both high- and
low-flow processes.

Given that both IMERG and 3B42V7 products contained considerable errors in precipitation
estimates, the two modeling runs that utilized the gridded precipitation data sets derived from the
original IMERG and 3B42V7 products produced generally poorer simulations than the gauge-based
simulations in terms of all statistical indices in Table 4. Moreover, because IMERG underestimated
precipitation at all the rain gauges, particularly gaining a considerably large BIAS in upstream gauges
(−37.1% and −41.2% at the Hkamti and Homalin stations, Table 2), the streamflow simulated by
the XAJ model with the original IMERG precipitation as its input was approximately 23.5%–31.2%
systematically lower than the observed discharge (Table 4). Meanwhile, 3B42V7 presented smaller
systematic errors in precipitation at the Homalin, Mawlaik, Kalewa, and Monywa stations (−5.2%–6.4%
BIAS); however, 3B42V7 significantly underestimated precipitation at Hkamti, which was the source
region station (Table 2). Consequently, the XAJ model systematically underestimated the streamflow
at Hkamti by 16.6%, and this systematic bias propagated to the downstream stations, causing the
simulated discharge at these stations to be 10.9%–16.9% lower than the measurements. Figure 8
illustrates that a few simulated flood peaks were remarkably lower than the actual ones in the two
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modeling runs using the original satellite products. This phenomenon mainly resulted from the
underestimation of precipitation by both IMERG and 3B42V7 during heavy rain events. Table 4
shows that the simulation run using the original 3B42V7 product was generally better than that using
the original IMERG precipitation. Although the satellite precipitation products and gauge-based
precipitation data were in a very poor correlation on daily basis (Tables 2 and 3), the CC values
for daily streamflow simulations using the original IMERG and 3B42V7 products were significantly
increased (Table 4). The possible reason for this phenomenon is that both IMERG and 3B42V7 are
able to effectively capture the seasonal cycle of precipitation in the Chindwin River basin (Figure 7),
which facilitates to reproduce rational streamflow processes in both wet and dry seasons. Meanwhile,
the observed streamflow time series shows high seasonality, which is generally easy for hydrological
models to reproduce. In addition, hydrological models are, to some degree, tolerant to the errors of
precipitation inputs, and model parameter calibration is able to partially offset the streamflow biases
resulting from inaccurate precipitation inputs. For example, the XAJ model uses the highly sensitive
parameter K (the coefficient of PE) to calculate PE, and a larger K tends to produce higher actual
ET and thus generate lower total runoff. Table S1 shows that the calibrated parameter K in the area
controlled by the Hkamti station decreased from 1.379 in the gauge-based model run to 0.838 in the
original IMERG-based simulation. As a result, model recalibration effectively damped the magnitude
of runoff reduction that resulted from the significant precipitation underestimation in IMERG. Another
example is the sensitive parameter SM (the areal mean free water storage capacity), and a smaller SM
usually generates higher flood peaks. As indicated in Table S1, SM in the original IMERG-based run
was much lower than that in the gauged-based run. The decreased SM partially compensated for the
reduction in high flows arising from the systematical underestimation of heavy rain events in IMERG.
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Figure 8. Simulated daily hydrographs using the gauge-based precipitation data, the original 3B42V7
and IMERG precipitation estimates, and their corrected data sets at: Hkamti (a); and Monywa (b)
streamflow stations. Qobs represents the observed streamflow. Qcal (gauged prec), Qcal (original
3B42V7), Qcal (corrected 3B42V7), Qcal (original IMERG), and Qcal (corrected IMERG) represent the
calculated streamflow using the gauge-based precipitation data, the original and corrected 3B42V7
data sets, and the original and corrected IMERG data sets, respectively.
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Table 4. Statistical indices of the simulated daily streamflow processes at the five weather stations in
the Chindwin River basin (1 April 2014–31 December 2015).

Streamflow Stations Precipitation Inputs Entire Simulation Period High Flows Low Flows

BIAS (%) CC NSE LogNSE BIAS (%) CC BIAS (%) CC

Hkamti

Gauge −2.9 0.939 0.874 0.857 −6.7 0.811 −19.3 0.583
Original 3B42V7 −16.6 0.908 0.769 0.901 −39.3 0.820 32.6 0.519

Corrected 3B42V7 −1.9 0.945 0.890 0.866 −11.3 0.886 −16.6 0.554
Original IMERG −28.7 0.887 0.674 0.881 −48.7 0.753 51.7 0.423

Corrected IMERG −1.2 0.916 0.836 0.864 −14.3 0.851 −16.4 0.561

Homalin

Gauge −0.7 0.946 0.879 0.890 −1.8 0.809 −21.3 0.682
Original 3B42V7 −16.9 0.916 0.776 0.896 −37.8 0.875 −3.9 0.554

Corrected 3B42V7 −5.3 0.948 0.893 0.872 −10.7 0.866 −22.9 0.667
Original IMERG −31.2 0.905 0.641 0.810 −48.9 0.800 −14.3 0.489

Corrected IMERG 0.6 0.916 0.825 0.848 −11.5 0.810 −1.8 0.397

Mawlaik

Gauge −1.8 0.947 0.894 0.916 −5.7 0.718 26.3 0.755
Original 3B42V7 −10.9 0.947 0.849 0.882 −29.5 0.815 51.4 0.485

Corrected 3B42V7 −0.9 0.953 0.902 0.913 −9.3 0.831 24.4 0.657
Original IMERG −23.5 0.944 0.773 0.871 −39.1 0.777 35.9 0.416

Corrected IMERG 2.2 0.889 0.783 0.798 −17.4 0.818 112.3 0.230

Kalewa

Gauge −5.2 0.911 0.827 0.917 −9.9 0.375 −3.1 0.553
Original 3B42V7 −13.1 0.926 0.809 0.908 −33.5 0.696 17.1 0.490

Corrected 3B42V7 −4.7 0.924 0.848 0.919 −13.5 0.565 −11.1 0.696
Original IMERG −25.9 0.920 0.717 0.891 −43.5 0.692 4.2 0.384

Corrected IMERG −1.5 0.861 0.741 0.796 −22.6 0.646 50.1 0.157

Monywa

Gauge −4.7 0.937 0.876 0.938 −11.5 0.534 8.8 0.571
Original 3B42V7 −14.4 0.929 0.793 0.902 −36.0 0.807 33.5 0.420

Corrected 3B42V7 −5.6 0.942 0.878 0.942 −16.6 0.717 0.7 0.651
Original IMERG −24.8 0.930 0.718 0.883 −44.1 0.824 19.8 0.326

Corrected IMERG −1.3 0.866 0.761 0.771 −25.8 0.764 88.5 0.108

Sample size for daily streamflow time series in the entire simulation period is 640; sample size for high flows is 64;
and sample size for low flows is 320.

Figure 8 and Table 4 demonstrate that bias correction of satellite precipitation products
significantly improved the performance of streamflow simulations. The simulations using the
corrected 3B42V7 precipitation achieved an even higher accuracy than those using the gauge-based
precipitation, implying that the 3B42V7 product can effectively characterize the spatiotemporal
features of precipitation in the study area. It also suggests that the bias-corrected 3B42V7 data
set likely improved the hydrological simulations in the studied watershed where rain gauges are
sparsely distributed. The XAJ model generally performed better in terms of BIAS and NSE when
driven by the corrected IMERG data set than when driven by the original IMERG precipitation input.
However, the CC and LogNSE values substantially decreased at the Mawlaik, Kalewa, and Monywa
stations. Figure 8b shows that the modeling performance at Monywa even worsened in May–June
2015, overestimating the calculated streamflow presumably because of the large uncertainty of the
bias-correction method for satellite precipitation products. As mentioned in Section 3.2, the bias
correction of satellite precipitation was conducted under the assumption that the satellite precipitation
product at the grid cells near a specified rain gauge has the same magnitude of biases (BIAS) as the
precipitation estimates at that rain gauge. In this study, IMERG estimated the total precipitation
amount at Homalin and Kalewa in May 2015 to be 9.6 mm and 12.0 mm, whereas the corresponding
observations were 84.0 mm and 92.0 mm. According to Equations (7) and (8), the bias correction
factor r was calculated to be 8.75 and 7.67 for the grid boxes surrounding Homalin and Kalewa.
The original IMERG precipitation estimates at the grid cells near Homalin and Kalewa were amplified
by 8.75 and 7.67 times to reach the corresponding corrected precipitation. This procedure of utilizing
extremely large bias correction factors produced irrationally high precipitation values at a few grid cells,
thereby generating distinct higher basin-averaged precipitation and ultimately leading to discharge
overestimation at the basin outlet in May–June 2015.

To further investigate the performance of high- and low-flow simulations using the satellite
precipitation inputs, we defined the observed daily streamflow exceeding its 90% quantile as high
flow and that less than its 50% quantile as low flow. The observed high- and low-flow data points
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were compared with the corresponding simulated flow with various precipitation inputs. As shown in
Figure 9 and Table 4, the simulations with the gauge-based gridded precipitation input moderately
underestimated the high flow at all the stations by 1.8%–11.5%. When the XAJ model was driven by the
original 3B42V7 and IMERG products, the percentage of high flow underestimation was worsened to
29.5%–39.3% and 39.1%–48.9%, mainly because of the large negative biases of heavy rain estimates in
these two satellite products (Table 3). The bias correction of the satellite products effectively improved
the high-flow simulations. In the simulations using the corrected 3B42V7 and IMERG precipitation
inputs, the computed high flow was 9.3%–16.6% and 11.5%–25.8% lower than the observations. Table 4
shows that in terms of CC, the high flow simulations using the corrected 3B42V7 precipitation were
more accurate than that using the gauge-based precipitation. It also indicates that the performance of
the high-flow simulations using the original (corrected) 3B42V7 product was generally better than that
using the original (corrected) IMERG precipitation for BIAS and CC statistical indices.
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Figure 9. Scatter plots of the simulated high flow events using the gauge-based precipitation data, the
original 3B42V7 and IMERG precipitation estimates, and their corrected data sets against the observed
high flow at the five streamflow stations in the Chindwin River basin (1 April 2014–31 December 2015).
The terms in the figure are the same as in Figure 8.

Among the five low-flow simulation runs using the different precipitation inputs,
the gauged-based runs generally had the highest accuracy (Figure 10 and Table 4). The bias correction
of the 3B42V7 product effectively reduced the low-flow errors at all hydrological stations, and the
performance of the corrected 3B42V7-based simulations was slightly worse than the gauge-based runs.
However, the bias correction of the IMERG precipitation estimates improved the low-flow simulation
at the Hkamti station but not for the other four stations. As discussed above, the corrected IMERG
precipitation at Homalin and Kalewa in May 2015 was largely overestimated due to the uncertainty
of the bias-correction method. Consequently, the simulated daily discharge was considerably higher
than the observations at the Homalin, Mawlaik, Kalewa, and Monywa stations in May–June 2015,
during which a few low flows actually occurred (Figure 8b). These errors further diminished the
general performance of low-flow simulations at these stations. Overall, the low-flow simulations
using the original (corrected) 3B42V7 product generally performed better than those using the original
(corrected) IMERG precipitation.
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Figure 10. Scatter plots of the simulated low-flow events using the gauge-based precipitation data,
the original 3B42V7 and IMERG precipitation estimates, and their corrected data sets at the five
streamflow stations in the Chindwin River basin (1 April 2014–31 December 2015). The terms in the
figure are the same as in Figure 8.
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4.2.2. Monthly Streamflow

The calculated daily streamflow time series using the five different precipitation inputs were
aggregated to monthly time series, and the performance of the monthly streamflow simulations was
evaluated. Table S2 shows that the monthly streamflow simulations were generally more accurate than
the daily simulations in terms of CC and NSE, although both simulations had the same magnitudes of
BIAS. Figure S1 shows that when the original IMERG and 3B42V7 data sets were used, the simulated
monthly streamflow in August 2014 and July–October 2015 was considerably underestimated.
However, in simulations using the corrected IMERG and 3B42V7 products, the calculated monthly
hydrographs agreed well with the observed data during the entire simulation period, except for May
and June 2015 when the corrected IMERG-based model run significantly overestimated the monthly
streamflow. In general, the bias-corrected satellite precipitation products were feasible in historical
monthly streamflow simulations in the Chindwin River and yielded comparable skill scores as the
model run with the gauge-based precipitation data set. Meanwhile, simulations with the corrected
3B42V7 product generated more accurate simulated monthly streamflow than those using the corrected
IMERG data set.

5. Discussion

The latest GPM Core Observatory sensors and new calibration algorithms were developed to
improve the performance of GPM constellation satellites in observing precipitation at much finer
spatiotemporal scales than their predecessor, TRMM. A few recent studies have proven that the
GPM IMERG products are generally superior to TRMM in several regions, such as the Xinjiang
region [30] and the Qinghai-Tibetan Plateau in China [30,31]; Mainland China [33,34]; Guilan, Bushehr,
Kermanshah, and Tehran regions in Iran [37]; Far-East Asia [35]; and India [36]. However, in the
present study, although the daily precipitation data of both the IMERG final run and TMPA 3B42V7
captured the spatiotemporal variation patterns of rainfall events in the Chindwin River basin in
Myanmar, no significant improvements were found in IMERG. Furthermore, the 3B42V7 data set even
outperformed IMERG at the daily and monthly time scales and in heavy rain event detections at four
out of the five gauges. These findings strengthen the urgent need to further improve GPM algorithms,
particularly for data-sparse regions with complex terrains in Myanmar.

This study demonstrates that the non-negligible errors in the two satellite precipitation products
significantly propagated to streamflow simulations. The significant negative biases in total precipitation
amount and heavy rain estimates, to a large extent, caused the noticeable underestimation of total
runoff and high flow, with IMERG-based simulations demonstrating a considerably worse performance
than 3B42V7. Despite the inherent considerable biases, both the original IMERG and 3B42V7 products
were, in certain periods, superior to the gauge-based data in hydrologic applications. Figure 11
indicates that the two satellite products estimated the areal mean precipitation in the region controlled
by the Hkamti station to be 303.5 mm and 286.3 mm in May 2014. Thus, the corresponding simulated
hydrographs agreed well with the observed data. By contrast, only one gauge was situated in the
drainage area of Hkamti, and the basin-averaged precipitation derived from gauge data was negatively
biased to be 57.0 mm, thus producing a much lower streamflow than the measured values. This result
proves that both IMERG and 3B42V7 accurately captured the spatiotemporal features of precipitation
in May 2014 and therefore facilitated streamflow simulations. It also highlights the necessity for the
local government to build a denser rain gauge network in the basin. In addition, a monthly-based
simple bias-correction method was applied to the two satellite data sets and effectively improved the
overall performance of streamflow simulations. The corrected 3B42V7-based simulations performed
slightly better than that using the gauge-based precipitation, implying that the 3B42V7 product can
potentially improve the discharge simulations over the data-sparse Chindwin River. In regions where
a sufficiently dense gauge network is unavailable, satellite-derived rainfall can be a critical data source
for identifying hazards from small-scale rainfall and flood events [52].
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Figure 11. Simulated daily hydrographs in May 2014 using the gauge-based precipitation data,
the original 3B42V7 product, and the original IMERG precipitation estimates at Hkamti station.
P (gauged) represents the gauge-based, basin-averaged daily precipitation; P (original 3B42V7) and
P (original IMERG) represent the original basin-averaged 3B42V7 and IMERG daily precipitation.
The other terms in the figure are the same as in Figure 8.

The hydrological utility of satellite precipitation products is associated with large uncertainties
from bias-correction methods, parameter estimations, and model structures. In this study, improved
streamflow simulations were achieved via bias correction. However, the method adopted in this study
sometimes produced irrationally high precipitation values at a few grid cells, resulting in overestimated
discharge in certain periods. Therefore, a better bias-correction method should be developed in the
future, and the uncertainties introduced by bias-correction procedures should be quantified.

Ideally, the parameters of a hydrological model should be calibrated using the “perfect” observed
precipitation data set measured in a dense gauge network. These values of calibrated parameters can
be considered as the best possible approximation of watershed hydrological features, and they should
be adopted for all simulation runs using different satellite precipitation inputs. Nevertheless, this study
recalibrated the XAJ model using the satellite products, instead of using the model parameters, based on
the gauge-based gridded data. This is because the gauge-based precipitation data were derived from
sparsely distributed rain gauge records and are therefore inadequate for characterizing the actual
rainfall regimes for model calibration. A few studies [6,21] found that recalibration can sometimes cause
parameter values to exceed their reasonable ranges. To avoid this problem, we defined the searching
space of each XAJ model parameter to be strictly within its physical range in the SCE-UA optimization
algorithm. Thus, with the recalibrated model parameters, the streamflow simulations fed with the
satellite precipitation data are likely to produce more accurate results than the case wherein the “perfect”
parameter set is used, given that a few model parameters are flexible and sensitive to changes in
precipitation inputs. Such characteristics raise the issue of parameter uncertainties, which significantly
influence the evaluation of satellite precipitation products in hydrological simulations. This issue will
be investigated thoroughly in the future.

Precipitation resampling and interpolation were conducted in this study to make the different
satellite and gauge-based data sets comparable. Although IMERG products are on a finer resolution
(0.1◦), this study found that 3B42V7 is better suited than IMERG. In this research, IMERG products
were aggregated from a 0.1◦ spatial resolution to 0.25◦ for comparison with 3B42V7. This procedure
may have produced some errors. Moreover, the gauged-based precipitation data were interpolated to
0.25◦ gridded precipitation data set for hydrological simulations without consideration of topological
effects. This is likely to cause some errors and further effect streamflow simulations. In future works,
the possible errors introduced by these procedures should be evaluated. In addition, more suitable
rainfall–runoff models should be applied in this region, and the simulated streamflow from different
models should be compared and analyzed to quantify the inherent uncertainties from model structures.
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Despite the poor correlation between the ground precipitation observations and the two satellite
products (Table 2), the XAJ model driven by the satellite rainfall estimates was able to reproduce
streamflow both in the original and in the corrected versions (Table 4). As discussed above, part of this
is due to the model recalibration. Another reason could be also the high seasonality of the flood time
series, which is quite easy for hydrological models to reproduce. To fairly evaluate the feasibility of
satellite precipitation products in streamflow simulation, the seasonal cycle should be removed from
the streamflow time series and the simulated streamflow anomalies should be validated against the
observations. The work will be employed in the near future.

6. Conclusions

In this study, GPM and TRMM satellite precipitation products and their feasibility in streamflow
simulations was initially evaluated at daily and monthly scales in the data-sparse Chindwin River
basin in Myanmar. The main findings of this study are as follows:

(1) In general, IMERG and 3B42V7 represent a similar spatial pattern over the Chindwin River basin,
demonstrating a decreasing trend from north to south. IMERG provides a more detailed spatial
information of precipitation than 3B42V7, due to its native resolution of 0.1◦ × 0.1◦ compared to
3B42V7’s 0.25◦ × 0.25◦.

(2) Although IMERG and 3B42V7 can capture the temporal variation patterns of daily precipitation
at the five rain gauges, these two products still contain considerable errors. IMERG significantly
underestimates the total precipitation at all the gauges, and 3B42V7 presents a moderate
underestimation at three out of the five gauges. Both products performed poorly in heavy- and
light-rain detections and estimations, with a considerable underestimation of heavy-rain estimates
and a significant positive bias of light-rain estimates. The accuracy of IMERG and 3B42V7 in
estimating monthly precipitation is significantly improved, compared to daily precipitation
estimates. Overall, 3B42V7 outperforms IMERG at four out of the five gauges.

(3) The large errors in IMERG and 3B42V7 distinctly spread in streamflow simulations via the XAJ
hydrological model, with the significant systematic underestimation of total runoff and high flow.
The IMERG-based simulations perform worse than those of 3B42V7. The bias correction of satellite
precipitation estimates effectively improves the performance of daily and monthly streamflow
simulations using IMERG and 3B42V7 data sets. The corrected 3B42V7-based simulations perform
slightly better than those using the gauge-based precipitation. In general, IMERG and 3B42V7 are
both feasible in streamflow simulations in the Chindwin River basin, with the 3B42V7 product
being better suited than IMERG.

The above findings provide GPM researchers with timely and useful feedbacks from Myanmar
as regards the quality of IMERG products. The newly developed GPM Core sensors and calibration
algorithms are not yet able to produce more accurate precipitation estimates than its predecessor,
TRMM in the Chindwin River basin. This finding highlights the need for GPM developers to refine the
algorithms and improve the accuracy of IMERG products in Myanmar, where plenty of rainfall data are
urgently needed for hydrological utilities. Moreover, it emphasizes that local authorities must establish
a denser rainfall observation network, which not only facilitates the validation of satellite-derived
precipitation but also helps improve the accuracy of streamflow simulations/forecasting for effective
flood warning and disaster mitigation.

Supplementary Materials: The following are available online at www.mdpi.com/2072-4292/9/3/302/s1,
S1: Detailed descriptions of streamflow simulation schemes. Table S1: Physical meaning and sensitivity of
the XAJ model parameters and the calibrated parameter values in the area controlled by the Hkamti station for
the simulation runs using the gauge-based, original 3B42V7 and original IMERG precipitation data sets. Table S2:
Statistical indices of the simulated monthly streamflow processes at the five weather stations in the Chindwin
River basin (1 April 2014–31 December 2015). Figure S1: Simulated monthly hydrographs using the gauge-based
precipitation data, the original 3B42V7 and IMERG precipitation estimates, and their corrected data sets at the
fiver streamflow stations.
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