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Abstract: The identification and representation of building roof topology are basic, but important,
issues for 3D building model reconstruction from point clouds. Always, the roof topology is expressed
by the roof topology graph (RTG), which stores the plane–plane adjacencies as graph edges. As the
decision of the graph edges is often based on local statistics between adjacent planes, topology errors
can be easily produced because of noise, lack of data, and resulting errors in pre-processing steps.
In this work, the hierarchical roof topology tree (HRTT) is proposed, instead of traditional RTG,
to represent the topology relationships among different roof elements. Building primitives or child
structures are taken as inside tree nodes; thus, the plane–model and model–model relations can be
well described and further exploited. Integral constraints and extra verifying procedures can also be
easily introduced to improve the topology quality. As for the basic plane-to-plane adjacencies, we no
longer decide all connections at the same time, but rather we decide the robust ones preferentially.
Those robust connections will separate the whole model into simpler components step-by-step
and produce the basic semantic information for the identification of ambiguous ones. In this way,
the effects from structures of minor importance or spurious ridges can be limited to the building
locale, while the common features can be detected integrally. Experiments on various data show that
the proposed method can obviously improve the topology quality and produce more precise results.
Compared with the RTG-based method, two topology quality indices increase from 80.9% and 79.8%
to 89.4% and 88.2% in the test area. The integral model quality indices at the pixel level and the plane
level also achieve the precision of 90.3% and 84.7%, accordingly.

Keywords: 3D building reconstruction; LiDAR; point clouds; level of details; roof topology graph;
topology completeness

1. Introduction

An increasing amount of attention has been drawn to automatic reconstruction of urban 3D
building models during the past two decades [1,2]. Owing to the recent advances of data acquisition
technology, increasingly dense and reliable point clouds can be produced, whether from stereo
imagery or airborne laser scanning [3,4]. This provides the possibility to capture complex structures
and subtle details, while also bringing significant challenges to current reconstruction methods [5].
As Xiong et al. [6] claims, even when only considering the planar roof surfaces, the reconstruction
procedures can still be challenging because of data insufficiency and building type complexity.

A basic but important issue for the reconstruction of building roofs with multiple planes is the
identification and representation of building roof topology [6–10]. The roof topology graph (RTG) that
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stores the plane-to-plane adjacency is widely used for such a goal. The concept of the original RTG
is quite simple: a vertex in the graph stands for a roof plane and an edge represents the adjacency
relationship between two planes. Once the RTG is constructed, the roof features or building primitives
can be generated by searching typical components or sub-graphs in the topology space. Such a work is
first seen in [7] and the normal orientation is added as labels to the RTG edges to help in describing the
primitive types, while the primitive types are limited to some simple ones. Elberink and Vosselman [8]
expand the primitive library and consider more features such as convex/concave and tilted/horizontal,
and the graph-matching method is adopted to find the building primitives. Though more complex
roof types can be described, the method suffers from the difficulty of defining and searching for
the particular primitive type, and reconstruction errors will appear when mismatches of sub-graphs
occur. Additionally, the completeness of the library can still be problematic. Other than the use of
the RTG for model primitives, the roof features can also be distinguished with the help of the RTG,
i.e., the graph circles often indicate the model corners. Graph circle analysis is adopted under such
an idea by [10,11], where the minimal-close circles and outer-most circles are defined to find both
inside and outside corners. Considering that the minimum cycles contain important model structure
information, Xiong et al. [12] describe the primitive types according to the number of circle vertices
and the orientation of ridges near the model corners calculated by minimum cycles, and the primitive
library turns out to be more adaptive than [8]. It should be noticed that a minimum cycle may not
always correspond to a model corner; thus, the reliability of the constructed model after circle analysis
should be examined. RTGs are also used to interpret the building structures in other works such
as [13,14].

Though widely researched by current works, RTG-based methods suffer two major difficulties.
One is that RTG itself is error-prone because of noise, lack of data, and the resulting errors in
pre-processing steps, such as point classification and roof segmentation [6,15]. Proper thresholds
to separate the weak roof ridges or step edges from the spurious ones can hardly be generated [16].
Though great improvements have been proposed by the correcting approach in [6], only about
one quarter to one half of erroneous graphs are claimed to be corrected. Another is that the
stored topological relationships among model elements by the RTG are rather limited and often
not exploited [17]. Some structures cannot be well-expressed by the RTG, i.e., if both intersection ridge
and step edges exist between two planes, the step parts are often lost [10]. The RTG takes all of the
planes as the same and few integral constraints or roof scales (or level of details) are considered, thus,
a small local error caused by a small or false plane may seriously affect the construction of the main
structure. Though the building primitives can generate the constraints within child-structures, the
relationships among different primitives are not emphasized and may result in holes in the final model.

Studies have been developed to reinforce the representation of topological relationships.
A primal/dual data structure is proposed in [17], which can describe very complex model types and
permit Euler-type operations for incrementally constructing 3D models. Sohn et al. [18] reconstruct
the roof topology based on the BSP (binary space partitioning) tree. The method implicitly groups
fragmentary linear features between adjacent planes, thus can keep the horizontal and/or vertical
relations between building primitives. The disadvantage is that the accuracy is limited by the quality
of the extracted feature lines, and the height clustering process may not be efficient enough to separate
the connected building roofs. Our earlier works [19,20] also attempt to construct complex-shaped
buildings through contour clustering analysis. As the contours have the characteristics of closed
loops and do not intersect, it shows great advantages when distinguishing the building footprint or
the hierarchical structure of high-rise buildings. The problem comes when it is used to distinguish
complex rooftops, as the shape of contours changes significantly and irregularly. Considering that
using information only from point clouds can be difficult to distinguish complex roof topologies,
extra information, such as aerial imagery [21] or 2D ground planes, is introduced. Additionally,
semi-automatic procedures [22–24] are also considered in order to find and correct the false topology
results by automatic algorithms. Some highly model-driven methods [25–28] directly match the raw
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points clouds with the pre-defined models or primitives. Once successful matches are generated,
topology-correct results can be immediately produced after the model parameters are estimated.
Though excellent advances are produced in typical scenes, their adaptabilities are often limited.

In this work, the hierarchical roof topology tree (HRTT) is proposed instead of the traditional
RTG to represent the relationship among different roof elements. In allusion to the error-prone nature
of RTGs, we no longer decide all connections at the same time but, rather, the robust ones are decided
referentially. Those robust connections will separate the whole model into simpler components
step-by-step and produce the basic semantic information for the identification of ambiguous ones.
Then, the error-prone connections can be determined under a hypothesis-and-testing procedure.
Meanwhile, unlike RTGs that consider only the plane–plane relationship, the HRTT also considers
the relationships between the roof plane and child model, as well as the model–model relationships.
The additional constraints and extra verifying processes can then be easily introduced to improve the
topology quality, eventually resulting in better reconstruction results.

The remainder of this paper is organized as follows: Section 2 gives the basis of our reconstruction
method and the major problem we attempt to solve. Details of the hierarchical roof topology construct
strategy are given in Section 3. Experimental results are analyzed in Section 4, followed by discussion
and conclusions in Section 5.

2. Background

In this section, we first briefly review the workflow of RTG-based topology construction methods
and discuss the difficulties confronted by current methods. Then we explain our attempts to improve
the roof topology.

The target of roof topology construction is to determine the connectivity between adjacent
roof planes. As shown in Figure 1, the procedure often starts with the segmented/classified point
cloud. Local analysis or static are adopted between adjacent plane pairs to find different types of
connections: for roof ridges, the corresponding boundary points or edge segments should be close
to the intersection line; as for step edges, points with distinct height differences are needed. Then,
all of those scattered plane–plane relations are organized in an undirected graph named the roof
topology graph (RTG). The RTG takes roof planes as graph vertexes and describes the connectivity
between two planes by labeled graph edges. As the RTG stores only the plane–plane relationship,
graph analyses [7,8,10] need to be adopted to generate the relationships among multiple planes, i.e., the
graph cycle (3, 4, 5, 6) indicates an inside corner point intersected by four planes. Building primitives
can also be detected by searching typical structures in the RTG. Finally, the roof features are calculated
to form the building models.

Though the detail distinguishing method or connection type definition can be various, two major
difficulties are suffered by current methods. One is the error-prone nature of the RTG because of noise,
lack of data, and the resulting errors in pre-processing steps. The local analysis or static for plane–plane
connections (shown in Figure 1) will inevitably introduce in some thresholds, while proper thresholds
to separate the weak roof ridges or step edges from the spurious ones can hardly be generated. As a
result, short or weak ridges may be lost and false edges will be introduced, knowing that once topology
errors occur, they can hardly be corrected in the follow-up processes (quantitative analysis about the
issue will be provided in Section 4.3.1). Another problem is that the stored topological relationships
among model elements by RTG are rather limited and often not exploited. For the plane–plane
connections, some structures between two planes may fail to be marked by a label because of the
building complexity. For instance, when composite structures exist (Figure 2), the step parts are often
lost; roof details may cut a roof ridge into several parts; step boundaries may have small height
differences and thus may not be significant enough to be detected. As for the relationship among
multiple planes, the graph analysis may also fail in some situations.
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Figure 1. Work flow of the traditional roof topology graph (RTG)-based methods.  

 
Figure 2. Example of the error caused by a composite structure: only the intersecting ridges are 
reflected in the RTG, while the step parts are omitted.  

The issue is similar to the edge detection problem in the field of image processing, where false 
edges and weak ones can hardly be distinguished by fixed gradient thresholds. As such, we use the 
similar idea as the canny algorithm [29] and adopt a progressive approach when distinguishing the 
roof topology. Strict conditions are firstly adopted to find the robust connections. Then, the 
error-prone connections are determined under a hypothesis-testing procedure, with the assistants 
of information derived from robust ones. Meanwhile, we attempt to exploit the 
semantic information that may not be well considered by the RTG, such as the integral constraints 
among model primitives and the typical structures that can decompose a complex building into 
several simpler components. Extra verifying processes, such as side projection [30], are also 
considered to correct the possible topology errors. To realize such a progressive procedure, as well 
as the use of the extra constraints and verifying procedures, the hierarchical roof topology tree 
(HRTT) structure is proposed. 

3. Hierarchical Roof Topology Tree 

In this section, we first give the concept and structure of the hierarchical roof topology tree 
(HRTT). Then, we introduce the detailed issues we considered when distinguishing the relationships 
among different tree members. Finally, we provide the construction procedure we realized based on 
the HRTT. 

3.1. Concept and Reconstruction Strategy 

Our new topology structure contains two major parts. One is a multi-way tree structure to 
organize not only the roof planes, but also those possible child structures within the model. As 
shown in Figure 3, the roof planes are taken as the leaf nodes and the tree root stands for the whole 
model. Other inside nodes represent the child structures of the model: the closer to the tree root, the 
larger/coarser the child structure it represents. Another part is the simple RTGs created together 
with the tree structure. For each inside node in the HRTT, a simple RTG is generated whose graph 
vertices are its child nodes. For instance, primitive C contains child nodes such as E and F, and all of 
its child nodes consists one simple RTG. Such a mixed structure is used to replace the traditional 
RTG when we construct the roof topology.  
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Figure 2. Example of the error caused by a composite structure: only the intersecting ridges are
reflected in the RTG, while the step parts are omitted.

The issue is similar to the edge detection problem in the field of image processing, where false
edges and weak ones can hardly be distinguished by fixed gradient thresholds. As such, we use the
similar idea as the canny algorithm [29] and adopt a progressive approach when distinguishing the
roof topology. Strict conditions are firstly adopted to find the robust connections. Then, the error-prone
connections are determined under a hypothesis-testing procedure, with the assistants of information
derived from robust ones. Meanwhile, we attempt to exploit the semantic information that may not
be well considered by the RTG, such as the integral constraints among model primitives and the
typical structures that can decompose a complex building into several simpler components. Extra
verifying processes, such as side projection [30], are also considered to correct the possible topology
errors. To realize such a progressive procedure, as well as the use of the extra constraints and verifying
procedures, the hierarchical roof topology tree (HRTT) structure is proposed.

3. Hierarchical Roof Topology Tree

In this section, we first give the concept and structure of the hierarchical roof topology tree (HRTT).
Then, we introduce the detailed issues we considered when distinguishing the relationships among
different tree members. Finally, we provide the construction procedure we realized based on the HRTT.

3.1. Concept and Reconstruction Strategy

Our new topology structure contains two major parts. One is a multi-way tree structure to organize
not only the roof planes, but also those possible child structures within the model. As shown in Figure 3,
the roof planes are taken as the leaf nodes and the tree root stands for the whole model. Other inside
nodes represent the child structures of the model: the closer to the tree root, the larger/coarser the
child structure it represents. Another part is the simple RTGs created together with the tree structure.
For each inside node in the HRTT, a simple RTG is generated whose graph vertices are its child nodes.
For instance, primitive C contains child nodes such as E and F, and all of its child nodes consists one
simple RTG. Such a mixed structure is used to replace the traditional RTG when we construct the
roof topology.
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Based on the above idea, a roof reconstruction strategy using the HRTT can be provided in 
Figure 4. Steps 2 to 4 are repeated, which make the reconstruction process a progressive approach 
from robust connections to difficult ones. In section 3.2, we discuss the relations among different tree 
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Figure 3. Definition of the hierarchical roof topology tree (HRTT). (a) The tree structure. (b) An example
of simple RTG.

As discussed in Section 2, we adopt a progressive approach when constructing the roof topology.
Robust connections are detected preferentially and we test whether those connections can be used
to reorganize the roof planes. Both top-down and bottom-up strategies are considered: if the model
can be easily divided into several parts, we decompose the father node, i.e., Node A is decomposed
into B, C, and D; when several planes are strongly relative and can be combined together, we take a
bottom-up procedure by constructing the sub-structures locally and projecting their points into the
main structure, i.e., nodes G and H are combined into Node E. In this way, those inside nodes are
created. Once an inside node is determined, the corresponded simple RTG can also be created by
simple graph operations. For instance, if plane G or H is connected to plane F, then Node E and F
are connected in the simple RTG of Node C. Those simple RTGs take the child structures as unique
vertices and can represent well the integral constraints in the building locale. For the error-prone
connections, they will be guided by those constraints or extra verifying process and determined under
a hypothesis-verifying process.

Based on the above idea, a roof reconstruction strategy using the HRTT can be provided in
Figure 4. Steps 2 to 4 are repeated, which make the reconstruction process a progressive approach
from robust connections to difficult ones. In Section 3.2, we discuss the relations among different tree
members and the use of extra information for better topology results (for Steps 1, 3–5), followed by the
consideration on inside node determination in Section 3.3 (for Step 2).
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3.2. Topology Relations in the HRTT

This section introduces how we describe the relations among different tree members. This not
only explains how we organize higher levels of semantic information for better topology results, but
also provides the necessary features or information when we determine the inside tree nodes. Three
types of topology relations are considered instead of only simple plane–plane relationships in the RTG.

3.2.1. Plane–Plane Relations

The HRTT adopts a progressive approach that detects connections from robust to error-prone
ones. The procedure is provided below in Figure 5.

Remote Sens. 2017, 9, 354  6 of 23 

 

3.2. Topology Relations in the HRTT 

This section introduces how we describe the relations among different tree members. This not 
only explains how we organize higher levels of semantic information for better topology results, but 
also provides the necessary features or information when we determine the inside tree nodes. Three 
types of topology relations are considered instead of only simple plane–plane relationships in the 
RTG.  

3.2.1. Plane–Plane Relations 

The HRTT adopts a progressive approach that detects connections from robust to error-prone 
ones. The procedure is provided below in Figure 5.  

 
Figure 5. Work flow of the identification of plane–plane relations. 

Our detection of robust connections have referred to many current works: the connection 
candidates are decided by the minimal plane distance defined in [9], where TIN (Triangular 
Irregular Network) edges that connect points from different roof planes are tested; for robust ridges 
and step edges, we use a plane boundary segments based method similar to [31] and the 
alpha-shape boundary [32,33] is generated to represent the roof plane boundary; the graph cycle 
analysis [8,10] is used to find the model corners. The robust connections are reliable under strict 
thresholds or conditions and so are not discussed further. In the HRTT, we mainly concentrate on 
two issues: the identification of complex connections, such as composite structures discussed in 
Figure 2; and the detection of weak or error-prone connections from false ones. 

To describe the complex connections, we choose the boundary segments-based method and 
claim that each supposed ridge/step edge should correspond to a boundary segment. As shown in 
Figure 6, once reflected to the plane boundary segments, a complex connection cannot be respected 
by a simple ridge or step edge and, thus, divided into several parts accordingly. If the undecided 
boundary segments are significant enough (Figure 6f), other additional edges will be considered. An 
ambiguity here is that the undecided boundary could be caused by improper segmentation results 
instead of omitted step edges. As such, we need to verify the quality of supposed intersection line or 
step edge.  

The goal is realized by firstly finding the possible “abnormal” points and then testing whether 
those points are aggregated or significant enough. We first define the region we considered when 
searching the abnormal points. In Figure 7, points near the target ridge/step edges are projected to 
the XOY plane and we only examine them within the 2D region. For relations between only two 
planes (Figure 7b), the searching region is similar as the buffer area we used when determining the 
roof ridges, but wider (2 m in each side). For relations among multiple planes (Figure 7c), the region 
is a circle near the supposed model corner, whose radius is the maximal value of 2 m and the 
lengths for the three original ridges to be extended to the corner.  

Figure 5. Work flow of the identification of plane–plane relations.

Our detection of robust connections have referred to many current works: the connection
candidates are decided by the minimal plane distance defined in [9], where TIN (Triangular Irregular
Network) edges that connect points from different roof planes are tested; for robust ridges and
step edges, we use a plane boundary segments based method similar to [31] and the alpha-shape
boundary [32,33] is generated to represent the roof plane boundary; the graph cycle analysis [8,10] is
used to find the model corners. The robust connections are reliable under strict thresholds or conditions
and so are not discussed further. In the HRTT, we mainly concentrate on two issues: the identification
of complex connections, such as composite structures discussed in Figure 2; and the detection of weak
or error-prone connections from false ones.

To describe the complex connections, we choose the boundary segments-based method and claim
that each supposed ridge/step edge should correspond to a boundary segment. As shown in Figure 6,
once reflected to the plane boundary segments, a complex connection cannot be respected by a simple
ridge or step edge and, thus, divided into several parts accordingly. If the undecided boundary
segments are significant enough (Figure 6f), other additional edges will be considered. An ambiguity
here is that the undecided boundary could be caused by improper segmentation results instead of
omitted step edges. As such, we need to verify the quality of supposed intersection line or step edge.

The goal is realized by firstly finding the possible “abnormal” points and then testing whether
those points are aggregated or significant enough. We first define the region we considered when
searching the abnormal points. In Figure 7, points near the target ridge/step edges are projected to the
XOY plane and we only examine them within the 2D region. For relations between only two planes
(Figure 7b), the searching region is similar as the buffer area we used when determining the roof ridges,
but wider (2 m in each side). For relations among multiple planes (Figure 7c), the region is a circle near
the supposed model corner, whose radius is the maximal value of 2 m and the lengths for the three
original ridges to be extended to the corner.

Once the searching region is decided, the 2D dividing lines will separate the determining regions
into several parts, and each part corresponds to a certain roof plane. Then, for each point in the
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searching region, we decide whether it is “abnormal” under the following two steps. One is to test if
the point is divided into the target region. As shown in Figure 7b, Point P1 belongs to Plane B according
to the segmentation results, while it is divided into Plane C by the red dividing line. Points P2 and P3
have the same conditions as P1 and are also set as the candidates of abnormal points. The second step
is to test whether the candidates are accepted by the new region. The point-plane distance is taken
as the standard here and, if the value is over the predefined threshold (0.2 m), an abnormal point is
detected. Those abnormal points are clustered into connected groups by a simple growing algorithm,
where a point can grow to another if their spatial distance is smaller than triple the average point
distance. Finally, if more than three connected abnormal points are found in one group, the supposed
line cannot respect the connection and new connections need to be considered. Based on the above
procedure, the three ridges in Figure 7 (Figure 2, also) will be refused to be intersected into the corner
even if the graph circle is detected, and new step edges will be considered.
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Figure 7. Searching for abnormal points when deciding the roof ridges or step edges (same data as we
used in Figure 2). (a) Segmented roof points and detected roof ridges, with a (false) roof corner to be
decided; (b) the searching region for plane–plane relations; (c) the searching region for the roof corner
intersected by multiple planes. A, B, and C are the three adjacent planes, the red lines are the detected
ridge lines, and the black dotted lines are where the ridges are supposed to be extended. P1, P2, and P3
are three points that failed to be divided into the target region. We project the ridges into the XOY
plane, and ai, bi, and ci are parameters for the equations of corresponding 2D lines.

For weak or error-prone connections, our efforts concentrate on the utilization of constraints
derived from robust structures and the extra verifying processes in the building locale. As those
processes often refer to the relations between roof plane and the child structure to which it belongs,
we describe them in the plane–model relations. Additionally, when the height difference between



Remote Sens. 2017, 9, 354 8 of 23

two planes of a step edge is not significant enough, or when segmentation error exists, it is possible
that a false short ridge is still detected. As a result, if a long plane–plane connection only contains a
very short ridge, we also consider the use of a comprehensive step connection instead of composite
structures. The abnormal points defined above are used to evaluate the quality of the new step edge.

3.2.2. Plane–Model Relations

To be manmade objects, the building roof planes have many common features or hidden
constraints. Those important information and knowledge are often not fully exploited by simple
plane–plane relations. This section will explain how we reflect them into the plane–model relations in
the HRTT for better topology results. The issues we considered are provided in Figure 8.
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For current methods, in order to distinguish the roof features or normalize the plane boundary,
an orientation needs to be estimated beforehand, i.e., the building-dominant orientation. When several
adjacent buildings are processed together or when the building structure is complex, a single
orientation for them all might be improper and cause over-regularization. In our work, an orientation
transmitting procedure is adopted firstly. Initial orientations are produced by the robust horizontal
convex ridges and similar orientations are grouped together. Planes containing those robust ridges
generate the orientation immediately. Other disorientated planes receive the orientation based on a
growing process within the initial RTG. We permit a disorientated plane having more than one
orientation and select the best fitting results when multiple orientations exist. If no horizontal
convex ridges exist in the model, we estimate it according the boundary of the whole model.
The Douglas–Peucker algorithm [34] is adopted to find the edge corners here, and we extract the
longest edge segments between adjacent corners, whose points are fitted to produce the orientation of
the whole model.

Once the plane orientation is decided, we consider the boundary relations between each plane
and the whole child model. By methods similar to Figure 6, we divided the integral boundary into
segments where each one corresponds to one roof plane, thus deriving the plane pairs that are adjacent
at the model boundary. The boundaries of the holes in the whole child model are also considered
as “outside” here. If a roof ridge or step boundary between two adjacent planes has already been
detected, we test if they can be extended to the outside boundary of the child model. Such a work is
similar to the use of the outermost circle in [10] and, for our methods, the child structure boundary
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can also be normalized. If no connections are detected, we’ll guess a ridge or step edges according
to the boundary height difference. The number of abnormal points defined in above section will
be also considered. In this way, some short/weak connections near child model boundary can be
decided. For instance, if parts of the four oblique ridges in Figure 9d are lost by the local analysis
when discussing the plane–plane relations, they can still be generated here as the supposed ridges can
separate the roof points well.
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Figure 9. Example of boundary projection and the newly introduced constraints. (a) Integral
model boundary, in which O is the point cloud center and the “bias_x” is parallel with the domain
orientation; (b) boundary projection analysis; (c) constraints derived from integral boundary projection;
(d) constraints derived from integral child structures and plane–model relations.

For some RTG-based methods, the plane boundaries are detected within single planes; thus, the
collinear/parallel constraints between neighbor planes might be lost. For planes within the same
child structure, we use a boundary projection process upon the integral boundary to generate those
constraints. As shown in Figure 9b, the integral boundaries are projected to the dominant orientation
and its vertical orientation. Then, we claim that the three edges belong to Segment 2 should be collinear
and edges in Segments 1 and 5 should be parallel. The boundary projection process is also adopted
when we consider the model–model relationship for collinear boundaries. It should be noticed that
we store those constraints in a graph structure, as they might be related to each other and need to be
calculated simultaneously. For instance, the ridge-to-model-boundary relation in Figure 9d implies
the two plane edges having same height. The four ridges will produce four similar relations and
eventually conclude that the four edges have the same height.

Side projection is also an effective approach to distinguish the conflicting structures near horizontal
convex ridges, especially when the roof window occupies points from the main structure and cause
false edges. The approach has already been used for segmentation by work of [30] and shows its
advantage in many scenes. In our work, the method is used to recover the local topology errors,
i.e., Figure 10. As we only use a local projection, the process is adaptive even if the whole building has
multiple normalization orientations.
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We also test whether a plane/child structure is inside a main roof plane. This is mainly realized
through a point-in-polygon test. Generally, the polygon is defined as the main roof plane’s boundary
edge list, and we define an inside plane if all its boundary points are within the polygon. If more than
one connected plane is entirely inside the same main roof plane, we consider them together as an
inside child structure. For each child structure, we add an inside node in the tree structure of HRTT
and search the model primitives to construct it integrally. Additionally, if a plane is only connected to
the main roof plane (degree of vertex in initial RTG equal to 1), we use the convex hull of the main roof
plane instead of the alpha-shape boundary in case of a roof window is at the roof boundary, where
a certain percentage of overlap area (60% of the sub-structure) is demanded. Inside planes or child
structures are constructed locally and we project their points to the main structure to construct the
entire main roof (Figure 10c). Such a projection process can be very important for the main structure
when its point density is sparse and occluded by windows.
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3.2.3. Model–Model Relations

For many model-driven methods, the models are completed separately within sub-graph of the
RTG or building primitives, which leads to a lack of integral constraints between building primitives.
Once inconsistency occurs, i.e., two primitives have different normalization orientations or a short step
boundary fails to be detected, holes will appear in the constructed models. In our HRTT, those issues
are well considered in model–model relations. The work flow is given below:

When distinguishing model–model relations, points from the same child model are taken as a
whole and similar approaches can be adopted, similar to what we do when considering the plane–plane
relations. Firstly, the integral common boundaries between two child models are calculated using
a boundary comparison process similar to Figure 6. As a model–model connection often refers to
several plane–plane connections, we use a simple graph operation to find the set of relations that
connect planes from two different child structures. Second, we test the consistency between the integral
connection and the corresponded short connections. Just like in the deciding of composite structures
in plane–plane relations, we claim that each edge boundary segment should correspond to one short
ridge or step edge. The detected conflicts often indicate the short or weak connections that failed to be
explored or the inconsistency between the two sides of the child structures.

In the third step, the integral boundary is normalized by boundary projection and we constrain
the short edges by the integral edge to generate consistent primitive connections. Once the normalized
integral boundary is decided, building primitives from its two sides are extended to the common
boundary; thus, the possible holes between two primitives can be avoided. It should be noticed
that, if multiple orientations between two primitives exist, all orientations are considered to generate
the best fitting one. Additionally, the outside boundary of the entire two child structures will also
be considered, just like we do in plane–plane relations, and the parallel and vertical constraints are
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generated. Finally, the model-in-model test is used on the sub-models inside the main structures,
which is similar to the plane-in-plane relations and are not further discussed.

3.3. Inside Tree Node Determination

As claimed in Section 3.1, HRTT literally searches typical types of connections that can derive
the inside tree nodes, where both top-down and bottom-up strategies are considered. The top-down
strategy keeps searching those robust connections that can easily decompose the model into several
parts, such as the robust step edges or main horizontal ridges [35]. The bottom-up strategy gathers
the relative planes into the same group, which is similar as the searching of building primitives
or sub-structures. Each time we add a type of inside nodes, we consider the plane–model and
model–model relations to keep the integral consistency between different tree elements.

To decide a certain type of nodes, we need to refer to the topology relations among the
corresponding tree members, where different calculations or decisions need to be taken. For instance,
to derive the tree nodes by robust step edges, we first ignore the step connections in the initial RTG
(step 4 in Figure 5) and calculate the connecting child graphs. Each child graph is taken as a node to be
added. Then, we calculate the integral step boundary between adjacent child structures and compare
it with the plane–plane step edges (Steps 2 and 3 in Figure 8) to keep their consistency. Next, each
part is constructed separately and expanded to the common step boundary, if necessary, knowing that
those step boundary may be changeable in the follow-up steps (Step 3 in Figure 11). Table 1 provides
the connection type we considered and the message it needed when considering the relations among
different tree members.

Table 1. Topology relations considered when deciding inside tree nodes in the HRTT.

Connection Type Plane–Plane (Figure 5) Plane–Model (Figure 8) Model–Model (Figure 11)

Robust Step edge 4 2, 3 3
Main horizontal ridge 2, 3 2, 3, 4 2, 3

Edges to model boundary 6, 7 2, 3 2, 3
Sub-structures 5 5 3, 4
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For better understanding, Figure 12 gives an example of the hierarchical construction procedure
we realized based on the HRTT. It shows how we add the inside nodes and dividing the roof planes
step by step, and also indicates its difference with traditional RTG-based methods. The area is selected
from Area 1, the ISPRS benchmark data [36]. Current RTG-based methods confront a large number of
challenges in this data: The regularization orientations are difficult to decide for the child structures
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(b has two orientations, c has irregular edges connected to building d); the existence of large bay
windows makes the point density of the main structures sparse and causes false edges with the
opposite planes; the small plane in f may also be omitted in segmentation results. By calculating the
common features integrally, the lost step edges can be generated under the consistency test (i.e., the
step edges between h and j). The main horizontal ridges divide the roof planes into its two sides and
the use of side projection can avoid the false ridges (i.e., in child structure c). For the omitted plane
in f, the error will be limited within the child structure that can be easily repaired in the follow-up
approaches. As a result, the final topology results are greatly improved.

It has to be noted that we never limit the types of child structures or the depth of the tree. Thus it
is possible to add in new type of inside nodes when necessary, such as the wall planes. Additionally,
if we failed to generate some inside nodes, no extra errors will be brought in and we can process it just
like traditional methods. Particularly, when no inside nodes are found, the HRTT is simply the same
as the traditional RTG, thus the RTG can be taken as a special case of the HRTT.
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4. Experiments and Discussion

This section presents the overall performance of the proposed methods experimentally. Various
assessment metrics are used to assert the methods and the results are compared with current studies
to prove its robustness.

4.1. Datasets, Reference, and Parameters

Two datasets are used in our experiments: one is collected from the city of Vaihingen,
the benchmark data of the “ISPRS Test Project on Urban Classification and 3D Building Reconstruction”,
which allows us to use external reference data [36]; another is the Wuhan University data, with higher
point density, introduced in [37]. The properties of the two datasets are provided below in Table 2.
In our experiments, we construct the roof topology from the segmented roof points, and more details
about the LiDAR point cloud segmentation may also refer to our recent work [37].
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Table 2. Properties of the two datasets.

Site Vaihingen Wuhan University

Acquisition Date 22 August 2008 22 July 2014
Acquisition System Leica ALS 50 Trimble Harrier 68i

Fly Height 500 m 1000 m (cross flight)
Point Density ~4/m2 >15/m2

To evaluate the precision of the reconstruction algorithm, two groups of manual references are
used in quantitative experiments. The first group is for the topology precision, which considers only
the connections between plane pairs. For a plane–plane connection, two planes should be both found
in the reference first, and a least overlap of 50% needs to be ensured. Then, two indices are considered:
one considers the existence of the connection, and the other considers the similarity between the
connection and the reference. The segmentation results upon Area 1 of the ISPRS benchmark data are
selected as the input data, where 185 ridges and 81 step edges are defined in our reference. For step
edges we only consider the 2D precision and as for a composite structure, we will only assert the
ridge part. For more detail information, the readers may need to refer to our recent work [37], where
the quantitative standard and the segmentation results are all clearly provided. The second group is
from the ISPRS test project [36] and evaluates the model reconstruction results by the roof boundary
polygons. Since this is a test dataset from a third party, it is only possible to compare the DSM images
and some other quantitative results. In the references, the three test areas have 37, 14, and 56 buildings
and 288, 69, and 235 planes, correspondingly.

The platform of the compute program is based on an open sources project, Cloud Compare [38],
which provides basic algorithm I/O, such as data reading/writing and model displaying, as well
as simple statistics or operations upon the point clouds. The platform supports multiple operating
systems and our work is developed on Windows 7, using C++ under VS2010. Some open source
algorithm libraries are also included, such as the PCL [39] for point neighborhood analysis and the
CGAL [33] for the alpha-shape edges. The main parameters used in the proposed test area are shown
in Table 3.

Table 3. Parameters used by the proposed method.

Parameters Vaihingen Wuhan University

Input point cloud examine

Minimum number of points for a building 50 200
Minimum number of points for a roof plane 5 20

Maximum slope for a roof plane 80◦ 80◦

For ridges/step edges (Section 3.2.1)

Minimum ridge/step edge length (robust) 1 m 1 m
Minimal height difference for step edges (robust) 0.5 m 0.5 m

Buffer width near the roof ridges 1 m 1 m
Small angle (for deciding horizontal/collinear ridges) 3◦ 3◦

For boundary

Scale for alpha-shape edge detection 3AveDis 3AveDis
Minimal spacing between two adjacent parallel edges 1 m 1 m

Minimal number of points in an edge segment 3 5
Distance threshold for Douglas–Peucker algorithm (Section 3.2.2) 0.15 m 0.15 m

For abnormal points/area (Section 3.2.1)

searching radius/buffer width 2 m 2 m
Point to plane distance threshold 0.2 m 0.2 m

Distance threshold for adjacent abnormal points 3AveDis 3AveDis
Minimal number of adjacent abnormal points 3 10

Minimal overlap for plane-in-plane test (Section 3.2.2) 60% 60%

Notes: the AveDis is the average point distance, established automatically.
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Most parameters have already been introduced in Section 3, which are marked and not further
discussed here. The rest parameters mainly concentrate on two aspects. The first part is to examine
the input data, including the size of roof planes and buildings. As we only consider the rooftop,
the slopes of planes are also controlled, in case of the conflicts caused by the projection approaches.
Additionally, we suppose that the connectivity of roof points in plane segments have already been
ensured in segmentation results; thus, the alpha-shape edge can be generated smoothly. The other part
is for the boundary projection approach we used to normalize the roof edges. The major issue here
is to balance the demands between precision and normalization. The minimal spacing between two
nearby parallel edges decides whether the two should be combined into one. The minimal number of
points in an edge segment decides whether the local edge details should be omitted, and can avoid the
zigzag edges caused by boundaries that are not consistent with the domain orientation.

4.2. Model Reconstruction Results

4.2.1. Vaihingen

Figure 13 shows the results of the three test areas in the Vaihingen, ISPRS test dataset, which are
widely adopted and compared by current studies. Area 1 contains dense development, consisting of
historic buildings having complex shapes. Especially for the lower-left parts, several buildings have
different normalization orientations, irregular outside boundaries, and large windows that occlude
the main structures, which create problems for the current methods. Area 2 is characterized by
high-rise residential buildings surrounded by trees. The roof boundaries are very complex, and the
gaps between adjacent roofs have large height differences. Area 3 is purely residential, with detached
houses surrounded by trees. The reconstruction results show the adaptation of the proposed method.
We have uploaded the results to the ISPRS test project [36,40], and the comparison of the quantitative
results with four other state-of-the-art studies will be discussed latter.
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4.2.2. Wuhan University

Figure 14 shows the reconstruction results of the Wuhan university dataset, with a much higher
point density. As the data is generated through cross-flights, it is more variable locally, as two close
points (with similar x and y values) from different flights may have relatively larger height difference.
Additionally, the scales of roof plans change largely from the main structures to small local details.
This brings much challenge to the current methods, not only to the adaptation of the feature extraction
methods but also the selections of algorithm thresholds. HRTT shows great adaptation under those
various situations as it decomposes the complex scenes into child structures step-by-step, while
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maintaining their interrelations simultaneously. From the results of the constructed models, it can be
seen that our method can construct very complex model types and maintain the small roof details
simultaneously. Furthermore, the consistency among different model primitives is well kept and the
parallel/vertical constraints are ensured.Remote Sens. 2017, 9, 354  15 of 23 
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4.3. Precision Analysis and Limitations

This section proposes the performance and limitations of our proposed HRTT, in quantitative and
qualitative terms. Both topology correctness and model precision are evaluated and compared with
RTG-based methods, which is followed by a discussion on the limitation.

4.3.1. Topology Precision

Table 4 concludes three major types of local analysis methods used in current RTG-based methods
that distinguish the roof topology. A brief description about their realization and the used parameters
are also provided. We compare the HRTT results with those methods to evaluate its performance and
robustness. The evaluate methods and the references data we used have been introduced in Section 4.1,
and the topology precisions are provided below in Table 5.

Local analysis methods need to make a balance between the completeness and correctness. Looser
conditions can detect the weak/short roof ridges, while the possibility of bringing in false edges will
also increase, and vice versa. As a result, Type A receives the highest completeness, but the lowest
correctness. For HRTT, the robust connections are detected preferentially (high correctness), and we
permit some weak or error-prone edges to be undecided (low completeness). Type C conforms to
such demands and we use a stricter threshold for it to generate the best initial correctness. As extra
constraints and the verifying procedures are adopted in the follow-up steps, both completeness and
correctness in our final HRTT results are improved. Considering that local analysis results may be
influenced by thresholds and the used methods, we select 10 error-prone connections in Figure 15.

Table 4. Description of local analysis methods adopted in the RTG-based method.

Method Roof ridge Step edge Parameters (e.g.)

Type A: by point-
point connections [9]

Minimum distance of all point
combinations (dmin)

Degree of r-vertex (r = 1), detect
by boundary tracing dmin = 1 m;

Type B: by point
counts near the
feature lines [6,8,10]

Points count within buffer area (nPt)
and minimum ridge length
projected by points (Lmin)

Nmin points within planimetric
distance dmax, but larger height
difference than Hmin

nPt = 10; dmax = 1 m;
Lmin = 0.5 m; Hmin = 1 m;

Type C: by roof
boundary edge
segments [7,31]

Common boundary edge segments
within buffer area (Bdmin), ridge
length projected by edge (Promin)

Edge pixel chain is split into 2D
and test the 2D boundary length

Bdmin = 1 m,
Promin = 0.5 m;
(Our_initial: Promin = 1 m)

Notes: our robust connections are detected by similar methods as Type C, but stricter thresholds. The width of the
buffer area is set as twice the point distance.
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Table 5. Performance comparison of different topology identification methods.

Topology Precision A B C Our_initial Our_final

RTG based
compl (%) 90.3 88.4 85.8 84.5 92.9
corr (%) 85.0 92.6 93.0 94.9 96.0
qua (%) 78.8 82.5 80.6 80.9 89.4

ic > 0.3
compl (%) 90.3 87.1 85.2 83.9 91.6
corr (%) 84.0 91.8 93.0 94.2 95.9
Qua (%) 78.0 81.1 80.0 79.8 88.2

Notes: RTG-based precision cares only about the existence of plane–plane connection, while the index ic [37]
also considers the quality of edge by comparing it with the reference. compl: completeness = TP/(TP+FN); coor:
correctness = TP/(TP+FP);qua: quality = TP/(TP+FN+FP), where TP (true positive) is the number of objects found
both in the references and results, FN (false negative) is the number of reference objects not found in results, and
FP (false positive) is the number of detected objects not found in the reference. Our_initial is the precision of our
initial RTG-distinguished results, using the Type C method, but with stricter thresholds (Table 4). Our_final is the
precision of the final precision after HRTT is constructed.
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Figure 15. Details of the 10 selected error-prone connections in the test data, marked by connection
types. In the reference image: red arrows for the intersected ridges, green arrows for the step edges
and blue arrows for no connections. In the local scenes: red bold lines for the detected ridges, black
bold lines for the step edges and green fine lines for the reference edges.

For Positions 2, 4, and 6 in Figure 15, the amount of roof points near the reference ridges are very
small and the roof edges nearby are hard to find. As a result, the ridges can easily be lost under strict
thresholds or improper segmentation results. In our work, ridges in 2 and 6 will be re-extracted when
considering the plane–model relations, even if they are lost here. The reason is that the two planes
of the ridge share a connected boundary segment of the (child) model, while no connections have
been detected. Our algorithm will guess a roof ridge here (discussed in Section 3.2.2) and extend it
to the model outside the boundary if the new ridge is accepted. The ridge in 4 can also be corrected
because a four-vertex circle is found around it and cannot produce a corner, and the two possible
ridges that decompose the circle into two triangles will be examined. In Positions 5, 7, 8, and 10, there
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are no roof ridges in the reference, while the height differences between the adjacent planes are very
small near the supposed intersecting lines. As a result, both the point counts and the length of the
common edges will be large enough for the connections to be falsely distinguished as roof ridges.
An advantage of our methods here is that, even if a roof ridge is detected, we still consider the step
parts if the undecided boundary between two planes is significant enough. For a long plane–plane
connection that only contains a very short ridge, we consider using a comprehensive step connection
instead of the composite structure. For Position 9, the error is caused by poor segmentation results, and
our method corrects it by side projection. In Positions 1 and 3, errors were reported in some current
researches, i.e. [36], while all methods performing well here thus are not further discussed. The static
results of the 10 connections are provided below in Figure 16.
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lines are the suggested thresholds; connections falsely distinguished by the indices are marked by the
red circles.

For Type A in Table 4, the dmin of all connections are close to the average point distance and ten
connections will all be accepted, either true or false ones. For Type B, some false connections (7–10)
even obtain greater point counts (nPt); thus, they can hardly be excluded by simply changing the
thresholds. A similar conclusion can also be generated by indices in Type C. As those false connections
generate rather statistic values similar to the true ones, a stricter threshold can exclude more false
connections (i.e., it can be concluded by comparing the Promin values of Connections 5 and 7 in
Figure 16e,f) while losing the weak connections (Connection 2). The statistic results prove that using
simple local analysis or adjusting the thresholds can never solve the topology problems, and more
extra procedures and constraints need to be considered. The final topology precision shows that our
strategy is effective.

4.3.2. Model Precision

As introduced in Section 4.1, the quantity results on the final reconstruction models are provided
by the ISPRS test project [36]. For our own method, more quantity information is available, and we
summarize the precision of the three areas in Table 6. Additionally, four state-of-the-art studies are
also selected for comparison and their quality results on major indices are provided below in Table 7.
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Table 6. Detail precision of our method.

Area
Pixel Level Plane Level Pixel Level Plane Level

TP FN FP TP1 TP2 FN FP Compl Corr Qua Compl Corr Qua

1 613137 39584 13445 265 199 23 7 93.9 97.9 92.0 92.0 96.6 89.1
2 422093 57492 5765 48 55 21 1 88.0 98.7 87.0 69.6 98.2 68.7
3 754427 57018 18827 203 143 32 5 93.0 97.6 90.9 86.4 96.6 83.9

sum 1789657 154094 38037 516 397 76 13 92.1 97.9 90.3 87.2 96.8 84.7

Notes: The pixel size is set as 0.100 m and the definition of FP, FN, Compl, Corr, and Qua are the same as Table 5,
while the TP at the plane level can be slightly different. Table 5 uses the definition of [41] to get one-to-one relations
between the tested result and the reference; thus, TPs for completeness and correctness are the same. Here, the
definition of [38] is used and two TPs are produced: TP1 for completeness and TP2 for correctness.

Table 7. Precision comparison of the reconstruction results on the ISPRS dataset.

Region Method Compl Corr Compl_10 Corr_10 1:M N:1 N:M RMS(m) RMSZ(m)

Area 1

CKU 86.8 98.9 88.4 99.2 10 36 3 0.9 0.6
ITCX3 89.2 96.4 93.2 97.7 5 39 6 0.8 0.2
TUD2 73.3 100.0 70.7 100.0 1 36 3 0.8 0.2
YOR 88.2 98.5 94.6 99.2 5 36 14 0.8 0.3
Ours 92.0 96.6 94.6 98.5 10 36 8 0.8 0.2

Area 2

CKU 78.3 93.1 93.8 100.0 8 4 0 0.5 0.7
ITCX3 71.0 100.0 89.6 100.0 3 4 1 0.5 0.2
TUD2 71.0 100.0 89.6 100.0 2 3 0 0.3 0.3
YOR 66.7 100.0 83.3 100.0 5 3 0 0.5 0.3
Ours 69.6 98.2 87.5 97.9 6 3 0 0.6 0.3

Area 3

CKU 81.3 98.4 91.9 99.1 4 48 2 0.8 0.6
ITCX3 88.1 88.2 96.8 95.8 3 50 2 0.7 0.1
TUD2 73.6 100.0 81.5 100.0 0 42 0 0.5 0.1
YOR 84.7 100.0 97.6 100.0 2 51 1 0.6 0.2
Ours 86.4 96.4 95.2 100.0 9 44 5 0.6 0.2

Notes: We use the same method name as the website, where both reconstruction results and methods describe can
be easily found. CKU [42], ITCX3 [6], TUD2 [10], and YOR [43] are the short names of the participant. Compl and
Corr are the completeness and correctness of the constructed roof planes at object level, and Compl_10 and Corr_10
are the corresponding precision for big planes (>10 m2). 1:M, N:1, and N:M are the topology quality of planes. RMS
is the planimetric geometric accuracy: average root mean square distance to reference boundary, in XOY plane.
RMSZ is the geometric accuracy and the Z component is the average root mean square distance of the detected
DSM and reference DSM.

The final reconstruction precision can be influenced by many factors besides the reconstruction
strategy, i.e., results of pre-processing, such as building detection and segmentation, as well as the
precision and reliability of reference data. Additionally, just like the deciding of roof ridges, we need
to find a balance between completeness and correctness. For instance, the correctness values of TUD2
are all 100.0%, while its completeness can be much lower than other methods. As a result, no method
seems to be distinctly better than others just by quantitative results. For our HRTT, the hierarchical
structure considers the integral structure of whole models, thus, produce better completeness than
other methods, while our correctness do not obviously decrease. This also reflects on the constructed
building models. So far, only the DSM results of the constructed models are available for other methods
and we select region (a) in Area 1 as an example. In Figure 17, it can be concluded that current methods
still confront lots of difficulties in the area. For HRTT, the model–model relations ensure the integral
connectivity of the whole building, thus, the holes for CKU and ITCX3 can be successfully avoided.
Meanwhile, we allow different child structures having their own normalization orientations, thus,
the roof boundary is much better than YOR, visually. The detection of main horizontal ridges and
the side projection approach can correct the segmentation errors and recovers the right topology
under sparse data. As a result, we generate the best performance in this region. In addition, the low
completeness of all methods in Area 2 is mainly caused by the small planes of the guardrail in high-rise
residential buildings, which are often only one point wide. Those planes are omitted by our boundary
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edge-based procedure, thus leading to poor completeness. The quality of plane edges can refer to
the indices’ RMS in Table 7 and we further exhibit it in Figure 18. Two types of results are provided
here. In Figure 18a, we mix the roof boundary with the raw point clouds and the results demonstrate
that the constructed edges have good consistency with the initial data. This can also be proved by the
pixel-level model precision in Figure 18b, where most areas are well superposed by the reference DSM
and the pixel-based quality indices achieve a precision of 90.3% (Table 6).
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Figure 18. Model boundary precision analysis. (a) The raw point clouds combined extracted roof
boundary edges; (b) pixel-level model precision by comparing the DSM generated by the detected
roof with the reference DSM, where yellow is used for TP (true positive roof), red for FP (false positive
roof/bulged edges), and blue for FN (false negative roof/sunk edges).
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4.3.3. Limitations

Figure 19 shows some buildings in Vaihingen that can bring troubles to our reconstruction
methods. The major issues are caused by errors in pre-processing procedures and the sparsity or lack
of data. Figure 19a shows that several small roof planes are lost, i.e., Roofs 1, 2, and 3, which can be
caused by errors in pre-processing procedures such as point classification or roof segmentation. Errors
in 4 and 7 are caused by vegetation near the buildings. As those errors are caused by preprocessing
procedures, both RTG- and HRTT-based methods will fail here. Roofs 5 and 10 should be especially
emphasized as it belongs to the inside model holes. In HRTT, we keep the integral connectivity of the
whole model. Thus, if the holes are not distinct enough, or smaller than the scale that the alpha-shape
boundary can be detected, the holes will be filled by a lower roof nearby. Roof 5 is falsely filled because
the vegetation points in the region are taken as building points; as regards Roof 10, no LiDAR point is
available here in the raw data. Figure 19b shows the error caused by light absorbing surfaces (roof 6),
and the method failed because the data is too sparse. In Figure 19c, our methods perform poorly
because the building domain orientation is not well estimated. Generally, our boundary normalization
procedure requires a pre-estimated orientation. For most buildings, the orientations are estimated by
the main horizontal ridges within the whole building, as the roof ridges have the best precision [44].
If no ridge is available, we simply estimate it through the whole model outside boundary; thus, it can
be inaccurate sometimes, especially when the real domain orientation is close to the scan line direction
of raw LiDAR data. In addition, there are also other errors caused by irregular curved surfaces or
multilayer surfaces, though not discussed here.
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Figure 19. Buildings could not be well constructed. First row: DSM of our result models, second
row: reference DSM, third row: DSM comparison graph at pixel-level, where the yellow regions
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(a) Improper segmentation results, region b in Figure 14a; (b) light absorbing surfaces, region d in
Figure 14c; (c) inaccurate building domain orientation, region c in Figure 14b.
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5. Conclusions

This work proposes a hierarchical roof topology construct strategy for robust building model
reconstruction. The HRTT is adopted instead of the traditional RTG to represent the topology relations
among different roof elements. Not only the plane–plane connections but also the plane–model and
model–model relations are considered in the HRTT. In allusion to the issues of error-prone connections,
we preferentially distinguish the robust features, which decompose the whole model into simpler
components step-by-step and produce the basic semantic information to identify the ambiguous parts
locally. In this way, the effect from structures of minor importance or spurious ridges can be limited
or avoided, and common features and integral constraints can be fully exploited. Those additional
features or constraints are distinguished and well-organized, along with the construction of HRTT,
which eventually produces better topology results and building models. Experiments on both roof
topology precision and the constructed models prove the effectiveness of the proposed approach.
Compared with the RTG-based method, two topology quality indices increase from 80.9% and 79.8%
to 89.4% and 88.2% in the text area (see Table 5). The integral model quality indices of the three ISPRS
test data sets at the pixel level and the plane level also achieve the precision of 90.3% and 84.7%,
accordingly (see Table 6).

However, our method has several limitations. First, the construction results can be influenced by
the errors of pre-processing processes, such as segmentation, or the imperfection of initial data. Though
additional processes, such as side projection, can correct some of the errors, a topology correction
process, such as [6], may still be needed and HRTT can provide a local search here. Second, the
description of roof topology in our methods only guarantees the completeness in 2D and if two roof
planes are partly overlapped in 2D, the overlapped parts from the bottom roof plane will be lost.

There are also some possible improvement directions for future work. First, the HRTT provides
a structure that decomposes the whole model into meaningful sub-structures step-by-step. How to
decide the construction strategy and parameters under different roof scales becomes an important
issue. Second, more pre-defined structures, such as model primitives, can be introduced, which form
the robust inside tree nodes in the HRTT. Other additional constraints and verifying processes can also
be used to generate highly normalized models.
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