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Abstract: Structure from motion (SfM) and MultiView Stereo (MVS) algorithms are increasingly
being applied to imagery from unmanned aircraft systems (UAS) to generate point cloud data for
various surveying and mapping applications. To date, the options for assessing the spatial accuracy
of the SfM-MVS point clouds have primarily been limited to empirical accuracy assessments, which
involve comparisons against reference data sets, which are both independent and of higher accuracy
than the data they are being used to test. The acquisition of these reference data sets can be expensive,
time consuming, and logistically challenging. Furthermore, these experiments are also almost always
unable to be perfectly replicated and can contain numerous confounding variables, such as sun
angle, cloud cover, wind, movement of objects in the scene, and camera thermal noise, to name a few.
The combination of these factors leads to a situation in which robust, repeatable experiments are cost
prohibitive, and the experiment results are frequently site-specific and condition-specific. Here, we
present a workflow to render computer generated imagery using a virtual environment which can
mimic the independent variables that would be experienced in a real-world UAS imagery acquisition
scenario. The resultant modular workflow utilizes Blender, an open source computer graphics
software, for the generation of photogrammetrically-accurate imagery suitable for SfM processing,
with explicit control of camera interior orientation, exterior orientation, texture of objects in the scene,
placement of objects in the scene, and ground control point (GCP) accuracy. The challenges and steps
required to validate the photogrammetric accuracy of computer generated imagery are discussed,
and an example experiment assessing accuracy of an SfM derived point cloud from imagery rendered
using a computer graphics workflow is presented. The proposed workflow shows promise as a useful
tool for sensitivity analysis and SfM-MVS experimentation.
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1. Introduction

Efficient acquisition of high-resolution, high-accuracy 3D point clouds has traditionally required
either terrestrial, mobile, or airborne LiDAR. However, advances in structure from motion (SfM) and
MultiView Stereo (MVS) algorithms have enabled the generation of image-based point cloud products
that are often reported to be comparable in density and accuracy to LiDAR data [1,2]. Development
of SfM algorithms for 3D reconstruction of geometry within the computer vision community began
approximately four decades ago [3,4], and conventional photogrammetric techniques can be traced
back to the mid-1800s or earlier [5]. However, modern, commercial SfM-MVS software packages
have only relatively recently begun to be utilized operationally for surveying applications, leveraging
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advances in camera hardware, unmanned aircraft systems (UAS), computer processing power, and
ongoing algorithm development.

The 3D reconstruction methods used in most commercial software consist of an SfM algorithm
first to solve for camera exterior and interior orientations, followed by an MVS algorithm to increase
the density of the point cloud. Unordered photographs are input into the software, and a keypoint
detection algorithm, such as scale invariant feature transform (SIFT) [6], is used to detect keypoints
and keypoint correspondences between images using a keypoint descriptor. A bundle adjustment is
performed to minimize the errors in the correspondences. In addition to solving for camera interior
and exterior orientation, the SfM algorithm also generates a sparse point cloud. Without any additional
information, the coordinate system is arbitrary in translation and rotation and has inaccurate scale.
To further constrain the problem and develop a georectified point cloud, ground control points (GCPs)
and/or initial camera positions (e.g., from GNSS) are introduced to constrain the solution. The number
of parameters to be solved for can also be reduced by inputting a camera calibration file; however,
without camera positions or GCP coordinates, the camera calibration file will only help resolve the
scale of the point cloud coordinate system, and not the absolute translation and rotation. The input
GCPs can be used to transform the point coordinates to a real-world coordinate system via a Helmert
transformation (also known as a seven-parameter or 3D conformal transformation) after the point
cloud is generated [7], or using a commercial software proprietary method to “optimize” rectification.
The latter method is vendor-proprietary, and, hence, the mathematical details of the transformation
are unknown; however, it is generally reported to produce more accurate results than the Helmert
transformation. The interior orientation and exterior orientation for each image are used as the input
to the MVS algorithm, which generates a denser point cloud.

Some of the common MVS algorithms generate more correspondences by utilizing a search
along the epipolar line between corresponding images, leveraging the known interior and exterior
orientations of each camera. For this reason, the accuracy of the MVS algorithm is highly dependent
on the accuracy of the parameters calculated with the SfM algorithm. A detailed explanation of the
various MVS algorithms can be found in Furukawa and Hernández [8], who also note that each of
these algorithms assumes that the scene is rigid with constant Lambertian surfaces, and that deviations
from these assumptions will affect the accuracy.

Research into SfM and MVS in the geomatics community is currently focused on both the accuracy
and potential applications of commercial SfM and MVS software packages, such as Agisoft Photoscan
Pro and Pix4D [9]. It has been shown that the accuracy of SfM-MVS can vary greatly depending on
a number of factors [10,11], which, in turn, vary across different experiments [7]. In particular, the
accuracy of SfM is adversely affected by: poor image overlap, inadequate modeling of lens distortion,
poor GCP distribution, inaccurate GCP or camera positions, poor image resolution, blurry imagery,
noisy imagery, varying sun shadows, moving objects in the scene, user error in manually selecting
image coordinates of GCPs, a low number of images, or a low number of GCPs [10]. Due to the large
number of variables involved, addressing the questions of if/how/when SfM-MVS derived point
clouds might replace LiDAR as an alternative surveying tool, without sacrificing accuracy, remains an
active area of research [12–14].

The most common methodology for assessing the use cases and accuracy of SfM-MVS derived
products is to collect imagery in the field using a UAS and, after processing in SfM-MVS software,
to compare the point clouds against reference data collected concurrently with terrestrial LiDAR, RTK
GNSS, or a total station survey. Numerous studies have been performed to quantify the accuracy of
the SfM-MVS algorithms in a variety of environments [14,15], including shallow braided rivers [16],
beaches [17], and forests [11]. Experimentation utilizing simulated keypoints and assessing the SfM
accuracy was used to demonstrate an ambiguity between point cloud “dome” effect and the K1

coefficient in the Brown distortion model [18]. A few datasets have been acquired in a lab environment,
using a robotic arm to accurately move a camera and a light structure camera to collect reference
data for a variety of objects of varying textures [19,20]. While this approach works well for testing
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the underlying algorithms, especially MVS, more application-based experiments performed by the
surveying community have demonstrated how on larger scenes with less dense control data the error
propagates nonlinearly. Generally, the most common and robust method has been to compare the
SfM-MVS derived point cloud to a ground truth terrestrial LiDAR survey [21,22].

Despite the widespread use of field surveys for empirically assessing the accuracy of point clouds
generated from UAS imagery using SfM-MVS software, there are a number of limitations of this general
approach. The extensive field surveys required to gather the reference data are generally expensive and
time consuming, and they can also be logistically-challenging and perhaps even dangerous in remote
locations or alongside roadways. Additionally, if it is required to test different imagery acquisition
parameters (e.g., different cameras, focal lengths, flying heights, exposure settings, etc.), then multiple
flights may be needed, increasing the potential for confounding variables (e.g., changing weather
conditions and moving objects in the scene) to creep into the experiment.

The use of independent, field-surveyed check points may also lead to an overly-optimistic
accuracy assessment when the points used are easily photo-identifiable targets (e.g., checkerboards, or
conventional “iron cross” patterns). These targets are generally detected as very accurate keypoints
in the SfM processing, and using them as check points will tend to indicate a much better accuracy
than if naturally-occurring points in the scene were used instead. In this case, the error reported
from independent GCPs may not be indicative of the accuracy of the entire scene. The quality and
uniqueness of detected keypoints in an image and on an object is called “texture.” The lack of texture
of a scene has been shown to have one of the largest impacts on the accuracy of SfM-MVS point
cloud [13,14,17,20].

We propose an open-source computer graphics based workflow to alleviate the aforementioned
issues with assessing the accuracy of point clouds generated from UAS imagery using SfM-MVS
software. The basic idea of the approach is to simulate various scenes and maintain full control over
the ground-truth and the camera parameters. This workflow, referred to by the project team as the
simUAS (simulated UAS) image rendering workflow, allows researchers to perform more robust
experiments to assess the feasibility and accuracy of SfM-MVS in various applications. Ground control
points, check points and other features are placed virtually in the scene with coordinate accuracies
limited only by the numerical precision achievable with the computer hardware and software used.
Textures throughout the scene can also be modified, as desired. Camera parameters and other scene
properties can also be modified, and new image data sets (with all other independent variables
perfectly controlled) can then be generated at the push of a button. The output imagery can then
be processed using any desired SfM-MVS software and the resultant point cloud compared to the
true surface (where, in this case, “true” and “known” are not misnomers, as they generally are when
referring to field-surveyed data with its own uncertainty), and any errors can be attributed to the
parameters and parameter uncertainties input by the user.

Computer Graphics for Remote Sensing Analysis

The field of computer graphics emerged in the 1960s and has evolved to encompass numerous
fields from medical imaging and scientific visualization, aircraft flight simulators, and movie and
video game special effects [23]. The software that turns a simulated scene with various geometries,
material properties, and lighting into an image or sequence of images is called a render engine. While
there are numerous render engines available using many different algorithms, they all follow a basic
workflow, or computer graphics pipeline.

First, a 3D scene is generated using vertices, faces, and edges. For most photo-realistic rendering,
meshes are generated using an array of either triangular surfaces or quadrilateral surfaces to create
objects. Material properties are applied to each of the individual surfaces to determine the color of
the object. Most software allows for the user to set diffuse, specular, and ambient light coefficients,
as well as their associated colors to specify how light will interact with the surface. The coefficient
specifies how much diffuse, specular, and ambient light is reflected off the surface of the object, while
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the color specifies the amount of visible red, green, and blue light that is reflected from the surface.
The material color properties are only associated with each plane in the mesh, so for highly-detailed
coloring of objects, many small faces can be utilized. The more efficient method of creating detailed
colors on an object without increasing the complexity of the surface of the object is to add a “texture”
to the object. A texture can consist of geometric patterns or other complex vector based patterns, but
in this experimentation a texture is an image which is overlaid on the mesh in a process called u-v
mapping. In this process, each vertex is assigned coordinates in image space in units of texels, which
are synonymous with pixels but renamed to emphasize the fact that they correspond to a texture and
not a rendered image. It is also possible to generate more complex textures by overlaying multiple
image textures on the same object and blending them together by setting a transparent “alpha” level
for each image. The render engine interpolates the texel coordinates across the surface when the scene
is rendered. For interpolated subpixel coordinates, the color value is either interpolated linearly or
the nearest pixel value is used. (The computer graphics definition of a “texture” object is not to be
confused with the SfM-photogrammetry definition of texture, which relates to the level of detail and
unique, photo-identifiable features in an image.)

Once a scene is populated with objects and their associated material and texture properties, light
sources and shading algorithms must be applied to the scene. The simplest method is to set an object
material as “shadeless,” which eliminates any interaction with light sources and will render each
surface based on the material property and texture with the exact RGB values that were input. The more
complex and photorealistic method is to place one or more light sources in the scene. Each light source
can be set to simulate different patterns and angles of light rays with various levels of intensity and
range based intensity falloff. Most render engines also contain shadow algorithms which enable the
calculation of occlusions from various light sources. Once a scene is created with light sources and
shading parameters set, simulated cameras are placed to create the origin for renders of the scene.
The camera translation, rotation, sensor size, focal length, and principal point are input, and a pinhole
camera model is used. The rendering algorithm generates a 2D image of the scene using the camera
position and all the material properties of the objects. The method, accuracy (especially lighting), and
performance of generating this 2D depiction of the scene are where most render engines differ.

There are many different rendering methodologies, but the one chosen for this research is Blender
Internal Render Engine, which is a rasterization based engine. The algorithm determines which parts
of the scene are visible to the camera, and performs basic light interactions to assign a color to the
pixel samples. This algorithm is fast, although it is unable to perform some of the more advanced
rendering features such as global illumination and true motion blur. A more detailed description of
shader algorithms which are used to generate these detailed scenes can be found in [24].

The use of synthetic remote sensing datasets to test and validate remote sensing algorithms is
not a new concept. A simulated imagery dataset using Terragen 3 was used validate an optimized
flight plan methodology for UAS 3D reconstructions [25]. Numerous studies have been performed
using the Rochester Institute of Technology’s Digital Imaging and Remote Sensing Image Generation
(DIRSIG) using for various active and passive sensors. DIRSIG has been used to generate an
image dataset for SfM-MVS processing to test an algorithm to automate identification of voids in
three-dimensional point clouds [26] and assess SfM accuracy using long range imagery [27]. While
DIRSIG generates radiometrically- and geometrically-accurate imagery, it is currently not available
to the public. Considerations in selecting the renderer used in this work included a desire to use
publicly-available and open-source software, to the extent possible.

2. Materials and Methods

The use and validation of a computer graphics based methodology to render imagery for SfM
analysis is presented in this paper. First, a series of tests are presented that should be performed to
ensure that a render engine is generating photogrammetrically-accurate imagery. The results of these
tests for the Blender Internal Render Engine are presented and provide validation that the render
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engine is sufficiently accurate for testing SfM-MVS software. An example use case experiment is then
presented, in which the effect of the Agisoft Photoscan “Dense Reconstruction Quality” setting on
point cloud accuracy is presented utilizing the Blender Internal Render Engine. A few results from
the example experiment are presented to demonstrate the potential of the methodology to perform
sensitivity analyses. The results suggest that higher dense reconstruction quality settings result in a
point cloud which is more accurate and contains more points. Interestingly, the results also show that
a lower dense reconstruction quality setting will sometimes generate points in a region where there is
a data gap in a point cloud generated with a higher reconstruction quality setting.

2.1. Render Accuracy Validation

There are many different open source and commercial render engines available to generate
imagery of simulated scenes, but before using a render engine to analyze surface reconstructions, a
series of validation experiments should be performed to ensure that the render engine is generating
imagery as expected. Validation experiments are performed to ensure accurate rendering; ideally, any
errors introduced in the rendering process should be negligible in comparison to those being assessed
in the experiment. While this work uses the Blender Internal Render Engine, it is important to note
that this validation methodology could be applied to any render engine. It should be also noted that
our focus in this study is on geometric accuracy, so procedures to validate the radiometric accuracy
and fidelity are beyond the current scope. (It is reasonable to consider radiometric and geometric
accuracy to be independent, as SfM keypoints are detected based on image texture gradients, which
are relatively invariant to radiometry.) For this experimentation methodology, it is more important
for the object diffuse texture and colors to remain constant from various viewing angles. The authors
recognize the render engine could also be validated by rigorously analyzing (or developing new)
render engine source code, but that would conflict with the research goals of making the general
procedures applicable to as wide a range of users and software packages as possible.

2.2. Photogrammetric Projection Accuracy

The first validation experiment was designed to ensure that the camera interior and exterior
orientation were set accurately using a pinhole camera model. The pinhole camera model represents
an ideal test case and is commonly the output from render engines. While Vertex Shaders algorithms
can be programmed and implemented into a Computer Graphics workflow to accurately simulate
lens distortion, the programming and implementation of this method is time consuming and can
be confusing for someone not familiar with computer graphics. A pinhole camera model was
used for this experiment to validate the photogrammetric accuracy of the Blender Render Engine.
This initial experiment was performed by creating a simple scene consisting of a 1000 m3 cube with
a 10 × 10 black-and-white checkerboard pattern on each wall, as depicted in Figure 1. The corner
of each checkerboard was defined to have known 3D world coordinates. A series of images was
rendered using various camera rotations, translations, focal lengths, sensor sizes, and principal point
coordinates. To ensure that the images were rendered correctly, the coordinates of the checkerboard
corners were calculated from the rendered imagery using a corner feature detector and compared to
the expected coordinates of the targets using photogrammetric equations. The differences between
the image-derived coordinates and the photogrammetric equation derived coordinates should have a
mean of 0 in both dimensions, and a subpixel variance on the order of the accuracy of the image corner
feature detector.

To validate the photogrammetric projection accuracy of the Blender Internal Render Engine
using this experiment, a 1000 m3 cube was placed with the centroid at the coordinate system origin.
Five hundred images were rendered using five different interior orientations and random exterior
orientations throughout the inside of the cube. These parameters were input using the Blender Python
API, with the ranges of each input parameter shown in Table 1. The accuracy of the imagery was
first assessed qualitatively by plotting the photogrammetrically-calculated points on the imagery in
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MATLAB (e.g., green plus symbol in Figure 1, right). Once the rough accuracy was confirmed, a
nearest neighbor was used to develop correspondences between the Harris corner coordinates and the
photogrammetric equation derived coordinates. The mean and variance of the differences between the
correspondences in each experiment are shown in Table 2.Remote Sens. 2017, 9, 396  6 of 19 
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Figure 1. A cube with a 10 × 10 checkerboard pattern on each wall is used to validate the
photogrammetric accuracy of the Blender Internal Render Engine.

Table 1. The positions and orientations of the cameras used to render the imagery were uniformly
distributed using parameters to capture a wide distribution of look angles and positions within the box.
Note that the translation was kept greater than one meter away from the edge of the box on all sides.

Parameter Minimum Maximum Units

Translation X, Y, Z −4 4 m
Rotation θ, Φ 0 360 degrees

Rotationω 0 180 degrees

Table 2. The differences between the positions of the corners, as detected with the Harris Corner
algorithm, and the expected position of the corners from the photogrammetric collinearity equations
were computed to ensure that the rendering algorithm was working as expected. Note that the
mean and variance of the differences between the expected and detected corner are sub pixel for
each simulation, which suggests that the Blender Internal Renderer generates photogrammetrically
accurate imagery.

Parameter Units
Simulation Number

Summary
1 2 3 4 5

hFOV degrees 22.9 57.9 72.6 73.8 93.5 n/a
Focal Length mm 55 4.1 16 4.11 2.9 n/a
Sensor Width mm 22.3 4.54 23.5 6.17 6.17 n/a

Horizontal (pixels) 5184 3264 5456 4608 4000 n/a
Vertical pixels 3456 2448 3632 3456 3000 n/a

Correspondences unitless 462 3538 4093 4491 7493 20077
µ∆X pixels −0.0163 0.0050 0.0016 −0.0036 0.0033 −0.0020
µ∆Y pixels 0.0035 0.0078 0.0116 0.0041 0.0081 0.0070
σ∆X pixels 0.2923 0.3025 0.2554 0.2941 0.2823 0.2853
σ∆Y pixels 0.2876 0.2786 0.2674 0.2655 0.2945 0.2787

RMSE∆X pixels 0.2925 0.3025 0.2554 0.2941 0.2823 0.2854
RMSE∆Y pixels 0.2873 0.2787 0.2676 0.2655 0.2946 0.2787

Although the bias and standard deviation were quite small, it was of interest to go a step further
and determine the extent to which the small errors were attributable to the Harris corner detector,
rather than the render engine. To this end, an additional test was performed using 1000 simulated
checkerboard patterns, generated with random rotations, translations, and skew to create a synthetic
image dataset. The known coordinates of the corners were compared to the coordinates calculated
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with the Harris Corner feature detector, producing the results shown in Table 3. The variance from
synthetic imagery dataset was found to account for approximately 75% of the variance in the Blender
simulations. The remaining ~0.07-pixel variance could be attributed to mixed pixels in the Blender
simulation, antialiasing effects in the Blender simulation, or simply an amount of variability that
was not fully encompassed with the various affine transformations that were applied to the synthetic
imagery. For this experimentation, this level of accuracy was deemed acceptable, as errors being
investigated are likely to be at least an order of magnitude larger.

Table 3. A series of checkerboard patterns are generated and then warped in MATLAB using an affine
transform before extracting the Harris corner point in order to determine the accuracy of the Harris
corner point detection algorithm. The results indicate that the Harris corner detector accounts for
approximately 75% of the variance shown in Table 2.

Correspondences µ∆X µ∆Y σ∆X σ∆Y RMSE∆X RMSE∆Y

Blender Simulations 20077 −0.0020 0.0070 0.2853 0.2787 0.2854 0.2787
Synthetic Warped 390204 −0.0012 0.0075 0.2149 0.2176 0.2149 0.2177

Difference n/a −0.0008 −0.0005 0.0704 0.0611 0.0705 0.0610
Percent Explained n/a 60% 107% 75% 78% 75% 78%

2.3. Point Spread Function

The second validation experiment was designed to ensure that no unintended blurring was
applied to the rendered image. (Later, purposefully-introduced motion and lens blur will be discussed.)
Ideally, the point spread function (PSF) of the renderer would be a unit impulse, indicating no
unintended blurring. The test for this condition was performed by simulating a white circular plane
placed at a distance and size such that it existed in only one pixel. The rendered image of this object
should not be blurred into surrounding, background pixels. This test is of particular importance when
antialiasing is performed, as the super-sampling pattern and filter used to combine the samples can
sometimes create a blurring effect. For example, the default antialiasing in Blender uses a “distributed
jitter” pattern and the Mitchel–Netravali filter [28], which uses super-sampled values from neighboring
pixels to calculate a pixel value. This effect can be seen in Figure 2, where the intensity of the white
plane has influenced all eight of the neighboring pixels, even though the plane should only be visible
in one pixel. While the photographic inaccuracy for this example is minimal, larger errors resulting
from different filters could propagate into the resultant SfM derived point cloud, especially when
fine-scale textures with high gradients are used.
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To perform this test using the Blender Internal Render Engine, a sensor and scene were set up
such that the geometry of the circular plane was only captured with one pixel in the render of a
5 × 5 pixel image. The logic of this experiment was that any other pixels containing values different
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than the background digital number of 128 indicated a potential blurring artifact of the rendering.
Rendered imagery is shown with and without antialiasing in Figure 2. The antialiasing used the default
settings for the Blender Internal Render Engine (8 Samples, Mitchell–Netravali filter). The rendered
image with no antialiasing was found to contain no blurring of the image, while the antialiased image
contained a slight amount of blurring. Note that the theoretical pixel value should be ~227 (based
on the proportion of the grey center pixel filled by the white circle in the leftmost subfigure), and
neither sampling methodology perfectly represents the scene. The antialiased imagery super-samples
the scene and renders a smoother, more photorealistic imagery, and was deemed to be suitable for
purposes of this work.

2.4. Texture Resolution

The final validation experiment ensured that any textures applied to the objects in the scene
were applied in a manner which maintained the resolution of the imagery without compression or
subsampling. This validation experiment was performed by applying a texture on a flat plane and
rendering an image containing a small number of the texture pixels. The image was then visually
assessed to verify that the desired number of pixels were in the frame and that no smoothing was
applied. When rendering textures in computer graphics, there is an option to perform interpolation,
yielding a smoother texture. This is sometimes desired to create more realistic scenes. An example of a
texture with and without interpolation is shown in Figure 3.
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Figure 3. Each black and white square in the checkerboard (left) represents one texel in the texture
applied to the image with no interpolation. This same texture is rendered with interpolation (right)
to demonstrate the effect. The leftmost rendered image demonstrates that the final texture that is
rendered contains the full resolution of the desired texture, and that the Blender Internal Renderer is
not artificially downsampling the texture.

To validate the texture resolution of the Blender Internal Render Engine, a black-and-white
checkerboard pattern in which each checkerboard square was 1 × 1 texel was applied to a flat plane,
such that each texel represented a 10 cm × 10 cm square. An image was rendered using a focal length
and sensor size such that each texel was captured by 100 × 100 pixels, as shown in Figure 3 with and
without interpolation. The rendered images were qualitatively observed, and it was determined that
the rendering had not subsampled or compressed the texture image.

2.5. Use Case Demonstration

An example experiment was designed as a proof-of-concept to demonstrate the usefulness of the
simUAS simulated imagery rendering workflow for testing the effect of various independent variables
on SfM accuracy. This experiment was specifically designed to observe how the dense reconstruction
quality setting in Agisoft Photoscan Pro [29] affects the dense point cloud accuracy and to test the
statement made in the user manual that a higher dense accuracy setting produces more accurate
results [30]. The scene, texture, lighting, camera, and camera positions were selected with the intention
of simulating a common UAS flight scenario. These parameters were input using a custom XML
schema and the Blender Python API. The simUAS processing and analysis workflow is shown in
Figure 4. The computer used to render and process the data for this experiment was a Windows 7
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Desktop PC with an Intel Xeon CPU (E5-1603 @ 2.80 GHz), GeForce GTX 980 graphics card (4 Gb), and
32 Gb of RAM.Remote Sens. 2017, 9, 396  9 of 19 
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Figure 4. Pictorial representation of the simUAS (simulated UAS) imagery rendering workflow. Note:
The SfM-MVS step is shown as a “black box” to highlight the fact that the procedure can be implemented
using any SfM-MVS software, including proprietary commercial software.

2.6. Use Case Experiment Design

A 200 m × 200 m square mesh was generated to simulate a topography with rolling hills using a 1
m grid. A large (27 m3) cube was placed in the center of the scene to test surface reconstruction accuracy
on regions with sharp corners and edges. Ten 1 m × 1 m × 0.05 m square, checkerboard pattern
GCPs were distributed evenly throughout the scene 0.25 m above the ground surface. The materials
of all objects in the scene were modeled as perfect Lambertian surfaces. The topographic surface
was textured using a combination of two textures. The first texture was a 7200 × 7200 pixel aerial
image [31] for an effective texel footprint with a linear dimension of 2.78 cm. The second texture was a
3456 × 3456 pixel image of grass was tiled ten times in both the x and the y dimensions for an effective
repeating image pattern 34,560 × 34,560 pixels, and a texel footprint with a linear dimension of 0.58
cm on the topography. The image of grass was taken with a DSLR camera (Canon T5i) and manually
edited to create a seamless texture for tiling with no edge effects between tiles. The aerial image and
grass texture were merged together by setting the grass texture with an alpha of 0.15 and the aerial
image layered beneath it with an alpha value of 1. The cube was textured using a 3456 × 3456 pixel
seamless image of rocks that was derived from a DSLR (Canon T5i) image taken by the authors. This
resulted in an effective texel footprint with a linear dimension of 0.35 cm on the cube. Each of the
textures was set so that the coloring on the scene was interpolated between texels and there were no
unrealistic edge effects. The texel footprint of each of the materials is set to a value less than the GSD,
which, as described below, is 1.00 cm. Oblique images of each object in the scene are shown in Figure 5.
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The scene was illuminated using a “Sun” style of lamp in Blender, where all the light rays are
parallel to one another. The light was initially directed at nadir, and the angle was linearly interpolated
to a 30-degree rotation about the x-axis for the final image. This varying sun angle simulates the
slight movement of shadows, as is experienced in a real world data acquisition. If desired, further
control over the illumination settings within the render engine could be achieved using the “color
management” settings. Regions that are shadowed from the sun in the Blender Internal Render Engine
receive no light; hence to more realistically model ambient light within the scene and improve texture in
shadowed regions, an ambient light source was added. These settings generated a scene with adequate
lighting on all objects in the scene. (For a test in which illumination is one of the primary variables
investigated, additional refinement of the illumination parameters in this step is recommended.)

A camera was created in Blender with parameters meant to emulate a Sony A5000 camera with a
16-mm lens and 5456 × 3632 (20 Mp) pixel sensor. This particular camera was chosen, as it is a popular
choice for UAS imagery acquisition. An array of simulated camera stations was placed on a flight
path to create a ground sampling distance (GSD) of 1.00 cm and an overlap and sidelap of 75% each.
To remove imaging on the edge of the simulated topographic surface, the inner 100 m × 100 m of the
topography was selected as the area of interest (AOI). The trajectory consisted of 77 simulated camera
stations distributed across 7 flight lines with nadir looking imagery, as shown in Figure 6. To generate
imagery that was more representative of a real-world scenario with a UAS, white Gaussian noise
(σ = 1 m) was added to the camera translation in each of the three dimensions to simulate uncertainty
in the true UAS trajectory due to UAS navigation GPS uncertainty. This uncertainty was added to
the actual position of the simulated camera when the image was rendered, and was accounted for in
the reported trajectory used in SfM processing. White Gaussian noise (σ = 2◦) was also added to the
camera rotation about each of the three axes to simulate a UAS which does not always take perfectly
nadir imagery. Imagery was then rendered using Blender Internal Render Engine with the default
eight-sample antialiasing enabled. The processing to render the imagery took 2 h and 50 min on the
workstation described earlier.
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Figure 6. A flight plan and GCP distribution was generated to simulate common UAS experiment
design in the real world. The camera trajectory was designed for a GSD of 1.00 cm and a sidelap and
overlap of 75% each.

The imagery output from Blender, rendered using a pinhole camera model, was post-processed
in MATLAB to simulate various camera and lens effects. These effects generate imagery that is more
representative real world imagery, and can have a significant effect on the quality of the SfM and
MVS pointcloud accuracy. Nonlinear brown distortion was first applied by shifting the original
pixel coordinates using Equations (1)–(3) [32], and reinterpolating the image intensity values onto a
rectilinear grid. Vignetting (Equation (4)), Gaussian blur, salt-and-pepper noise, and Gaussian noise,
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were then applied to the imagery. To accurately apply fisheye distortion and Gaussian blur, the
imagery was rendered at a larger sensor size than the desired output sensor size, and then cropped
after the filtering was applied. A flowchart depicting the postprocessing steps is shown in Figure 7.
The constants used in this post-processing are shown in Table 4. The post-processing of imagery in
MATLAB took 50 min.

r =
√
(x − cx) + (y − c y) (1)

x′ = x
(

1 + K1
f 2 r2 + K2

f 4 r4 + K3
f 6 r6 + K4

f 8 r8
)

+ P1
f
(
r2 + 2x2) + 2P2

f xy
(

1 + P3
f 2 r2 + P4

f 4 r4
)

(2)

y′ = y
(

1 + K1
f 2 r2 + K2

f 4 r4 + K3
f 6 r6 + K4

f 8 r8
)

+ P2
f
(
r2 + 2y2) + 2P1

f xy
(

1 + P3
f 2 r2 + P4

f 4 r4
)

(3)

Icorr = Iraw + v1 + v2r + v3r2 (4)

where (cx,cy) represents the principal point in pixels, and (x,y) represents the undistorted pixel
coordinate, and (x’,y’) represents the distorted pixel coordinate as defined from the Brown distortion
equations. K1, K2, K3, K4, P1, and P2 represent the radial and tangential distortion coefficients, and f
represents the focal length. Iraw represents the original pixel digital number, and Icorr represents the
corrected pixel digital number after vignetting is applied.
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Figure 7. The imagery from Blender, rendered using a pinhole camera model, is postprocessed to
introduce lens and camera effects. The magnitudes of the postprocessing effects are set high in this
example to clearly demonstrate the effect of each. The full size image (left) and a close up image (right)
are both shown in order to depict both the large and small scale effects.

Table 4. The initial imagery from Blender was rendered using a pinhole camera model. The output
imagery was then postprocessed to add nonlinear lens distortion, salt and pepper noise, Gaussian blur,
Gaussian Noise, and vignetting. The parameters listed here were applied for this example experiment.

Parameter Value Units

Distortion K1 −0.06 pixels2

Distortion K2 −0.03 Pixels4

Distortion K3 −0.002 Pixels6

Distortion K4 0 Pixels8

Distortion P1 −0.001 Pixels2

Distortion P2 −0.001 Pixels2

Vignetting v1 10 pixels
Vignetting v2 0.2 unitless
Vignetting v3 0 Pixels−1

Salt Noise Probability 0.01 % Chance of Occurrence
Pepper Noise Probability 0.01 % Chance of Occurrence

Gaussian Noise Mean 0 Digital Number
Gaussian Noise Variance 0.02 Digital Number

Gaussian Blur Sigma 1 pixels
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2.7. Use Case Processing Methodology

The resultant imagery was processed using the commercial software Agisoft Photoscan Pro using
the settings shown in Table 5. The dataset was processed by inputting the position of the cameras, the
position of the GCPs, and the camera calibration file. Additionally, the pixel coordinates of the GCPs,
which are traditionally clicked by the user with varying degrees of accuracy, were calculated using
photogrammetric equations and input into the program. A nonlinear adjustment was performed using
the “optimize” button, and the reported total RMSE for the GCPs was 0.38 mm. It is important to note
that we purposefully eliminated additional sources of uncertainty that exist in field-based studies,
such as uncertainties in the surveyed points, the GPS reported UAS position, the manual digitization
of pixel coordinates for GCPs, and in the calculation of the camera calibration, in order to isolate the
specific variable being investigated.

Table 5. The Agisoft Photoscan processing parameters were intended to generate the highest accuracy
point cloud possible with the simulated imagery dataset. The camera accuracy and marker accuracy
parameters are much smaller than would be used for real-world imagery, as we purposefully eliminated
additional uncertainty sources to isolate the variable of interest.

Processing Parameter Value/Setting Units

Align Photos High N/A
Max tiepoints 40,000 N/A
Max keypoints 4000 N/A

Pair Preselection Disabled N/A
Input Camera Calibration yes N/A
Lock Camera Calibration yes N/A

Input GCP targets yes N/A
Input GCP pixel coordinates yes N/A

Input Image Positions yes N/A
Camera Accuracy 0.005 m

Camera Accuracy (degrees) 2 (not used) degrees
Marker Accuracy 0.005 m

Scale Bar Accuracy 0.001 (not used) m
Marker Accuracy 0.01 pixel

Tie Point Accuracy 1 pixel

A dense reconstruction was performed using the “aggressive” filtering and each of the quality
settings available in Photoscan (lowest, low, medium, high, and highest) to generate five different
point clouds. According to the Photoscan documentation, the higher is the quality setting, the more
“detailed and accurate” is the generated geometry. The limiting factor is the time and CPU processing
power required to process large datasets. Ultrahigh becomes quickly unattainable to users without
purpose-built CPUs and GPUs with a large amount of RAM. The processing time and number of
points for each point cloud are shown in Table 6. A more detailed discussion of the accuracy of each
pointcloud is included in Section 3.

Table 6. The processing time for each point cloud increased drastically as the dense reconstruction
quality setting increased. The image scaling field represents the scaling of the imagery that was
performed prior to the MVS algorithm being run, per the Agisoft Photoscan documentation.

Pointcloud Processing Time (HH:MM) Total Points µε σε RMSEε Image Scaling

sparse 0:36 22,214 −0.0001 0.0028 0.0028 100.0%
dense lowest 0:03 716,331 −0.0066 0.0323 0.0330 0.4%

dense low 0:09 2,886,971 −0.0020 0.0154 0.0156 1.6%
dense medium 0:30 11,587,504 −0.0005 0.0077 0.0077 6.3%

dense high 2:19 46,465,218 −0.0002 0.0044 0.0044 25.0%
dense ultrahigh 11:54 186,313,448 −0.0002 0.0026 0.0026 100.0%
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Each of the dense point clouds was processed using CloudCompare [33] and compared to the
ground truth blender mesh using the CloudCompare “point to plane” tool. This tool calculates the
signed distance of every point in the point cloud to the nearest surface on the mesh, using the surface
normal to determine the sign of the error. Each point cloud was then exported and analyzed in
MATLAB to determine how the dense reconstruction quality setting affects the point cloud error.

3. Use Case Results

The error was first visualized spatially for each reconstruction by gridding the point cloud
elevation and error using a binning gridding algorithm, where the value of each grid cell is calculated
as a mean of all the points located horizontally within that grid cell. The number of points and standard
deviation of points in each grid cell were also visualized. The results for the medium quality dense
reconstruction are shown in Figure 8. These plots are useful to begin to explore the spatial variability
in both the density and the errors in the data. One initial observation for this dataset is that there is a
larger standard deviation of error at the edges of the point cloud outside the extents of the AOI. This is
due to the poor viewing geometry at the edges of the scene, and suggests that in practice these data
points outside of the AOI should be either discarded or used cautiously.
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Figure 8. The elevation, error, number of points, and standard deviation of error are gridded to 0.5 m
grid cells using a binning gridding algorithm and visualized.

To qualitatively observe the effect of different quality dense reconstructions, a plot showing
the true surface and the points from each construction in a 0.5-meter-wide section of the 27 m3 box
is shown in Figure 9. Notice that the accuracy of each point cloud at the sharp corners of the box
improves as the quality of the reconstruction increases, which is consistent with the Agisoft Photoscan
Pro manual [30]. This observation suggests that higher quality dense reconstruction settings will
increase accuracy in regions with sharp corners.
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Figure 9. A 50 cm wide section of the point cloud containing a box (3 m cube) is shown with the dense
reconstruction point clouds overlaid to demonstrate the effect of point cloud dense reconstruction
quality on accuracy near sharp edges.

A visualization of the horizontal error of points along one side of the box is shown in Figure 10.
All points within 0.25 m horizontally of the face of the box were compared to the true x coordinate of
the box face and gridded at 0.05-m resolution. This 1D error calculation along the x dimension shows
how well the face of the box is captured in the point cloud. Note that errors along the edge of the box
and along the ground surface should be ignored, as these grid bins on the edge represent areas where
the average coordinate will not be equal to the coordinate of the side of the box, even in an ideal case.
The regions that are white indicate an absence of data points. The size and location of these data gaps
varies between each point cloud. For example, the high-quality setting point cloud contains points
in the lower center of the cube, while the ultra-high does not. While the data gap in the ultra-high
appears to be correlated to a region of low texture on the actual image, further research is required to
definitively determine the cause.

A more quantitative, statistical assessment was performed to assess the error throughout the entire
scene by calculating a histogram for the distribution of error in each point cloud, as shown in Figure 11.
These distributions bolster the conclusion derived from the box profile plot, which is that higher quality
dense reconstruction settings yield more accurate results than a lower quality reconstruction. While the
accuracy of the GCPs, as provided in Agisoft Photoscan, averaged 0.38 mm (RMSE), the standard
deviations of the points from the dense reconstruction ranged from 2.6 mm to 32.3 mm, as shown in
Table 6. This observation indicates that the GCP accuracy table is insufficient as a metric to depict the
accuracy of the resultant dense point cloud. While these conclusions suggest general trends, further
experimentation is required for error distributions to be generalized. The magnitude of the error was
likely influenced by the varying sun angle, image noise, image blur, and image vignetting, which
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were introduced to model the simulated camera more realistically. These variables could be isolated
individually in future experimentation.Remote Sens. 2017, 9, 396  15 of 19 
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perpendicular to the plane of the box were visualized for each dense reconstruction setting, with
white regions indicating no point cloud data. Notice that the region with data gaps in the point cloud
from the ultra-high setting corresponds to the region of the plane with low image texture, as shown in
the lower right plot.
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Figure 11. The signed error probability distribution for each of the calculated dense point clouds clearly
indicates the increase in accuracy (decrease in variance) for increasing dense reconstruction setting.

4. Discussion

The use case demonstration provides just one example of the type of rigorous analysis that can be
obtained by utilizing the simUAS image rendering workflow. It is important to note that the results of
this experiment are closely coupled to the texture and topography of the scene. Future work will vary
these independent variables to assess their effect on point cloud accuracy.

The first conclusion from this example experiment is that the error and standard deviation of
error are larger for points outside of the area of interest, which in this experiment was −50 m to 50 m
in both the x and y directions. This is shown in the spatial error plot in Figure 8. The cause of this
error is the poor viewing geometry for imaging these points, where they are only seen at a few camera
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stations and, even then, only at oblique angles. In practice, these points should be included in the final
data product with caution, as it is shown here that the errors can be significantly greater than those
within the AOI.

The second conclusion from this example experiment is that a “higher” quality dense point
cloud reconstruction setting results in a more accurate point cloud, as shown qualitatively in
Figures 9 and 10, and quantitatively in Figure 11. The quality settings in Photoscan determine the
amount of downsampling of the imagery that should occur before performing the reconstruction
algorithm. The downsampling of the imagery removes some of the finer texture details in the imagery,
and therefore reduces the quality of the keypoint matching. The authors recommend using the
“highest” quality dense reconstruction setting that the computer processing the dataset can handle.
However, if there are noticeable data gaps in the point cloud, one should consider processing the point
cloud on a lower dense reconstruction setting and merging the point clouds. For this experiment,
a relatively small number of 20 Mp images (77) were used to create the dense point cloud, which
took almost 12 hours for the highest point cloud setting. The resultant point cloud for this setting
also contained 186 million points, which caused some point cloud data viewers and processing to fail,
due to memory issues. For this reason, ultra-high may not be a viable solution for all experiments.

The third conclusion is that the RMSE of the GCP control network as shown in Agisoft Photoscan
Pro is insufficient to characterize the accuracy of the resultant dense point cloud. In this extremely
idealized experiment, where the GCP positions, pixel coordinates of GCPs, camera positions, and
camera calibration were all input precisely, the GCP control network 3D RMSE reported by Agisoft
Photoscan was 0.38 mm. The smallest standard deviation, which occurred using the “ultra-high”
quality setting, was 2.6 mm and the largest standard deviation, using the “lowest” setting, was 32.3 mm,
as shown in Table 6. Further experimentation is needed to determine the relationship between the
Photoscan reported GCP total RMSE and the computed RMSE of the dense point cloud. The image
rendering workflow developed in this research is well suited to perform this experimentation, which
is currently being considered as one of a number of planned follow-on studies.

Methodology Implications

This methodology generates photogrammetrically-accurate imagery rendered using a pinhole
camera model of a scene with various textures and lighting, which is then processed to assess SfM point
cloud accuracy. The rendered imagery can be processed to add noise, blur, nonlinear distortion, and
other effects to generate imagery more representative of that from a real-world scenario prior to SfM
processing. The accuracy of the camera trajectory, GCP position, camera calibration, and GCP pixel
coordinates in each image can also be systematically adjusted to simulate uncertainty in a real-world
scenario. The ability to adjust these parameters enables a user to perform a sensitivity analysis with
numerous independent variables.

While this methodology enables the user to perform repeatable, accurate experiments without
the need for time-consuming fieldwork, there are currently some limitations in the experiment
methodology when utilizing the Blender Internal Render Engine. First, the internal render engine
does not handle global illumination, and therefore light interactions between objects are not modeled.
A second limitation of the lighting schema is that the radiometric accuracy has not been independently
validated. There are a few methods within the render engine which effect the “color management” of
the resultant imagery. For this experiment, these settings were left at the default settings, providing
imagery that was not over- or underexposed. While the lighting in the scene using the Blender Internal
Render Engine does not perfectly replicate physics-based lighting, the absolute color of each surface
of an object is constant and perfectly Lambertian. The keypoint detection and SfM algorithms utilize
gradients in colors and the absolute colors of the scene, and the accuracy of the methodology should not
be effected by the imperfect lighting; however, it is recommended that this be rigorously investigated
in future research.
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Another source of inaccuracy in the Blender Internal Render Engine methodology is that the
methodology to convert the scene to pixel values relies on an integration over a finite number of
subpixel super-sampling ray calculations. This deviates from a real-world camera where the pixel
value is a result of an integration over all available light. The Blender Internal Render Engine uses the
term “antialiasing” to describe a super-sampling methodology for each pixel, which can super-sample
up to 16 samples per pixel. This small, finite number of samples per pixel can induce a small amount
of inaccuracy when mixed pixels are present. These inaccuracies, though, are small enough to be
deemed negligible for most experiments which are expected to be undertaken using the workflow
presented here.

However, another potential source of uncertainty induced into the system is the use of repeating
textures to generate a scene. In the use case provided earlier, the grass texture was repeated 10 times in
both the x and y directions. This repeating pattern was overlaid onto another image, to create different
image color gradients in an attempt to generate unique texture features without requiring an extremely
large image as the texture. Despite this effort, it is possible that keypoint detection and matching
algorithms could generate false positives which may bias the result if not removed or detected as
outliers. This phenomenon could also occur in a real-world scenario, where manmade structures
often exhibit a repeating pattern of similar shapes and colors. In this experiment, this effect was not
observed, but if the scene is not generated carefully, these repeating textures could induce a significant
amount of inaccuracy in the SfM processing step.

5. Conclusions

This study has demonstrated a new workflow leveraging the Blender Internal Render Engine,
an open-source computer graphics render engine, to generate simulated UAS imagery data sets for
rendered scenes, suitable for input into SfM-MVS software. The output point clouds can be compared
against ground truth (which is truly the “truth,” in this case, as GCPs, check points and other features
have been synthetically placed in the scene with exact coordinates) to perform accuracy assessments.
By purposefully and systematically varying different input parameters, including modeled camera
parameters (e.g., focal length and resolution), modeled acquisition parameters (e.g., flying height and
exposure rate), environmental parameters (e.g., solar illumination angle), and processing parameters
(e.g., reconstruction settings), sensitivity analyses can be performed by assessing the change in accuracy
as a function of change in each of these parameters. In this way, hundreds of experiments on UAS
imagery processed in SfM-MVS software can be performed in the office, without the need for extensive,
costly field surveys. An additional advantage of the simUAS image rendering approach is that it
avoids confounding variables (e.g., variable wind and solar illumination, as well as moving objects in
the scene), which can complicate accuracy assessments performed with real-world imagery.

In this paper, one example of a use case was presented, in which we examined the effects of the
Agisoft Photoscan reconstruction quality setting (lowest, low, medium, high, and highest) on resultant
point cloud accuracy using a simulated UAS imagery data set with a camera model emulating a
Sony A5000. It was shown that the RMSE of the resultant point clouds does, in fact, depend strongly
on the reconstruction quality setting. An additional finding was that the data points outside of the
AOI should be either discarded or used with caution, as the accuracy of those points is higher than
that of the point cloud within the AOI. While these results are informative (if, perhaps, not entirely
unexpected), it is important to note that this is just one of a virtually limitless number of experiments
that can be run using the workflow presented here. The project team is currently planning to use the
simUAS workflow to examine point cloud accuracy achievable with new sensor types, and also to
conduct accuracy assessments of shallow bathymetric points in SfM-MVS point clouds generated from
UAS imagery.

Additional topics for future work include investigating the radiometric fidelity of the simulated
imagery, and further assessing the impacts of texture and topography in the simulated scenes. More
advanced post-processing effects will be explored, including local random variability from the Brown
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distortion model and lens aberration (spherical and chromatic). Alternative render engines will also be
investigated for feasibility, using the validation methodology described here. As SfM-MVS algorithms
are continually being improved, it is also of interest to use this methodology to test new SfM-MVS
software packages, both commercial and open source. Another extension of the current work would
include using the procedure presented here to simulate imagery acquired not only from UAS, but also
vehicles, boats, or handheld cameras. It is anticipated that these procedures will prove increasingly
beneficial with the continued expansion of SfM-MVS algorithms into new fields.
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