
remote sensing  

Article

Seasonal Timing for Estimating Carbon Mitigation in
Revegetation of Abandoned Agricultural Land with
High Spatial Resolution Remote Sensing

Ning Liu 1,2,*, Richard J. Harper 1,2, Rebecca N. Handcock 1,3, Bradley Evans 4,
Stanley J. Sochacki 1, Bernard Dell 1,2, Lewis L. Walden 1 and Shirong Liu 2,*

1 School of Veterinary and Life Sciences, Murdoch University, South Street, Murdoch, WA 6150, Australia;
R.Harper@murdoch.edu.au (R.J.H.); rebecca.handcock@ecu.edu.au (R.N.H.);
s.sochacki@murdoch.edu.au (S.J.S.); b.dell@murdoch.edu.au (B.D.); L.Walden@murdoch.edu.au (L.L.W.)

2 Key Laboratory of Forest Ecology and Environment of State Forestry Administration, Institute of Forest
Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing 10091, China

3 Edith Cowan University, Joondalup, WA 6027, Australia
4 School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia;

bradley.evans@sydney.edu.au
* Correspondence: ln1267@gmail.com or N.Liu@murdoch.edu.au (N.L.); Liusr@caf.ac.cn (S.L.);

Tel.: +61-8-9360-2191 (N.L.); +86-10-6288-9311 (S.L.)

Academic Editors: Lalit Kumar, Onisimo Mutanga and Randolph H. Wynne
Received: 7 March 2017; Accepted: 24 May 2017; Published: 1 June 2017

Abstract: Dryland salinity is a major land management issue globally, and results in the abandonment
of farmland. Revegetation with halophytic shrub species such as Atriplex nummularia for carbon
mitigation may be a viable option but to generate carbon credits ongoing monitoring and verification
is required. This study investigated the utility of high-resolution airborne images (Digital Multi
Spectral Imagery (DMSI)) obtained in two seasons to estimate carbon stocks at the plant- and
stand-scale. Pixel-scale vegetation indices, sub-pixel fractional green vegetation cover for individual
plants, and estimates of the fractional coverage of the grazing plants within entire plots, were
extracted from the high-resolution images. Carbon stocks were correlated with both canopy coverage
(R2: 0.76–0.89) and spectral-based vegetation indices (R2: 0.77–0.89) with or without the use of the
near-infrared spectral band. Indices derived from the dry season image showed a stronger correlation
with field measurements of carbon than those derived from the green season image. These results
show that in semi-arid environments it is better to estimate saltbush biomass with remote sensing
data in the dry season to exclude the effect of pasture, even without the refinement provided by
a vegetation classification. The approach of using canopy cover to refine estimates of carbon yield
has broader application in shrublands and woodlands.

Keywords: aboveground biomass; Atriplex nummularia; carbon mitigation; carbon inventory;
forage crops; remote sensing; vegetation index

1. Introduction

Global climate change is resulting from an imbalance in global greenhouse gas emissions [1].
A major strategy to mitigate carbon dioxide emissions is to sequester or remove carbon from the
atmosphere through changing land use and increasing storage in plant biomass or soils [2,3]. Indeed,
83% of the mitigation targets or Intended Nationally Determined Contributions (INDCs) published
following the 2015 Paris Climate Change Conference included the land sector [4]. However, carbon
mitigation activities on farmland can displace food production [5] or affect water supplies [6].
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Alternative mitigation approaches have been advocated, such as using low value or otherwise
abandoned farmland to avoid competitive effects of vegetation [7].

In 2002, about 20,000 farms and 2 million hectares of agricultural land showed actual signs of
salinity [8], and up to 170,000 km2 of land in Australia is predicted to be affected from salinity by
2050 [9] and up to 4 million km2 globally [10]. One option for salt-affected land is revegetation with
salt-tolerant grazing plants such as Atriplex spp. [7]. Revegetation is a specific category of mitigation
activity within the United Nations Framework Convention on Climate Change and is defined as
the establishment of vegetation that does not meet the definitions of afforestation or reforestation.
In Australia, this is defined as plants that do not exceed 2 m in height. Walden et al. [11] found
consistent amounts of aboveground carbon stock (0.2–0.6 t C·ha−1·year−1) by A. nummularia at six
sites across southern Australia, with potential total sequestration of 1.1–3.6 Mt C·year−1, and studies
(e.g., Harper et al. [2] and Harper et al. [12]) have described its usefulness as a grazing shrub in animal
based farming systems.

To participate in carbon trading schemes, such as the Clean Development Mechanism or the
Australian Carbon Farming Initiative [13], it is essential to measure and report amounts of carbon
stocks. Ground-based field measurements of biomass are expensive. This study therefore evaluates the
suitability of less expensive remote sensing approaches to estimate carbon stocks following farmland
revegetation, with a focus on areas where there are low rates of sequestration. The calibration of remote
sensing data with in situ measurements of biomass has the potential to be a cost effective means of
reporting carbon stocks across landscapes, as well as being a timely source of data originating from
direct observation of actual carbon stocks rather than being solely modelled values.

Analysis of high-resolution remotely sensed images can be at the scale of individual pixels
(i.e., pixel-based) [14] or use approaches to extract multi-pixel features from the image (i.e., feature
extraction, fractional coverage) [15], including the ability to use individual canopy crowns e.g. Bunting
and Lucas [16] where the images are of sufficiently fine spatial resolution. Sochacki et al. [7] and
Walden et al. [11] both found that aboveground biomass of A. nummularia followed a strong linear
trend (R2 = 0.81) in relation to a crown volume index (CVI), calculated from crown width, length,
and height. Walden et al. [11] also found that canopy diameter measurements were only slightly
less predictive (R2 = 0.68) compared to CVI, and could be used to estimate aboveground biomass
(AGB). The allometric relationship between biomass measurements and carbon estimates has been
established [11] and these relationships could therefore be used as a basis for estimating carbon stocks
in situations where individual crowns can be delineated from remote sensing images.

Although the use of pixel-based vegetation indices as proxies for estimating vegetation biomass
is well established [17,18], including examples such as the normalized difference vegetation index
(NDVI), enhanced vegetation index (EVI) [19], and the ratio vegetation index (RVI) on forests [20],
grass [21] and woodland [22,23], these techniques have been infrequently used to estimate carbon
stocks in shrublands. However, the broader use of remote sensing for calibrating vegetation indices
to biomass (e.g., Asner [24]) shows that the relationship between vegetation indices and biomass can
differ between species, season, and the scale of the vegetation and pixels.

Estimates of canopy coverage derived from remote sensing images have also been applied as
a proxy for calculating individual tree and stand biomass [25,26]. For example, Sousa et al. [27]
found that the tree canopy horizontal projection derived from QuickBird satellite images produced
highly accurate estimates of AGB of Quercus rotundifolia at both individual and plot scales. All of
these approaches require remotely sensed images of sufficiently high spatial resolution to resolve the
individual plants or stands being monitored.

In this study, we use high-resolution aerial images to explore characteristics of monitoring
salt-tolerant grazing plants for carbon stocks in a Mediterranean environment. We derive estimates
of canopy coverage from high spatial resolution airborne Digital Multi Spectral Imagery (DMSI)
at two times of the year, and determine the utility of these images for estimating aboveground
biomass and carbon stocks at both the plant- and stand-scale. Three remote sensing approaches were



Remote Sens. 2017, 9, 545 3 of 23

used: pixel-scale vegetation indices, extraction of the stand crowns from the high-resolution images,
and estimation of the fractional coverage of the grazing plants within entire stands (Figure 1).
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Figure 1. Flow diagram of the methodology followed in this study (where Ct is the carbon stocks
(t C·ha−1), DMSI is the Digital Multi Spectral Imagery, and CVI is the crown volume index).
For definitions of vegetation indices, see Table 1.

Our specific objective was to determine if it is feasible to develop remote sensing models that
can be used economically and efficiently to estimate carbon stocks at scales suitable for project level
carbon accounting, and to determine the most suitable timing (e.g., wet season or dry season) for
image acquisition for this purpose.

2. Materials and Methods

2.1. Experimental Sites

The study site (32◦43′34.33′ ′S, 117◦39′55.27′ ′E) was located near Wickepin, Western Australia,
and was established to investigate carbon stocks following revegetation of abandoned salinized
farmland [7,28]. The region has a semi-arid Mediterranean climate, with a seasonal drought from
November to April, and a mean annual rainfall of 357 mm·year−1 (2000–2011, Wickepin weather
station No. 010654 from the Australian Bureau of Meteorology) and a mean annual pan evaporation of
1789 mm·year−1.

Atriplex nummularia was planted adjacent to a salt scald in 2001, at densities of 0, 500 and
2000 plants ha−1, each with three replicates, in a randomized complete block design, consisting of
two blocks (Figure 2). Details of seedling production and planting have been described previously [7].
At the time of field measurement in December 2011 (dry season), the low- and high-density stands had
average heights of 2.17 and 1.68 m, and average canopy diameters of 2.66 and 1.52 m, respectively.

Both the control plots (0 plants ha−1) and the areas between the A. nummularia plants were
comprised of an array of annual volunteer pasture plants including capeweed (Arctotheca calendula),
geranium (Erodium sp.), and various grasses (e.g., Hordeum glaucum, Lolium rigidum). As a consequence
of the Mediterranean environment, the annual pasture plants are only alive in the period April-October,
whereas the A. nummularia plants bear foliage year-round.
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Figure 2. High spatial resolution airborne DMSI image (0.5 m) of the Wickepin experimental site taken
on 24 March 2011 (dry season), with examples of: (a) low density (500 plants ha−1, plot S2An1LD);
and (b) high density (2000 plants ha−1, plot S2An1HD). Plots were 40 × 40 m2, with field imagery
measurements taken from an internal 20 × 20 m plot to minimize competitive edge effects. Key to plot
name: S1, S2—Block; An—species (Atriplex nummularia); 1, 2, 3—Replicate; LD, HD—planting density
(500 or 2000 plants ha−1).

2.2. Ground Based Measurements

Permanent measurement plots (20 × 20 m) were established within the main treatment plots to
minimise competitive edge effects. Measurement of potential predictor variables of A. nummularia
shrubs were made of all plots which were applied to allometric relationships for estimates of carbon
stocks in above- and belowground biomass.

Shrub crown width was measured on two axes at 90◦ to each other and used to derive the mean
crown diameter (MCD). Shrub height and crown base height were measured to determine the crown
height and used to calculate a crown volume index (CVI) (1):

CVI = (Ht ×W1 ×W2)/3 (1)

where Ht is crown height, W1 is crown width along axis 1, and W2 is crown width along axis 2 which
is 90◦ to axis 1. All measurements are in meters.

Measurement of treatment plots was made on an annual basis following establishment [7] with
the field measurements made on 10 December 2011, which was the closest sampling to the time of
aerial digital data capture.

2.3. Biomass Sampling

The destructive harvest method described in Snowdon et al. [29] was used to estimate AGB and
belowground biomass (BGB). A total of 54 A. nummularia shrubs were sampled for AGB, across the
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dynamic range of shrub sizes to ensure data were representative, and of these 22 were sampled
for BGB.

Sampling the AGB involved the removal of the entire shrub above the soil surface. The shrubs
were then weighed in the field to determine total fresh weight and subsamples (0.5–0.7 kg) were taken
and dried at 70 ◦C to constant dry weight and the moisture content (% w/w) determined to calculate
the dry above ground mass of the sampled shrubs. Subsamples were further separated into leaf and
stem components to determine the proportion of these of the AGB.

Sampling the BGB was achieved by excavating with a backhoe to approximately 0.5 m and
collecting all roots with a diameter of approximately ≥2 mm. Soil was placed on a sieving table
overlaid with 50 mm square mesh and roots were collected as described by Ritson and Sochacki [30].
The roots were washed to remove any adhering soil and then dried to determine the dry root weight.

There was no accumulation of soil organic carbon following A. nummularia establishment
compared to untreated areas [11], thus it is not considered in this paper.

2.4. Carbon Analysis

Samples were taken from 8 random plants within the plots and analysed for carbon content.
These were separated into leaf and stem components then dried at 70 ◦C to constant dry weight.
The determination of carbon content of the leaves and stems was undertaken at a commercial laboratory,
using the Leco combustion method [31].

2.5. Allometric Relationships

During Autumn, some A. nummularia leaves (L) are removed by livestock grazing, therefore the
stable carbon store was considered to consist of the BGB and the stems of the AGB. Leaves represented
14.1% of the total plant biomass at the time of sampling [11]. The carbon store of each plant (Cpl) was
estimated in Equation (2):

Cpl = (BGB × Ci) + ((AGB − L) × Cii) (2)

where C is the carbon content of the A. nummularia plants; BGB is belowground biomass; AGB is
aboveground biomass; and L is leaves. Ci and Cii are the respective C compositional values of the
roots (46%) and stems (49%) from Walden et al. [11].

Plant carbon (Cpl) was then regressed against the CVI to develop a predictive allometric
Equation (3):

Cpl = 0.494 + 4.607 × CVI (3)

where Cpl was plant carbon and CVI is the crown volume index.
An estimate of total carbon stocks (t C·ha−1) for each measurement plot was made by estimating

the carbon content of each plant by applying Equation (3), summing these values for the measurement
plot, and converting to a per hectare value:

Ct = ∑ Cpl × 25 (4)

where Ct is the total carbon stocks (t C·ha−1), Cpl is the carbon content of each plant and 25 is the value
to convert from the 400 m2 measurement plot to 10,000 m2 (1 ha).

In this study, the ground measurements of carbon storage of saltbush conducted in December
2011 was the nearest observation to both remotely sensed images. At this site, minimal change in
carbon storage in the saltbush planting was observed after 4 years of age [7].

2.6. High Spatial Resolution Remote Sensing Data

The DMSI sensor acquires 12-bit digital number (DN) data simultaneously in four narrow spectral
bands (20 nm full width half maximum). The spectral bands are located in the visible and near-infrared
(NIR) region of the electromagnetic spectrum using filters centred at 450 nm (blue), 550 nm (green),
675 nm (red), and 780 nm (NIR) [32].
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Two high spatial resolution airborne DMSI images with 0.5 m pixels were acquired by SpecTerra
Services Proprietary Limited (Perth, WA, Australia) [33] from an altitude of 2000 m. The first DMSI
image was acquired on the 28 September 2010 and is designated as the “September-2010-Green” image
as this is when the saltbush shrubs are surrounded by green pastures containing photosynthetically
active vegetation (PV). The second DMSI image was acquired on the 24 March 2011 and is designated
as the “March-2011-Dry” image as this is when the saltbush shrubs are surrounded by dead/senesced
pastures comprised predominantly of non-photosynthetically active vegetation (NPV).

The DMSI images were geo-referenced by SpecTerra based on GPS ground control points.
Post-flight image processing included a bidirectional reflectance distribution function (BRDF)
correction for variations in the sun-sensor-target viewing geometry across each image. The SpecTerra
proprietary BRDF correction algorithm preserved the spectral integrity within an image, but produced
DN rather than absolute radiance (energy received in W m−2 sr−1).

Further radiometric correction of these images was necessary to convert raw DN values to
reflectance at ground, which is required for calculating vegetation indices. The atmospheric correction
of the DMSI images to reflectance at the ground was made using a QUick Atmospheric Correction
(QUAC) [34] applied though the ENVI 5.1 remote sensing package [35]. The QUAC atmospheric
correction is applicable where no concurrent atmospheric measurements are available, and can be
applied to either raw DN or radiance-at-sensor image values [34]. The resulting QUAC atmospherically
corrected images were verified by extracting spectral profiles for “pure” pixels of a variety of materials
identified through manual examination of each of the two images. The spectra from these “pure” pixel
locations were also validated against laboratory spectra of vegetation, water and soil from the ASTER
spectral library [36], to identify any gross differences despite the library materials not representing
materials from the Australian environment.

2.7. Vegetation Indices

Five pixel-scale vegetation indices and the sub-pixel fractional green vegetation cover for
individual plants were calculated from the high-resolution images in order to highlight the carbon
content of saltbush in the high-resolution images. A classification-based index Rveg, was also calculated
for entire plots each image. These indices are summarized in Table 1.

Table 1. Vegetation indices used in this study.

Vegetation Index Formula Reference

Normalized Difference Vegetation Index NDVI = (NIR − red)/(NIR + red) [37]
Ratio Vegetation Index RVI = NIR/red [38]

Soil Adjusted Vegetation Index SAVI = 1.5 × (NIR − red)/(NIR + red + 0.5) [19,39]
Green Chromatic Coordinate GCC = green/(red + green + blue) [40]

Fractional green vegetation cover fc = (NDVI − NDVIsoil)/(NDVIveg − NDVIsoil) [41]
Rveg Rveg = percentage of vegetation pixels for each plot [25,42]

Note: NIR is the reflectance of the near-infrared band, red is the reflectance of the red band, green is the reflectance
of the green band, and blue is the reflectance of the blue band. The radiometrically corrected DMSI images are used
for vegetation index calculations.

The first group of vegetation indices used in this study was pixel-based. The NDVI is one of
the most widely used vegetation indices as it provides a measure of absorption of red light by plant
chlorophyll as well as the reflection of infrared radiation by water-filled cells [37,43]. The Soil Adjusted
Vegetation Index (SAVI) has been found to be robust under variations in soil brightness. The SAVI was
selected to reduce the impact of soil in the scene, as the extent of the canopy coverage of saltbush in our
study area was relatively small due to the sparse spacing of the shrubs. The RVI was selected to capture
the contrast between the red and infrared bands for vegetated pixels [17], and for its use of only two
spectral bands. The green chromatic coordinate (GCC) was used in this study to test the performance
of general optical bands for estimating saltbush biomass. GCC has been used as an indicator of plant
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condition and phenology [18,40]. The GCC was chosen as it can be readily calculated from spectral
bands found in standard digital cameras, and so has the potential to be available from a variety of
sensor platforms.

Two additional indices related to the spatial coverage of vegetation (Rveg and fractional green
vegetation cover (fc)) were used in this study. Crown horizontal projection, which refers to the vertical
projected area of vegetation crown, has been reported as being strongly related to AGB [27], and canopy
diameter is also strongly correlated to the AGB of saltbush in the study area [11], suggesting that the
spatial coverage of vegetation can be an indicator of saltbush biomass. Calculating vegetation coverage
can be complicated when the vegetation does not cover the entire pixel, resulting in mixed pixels on
the edge of the saltbush canopy. In the study by Wittich and Hansing [41], the green vegetation fraction
within a mixed pixel was shown to be related to the NDVI of the pixel, and also to the NDVI values
of pure soil and vegetation in the scene. We therefore calculated fc by first selecting representative
soil and vegetation samples manually from each image, and using NDVI to calculate fc for each pixel
in the image according to the equation shown in Table 1. Rveg is a classification-based index that is
calculated at the plot scale. Rveg is simply the proportion (%) of vegetation pixels in a plot compared
to the total number of pixels in that plot. The use of a classification index such as Rveg is appropriate
for the sparse nature of the saltbush planting as it focuses just on pixels that have been classified as
vegetation, while providing estimates of vegetation fraction at the plot scale. Unlike the fc, the Rveg is
dependent on the accuracy of the vegetation classification method.

2.8. Object-Based Classification Method

To determine the vegetation classifications for the calculation of Rveg, we used an object-based
classification method. Object-based classification is suitable for high-resolution images such as DMSI
where the relationship between the pixel size and the typical canopy width means that the vegetation is
resolved by multiple pixels. Instead of analyzing information in each pixel separately, the object-based
classification method takes image objects with a set of similar pixels as the basic unit [16,44]. The aim
of object-based classification is to delineate readily usable objects from the background pixels, in order
to utilize spectral and contextual information in the image.

For this study, we chose to use the commercially available software eCognition 8.4 [45,46] for
object-based image classification as it contains a wide range of tools under a trial version. However,
object-based image classification tools are available as both commercial and open-source products [16],
which makes it possible to use these methods to develop an inexpensive operational system.

The object-based classification of our images to identify the salt-bush was made as follows. Each of
the DMSI images was first segmented to identify individual objects in the scene using a “Bottom-Up”
algorithm, “multi-resolution segmentation”, in which all bands were used to split the original image
into objects according to object shape, size, color, and pixel topology. The second stage of the object
classification process is to assign each object identified by the segmentation process to a class based
on features and criteria set by the user. We applied the “Assign class” and “Fuzzy membership”
algorithms to the segmented objects from step 1, to identify “saltbush” within each image. As part of
the input variables for the “Assign class” algorithm, an NDVI > 0.2 was assigned as the “saltbush”
class, while NDVI < 0.1 was treated as “Soil” background. As saltbush is very sparse in some plots in
the study area, a “Fuzzy membership” algorithm was used to classify “saltbush” and “soil” for NDVI
between 0.1 and 0.2. Visual examination of the resulting classification with the high-resolution base
images was used to confirm the suitability of the final classification.

The difference in vegetation index values between the interspace pasture and saltbush in the
dry season image (March-2011-Dry) was found to be more pronounced than in the green season
image (September-2010-Green), as during this period the pasture had died whereas the saltbush
(A. nummularia) was alive at all times (Figure 2). We therefore used only the dry season image for
determining the vegetation classification, although the canopy crowns identified by the classification
were applicable to both images.
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2.9. Scale and Estimating Carbon Stocks in A. nummularia

Two spatial scales, being the scales of the individual plant and of the whole plot, were used
for relating the image data in this study to the carbon stocks of saltbush. “Plant scale” is where the
relationship between vegetation indices and carbon stocks is determined only for the pixels in each
plot that have been determined to be saltbush in the object-based classification. “Plot scale” is where
all pixels within the plot, including vegetated and background pixels, are aggregated by averaging the
values of all pixels within the plot.

2.10. Statistical Analys

All statistical analysis was made in the R 3.2.3 statistical software. A two-way analysis of variance
(ANOVA) was conducted using the “anova” function in the “stats” package to detect the differences
between vegetation type (Pasture and Saltbush) and the season of observation (Green and Dry) for all
the image-derived vegetation indices.

The relationship between vegetation indices and carbon stocks was evaluated using a Spearman
rank correlation in R 3.2.3 [47]. At the individual plant scale the non-saltbush plant pixels in each plot
were treated as null values in all vegetation indices, while at the plot scale all pixels are included in
the calculation.

Both non-linear relationships [21,48] and linear relationships [49–51] between vegetation indices
and biomass were derived. The best-fit biomass estimation models were selected by comparing several
regression models (exponential function, linear function, logarithm function, polynomial function,
and power function). Each model was validated using the Leave-one-out cross validation (LOOCV)
method. The precision of the estimation models was evaluated by the relative root mean squared error
(RMSE, %) and the coefficient of determination (R2).

3. Results

3.1. Vegetation Classification Based on Difference of Pasture and Saltbush

The values of the vegetation indices for saltbush were generally significantly different from those
for pasture (p < 0.001) in the vegetation indices for both the green season image (September-2010-Green)
and the dry season image (March-2011-Dry). Moreover, the difference in the vegetation indices between
saltbush and pasture was larger in the dry season than the green season. For example, the differences of
NDVI and RVI were 0.17 and 0.65 in the dry season, and 0.13 and 0.48 in the green season, respectively
(Table 2).

NDVI, RVI, SAVI, GCC, and fc all showed significant differences (p < 0.001) between pasture and
saltbush, which are expected given the different absorption features of the red and NIR spectral bands
used in these vegetation indices. The differences of SAVI, fc and GCC between saltbush and pasture in
the dry season were 0.08, 0.41 and 0.02, respectively.

Table 2. Comparison of vegetation indices and vegetation cover between pasture and saltbush from
DMSI images for the green season (September-2010-Green) and dry season (March-2011-Dry).

Variable
Green Season Dry Season

ANOVA Two-Way
Pasture Saltbush Pasture Saltbush

Vegetation Index

NDVI 0.13 0.26 0.11 0.28 ***
RVI 1.31 1.79 1.25 1.90 ***

SAVI 0.08 0.15 0.07 0.19 ***
GCC 0.35 0.37 0.32 0.34 ***

Vegetation coverage fc 0.14 0.60 0.13 0.54 ***
Rveg 0.46 0.54 0.46 0.54 -

Note: The radiometrically corrected DMSI images are used for these vegetation index calculations. *** p < 0.001 in
a two-way ANOVA test for vegetation type group (Pasture and Saltbush) and seasonal group (green season and
dry season).
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Figure 3 shows examples of the object-based vegetation classification. The main canopy of
saltbush can be clearly recognized, with mean classification stability and best classification results
from the eCognition analysis of 0.70 and 0.85, respectively. In addition, RVI, fc, and NDVI also showed
significant differences (p < 0.001) between pasture and saltbush, which mainly resulted from the
different absorption features of red and NIR bands of vegetation. The differences in RVI, fc and NDVI
between saltbush and pasture in the dry season were 0.19, 0.26 and 0.12, respectively.
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plots (S2An1LD) of A. nummularia. The background images are false color composites, and the yellow
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3.2. Relationships between Digital Vegetation Indices and Carbon Stocks

Overall, there was a significant relationship between all of the vegetation indices and carbon
stocks (Tables 3 and 4, Figures 4, A1 and A2) in the dry season at both individual plant and plot
scales, while a strong relationship was only observed at the individual plant scale in the green season.
Rveg was significantly related to carbon stocks ($ of 0.91, p < 0.001).
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Figure 4. Relationship between vegetation indices and carbon stocks (Ct) for the A. nummularia shrubs
sampled from the 500 (∆, LD symbols) and 2000 (•, HD symbols) plants ha−1 treatments in two seasons
(dry season “March-2011-Dry” (a,b) and green season “September-2010-Green” (c,d)) at the plot scale
(a,c) and the plant scale (b,d) of NDVI. The black line represents the fitted linear model for all plots
and the red and blue lines are for high density and low density plots, respectively.



Remote Sens. 2017, 9, 545 10 of 23

Table 3. Spearman rank correlation tests of vegetation indices against carbon stocks (Ct) in A.
nummularia at the individual plant and whole plot scales in the green season (September-2010-Green).

Variable

Scale

Individual Plant 1 Plot 2

$ p $ p

Vegetation Index

NDVI 0.73 0.01 0.16 0.62
RVI 0.80 0.003 0.23 0.47

SAVI 0.73 0.01 0.04 0.92
GCC 0.89 0.001 0.14 0.67

Vegetation coverage fc 0.55 0.05 0.16 0.62
1 Pasture pixels were omitted for each plot (only pixels of saltbush canopies were combined for analysis). 2

The indices were the mean values of the whole plot. $ is Spearman’s correlation coefficient and p is the significance
of the Spearman test.

Table 4. Spearman rank correlation tests of vegetation indices against carbon stocks (Ct) in A.
nummularia at the individual plant and whole plot scales in the dry season (March-2011-Dry).

Variable

Scale

Individual Plant 1 Plot 2

$ p $ p

Vegetation Index

NDVI 0.86 0.001 0.88 0.001
RVI 0.895 0.0002 0.88 0.001

SAVI 0.895 0.001 0.85 0.001
GCC 0.91 0.0001 0.42 0.18

Vegetation coverage fc 0.87 0.001 0.88 0.001
Rveg 0.91 0.0001 - -

1 Pasture pixels were omitted for each plot (only pixels of saltbush canopies were combined for analysis);
2 The indices were the averaged values of the whole plot. $ is Spearman’s correlation coefficient and p is the
significance of the Spearman test.

At the individual plant scale, RVI and GCC were strongly correlated to carbon storage ($ of
0.9, p < 0.001) in both seasons. The fc showed a much higher correlation in the dry season ($ of 0.87,
p < 0.001) than in the green season ($ of 0.55, p < 0.05). The relationship between NDVI and carbon and
between SAVI and carbon were not as strong in different seasons ($ of 0.7 in September-2010-Green
and $ of 0.9 in March-2011-Dry).

In contrast, the results at the plot scale were more varied in both seasons. Very weak relationships
between vegetation indices and carbon stocks were found in the green season, while a strong
relationship, except for GCC, were found in the dry season. Similar strong relationships between
NDVI, RVI, SAVI and fc with carbon storage were apparent in the dry season ($ of 0.88, p < 0.001).
However, GCC showed a very weak relationship with carbon in both seasons.

For the data around different plot densities, a similar correlation was observed between vegetation
indices and carbon stocks in the dry season, while in the green season significant relationships were only
found for GCC and RVI at the individual plant scale (Figure 4). Meanwhile, there was no significant
difference between slopes of linear regression lines derived from low and high density plots.

For space limitations, Figure 4 represents the model types of NDVI. All of the fitted model types
for each vegetation index are available in Appendix Materials (Table A2 and Figures A1 and A2).

3.3. Comparison of Carbon Estimation Methods for Different Seasons and Scales

In the green season, all vegetation indices performed weakly in estimating carbon storage of
saltbush at the plot scale (Figure A1). At the individual plant scale, RVI produced a reasonable result,
explaining around 70% (p < 0.05) of the variation in carbon storage (Figure A2). GCC was found to be
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the best index for estimating carbon in the green season (Figure A2), with an R2 of 0.86 and RMSE of
12.9%. In the dry season, similar results were found at the individual plant scale and the plot scale for
each vegetation index except for GCC. GCC was one of the best indicators for carbon estimation at the
individual plant scale, with an R2 of 0.89 (RMSE = 12.4% and LOOCV RMSE = 15.8%) and p < 0.01,
but it was not suitable at the plot scale (R2 = 0.1, p > 0.1). NDVI, RVI and fc all showed similarly
good results, explaining around 80% (p < 0.01 and RMSE < 16%) of the variation when all plots were
included and 85% of the variation (p < 0.01, RMSE < 13%) in individual plant scale.

Overall, the relationships for the dry season and at the individual plant scale showed the best
results for estimating saltbush biomass from the vegetation indices (Figure A2, Tables 3 and 4).
By comparing the measures (R2, RMSE, and LOOCV RMSE) of each regression model (Table A2),
the best-fit regression model for carbon estimation was demonstrated in Table 5. Overall, very similar
regressions and correlation coefficients were found from these vegetation indices. When all plots
are included, the exponential function model showed almost the same precision as the polynomial
function model for all vegetation indices. However, there were differences in the strength of the
relationship with planting density. For the lower density plots, the polynomial function model was the
best-fit model, explaining 96% of the variation (p < 0.01, RMSE < 7%), whereas for the higher density
plot, the exponential function model showed a bit better performance than the polynomial function
model, which explained 90% (p < 0.01, RMSE < 12%) of the variation.

In comparison with fc, the relationship between Rveg and Ct was stronger, explaining 88%
(p < 0.001) of the variation when all plots were considered with a best-fit polynomial function model
(Figure 5). Similar to vegetation indices, there were differences in the strength of this relationship with
planting density, with the model for the high density plots explaining 87% of the variation (p < 0.01,
RMSE = 12.9%), whereas that for the lower density plot explained 96% of the variation (p < 0.01,
RMSE = 6.7%) when the polynomial function model was used for carbon estimation.

Table 5. Models for estimating carbon stocks (Ct) of A. nummularia for different planting densities at the
individual plant scale in the dry season (March-2010-dry). Model is the best-fit regression model, R2 is
the coefficient of determination, RMSE is the relative root mean square error (%) of carbon estimation.

Variable Model R2 RMSE Density

(%) (Plants ha−1)

Vegetation index NDVI y = 12.29e13.44x 0.89 11.9 2000
y = 7916.3x2 −618.11x + 29.584 0.96 6.5 500

y = 12.06e12.62x 0.84 14.6 ALL
RVI y = 12.10e1.79x 0.9 11.9 2000

y = 155.96x2 − 89.983x + 30.676 0.96 6.2 500
y = 11.61e1.78x 0.87 12.9 ALL

SAVI y = 12.10e21.09x 0.88 11.7 2000
y = 18485x2 − 891.27x + 28.446 0.92 9.6 500

y = 11.89e20.04x 0.84 15 ALL
GCC y = 11.97e7.96x 0.89 12 2000

y = 3573.8x2 − 457.16x + 32.411 0.96 6.2 500
y = 11.28e8.29x 0.89 12 ALL

Vegetation coverage fc y = 12.43e7.83x 0.89 12 2000
y = 2525x2 − 341.96x + 28.97 0.96 6.7 500

y = 12.42e7.05x 0.81 15.8 ALL
Rveg y = 11.97e2.72x 0.89 12 2000

y = 398.08x2 − 148.79x + 31.764 0.96 6.5 500
y = 178.87x2 − 22.86x + 16.40 0.89 11.9 ALL
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4. Discussion

4.1. Characteristics and Dynamics of Vegetation Indices of Saltbush and Annual Pasture

Overall, saltbush showed higher canopy coverage and higher biomass than pasture in both
seasons, and the spectral signatures and the derived vegetation indices allowed discrimination between
the two vegetation types from the images. These differences were particularly marked in the red band,
with differences of the red band between pasture and saltbush of 29.5% in the green season and 34.4%
in the dry season. It is thus possible to successfully distinguish pasture and saltbush canopy with
an object-based classification method. Due to the senescence of pasture in the dry season, the physical,
visual, and spectral differences between saltbush and pasture were much more pronounced in the
images than in the green season, thus the dry season is the best time in this Mediterranean climate for
vegetation classification. This difference has implications for future design of vegetation monitoring
using image data.

Although nearly 90% of the planted saltbush had survived during the study time frame, the values
of fc were moderate in both the green season (0.60) and dry season (0.54), which indicates that a greater
proportion of the plots were covered by pasture and bare soil than by saltbush. This was confirmed by
visual examination of the images. The low vegetation coverage and high salinity (EM38 H ranging from
50 to 300 mS m−1) [7] at the field sites resulted in generally low values of the NIR-based vegetation
indices in the study area [52]. For example, the mean NDVI of saltbush was 0.28 in the dry season and
0.26 in the green season, while the mean RVI was 1.9 and 1.8 in the same period.

4.2. Indicators of Carbon Stocks (Ct)

It can be concluded from the Spearman’s rank correlation test of vegetation indices against
sequestered carbon (C) that vegetation indices calculated from red and NIR bands can accurately
reflect the carbon storage for saltbush both at the individual plant and plot scale (Tables 3 and 4) in the
dry season (March-2011-Dry image). However, in the green season (September-2010-Green image),
carbon storage could only be suitably estimated at the individual plant scale, as the pasture in the green
season was still alive (NDVI values of around 0.13), which dramatically changed the estimated total
carbon storage for each plot. Meanwhile, only GCC and RVI showed reasonable results for estimating
carbon of saltbush in the green season, again indicating that the best time for estimating saltbush
biomass with remote sensing data is in the dry season.
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GCC was significantly related to carbon storage of saltbush at the individual plant scale in both
the dry and green seasons, which suggests that indices derived from bands only in the visible part of
the electromagnetic spectrum, and without including a NIR band, can be a useful indicator of saltbush
biomass. GCC has also been found to be a good indicator of vegetation health and phenology in other
studies [18,40], as GCC best represented differences in healthy vigour and mortality of vegetation.
Meanwhile, from the different relationship of GCC between plot and individual plot scales, it can
be concluded that the best performance of GCC requires vegetation classification, suggesting that
model precision is determined by the accuracy of vegetation classification. In addition, there was only
a small difference between the Pasture and Saltbush values of GCC, with these showing a considerable
contribution to model performance at plot scale.

Vegetation coverage indices (fc and Rveg) were strongly correlated to Ct at both the individual
plant and plot scale, suggesting that canopy coverage of saltbush inherently reflects carbon storage.
In addition, Rveg in this study area produced a better result than fc. The calculation of fc required
the NDVI values of pure soil and vegetation, which is a source of additional uncertainty in the index.
In this study, mean NDVI values from pure soil and vegetation samples within the image were used for
calculating fc. However, there is still a high variation on both vegetation structure and soil properties.
In order to increase the accuracy of fc, a spatial interpolation method could be used to predict variations
in the spectral characteristics of bare soil and green vegetation across space.

The results for the Rveg are consistent with that of Suganuma et al. [25] who used remote sensing
derived canopy coverage to estimate stand biomass in forest species (Acacia aneura and Eucalyptus
camaldulensis) in arid Western Australia. Similarly, Sousa et al. [27], working on Quercus rotundifolia in
southern Portugal, found that AGB as a function of crown horizontal projection had the same trend
for individual trees and plots, even though estimation for individual trees produced large individual
errors. For our study, the strong relationship between vegetation coverage and Ct can possibly be
explained by A. nummularia having little variation in height due to the consistency in age and the
strong relationship between diameter and biomass reported by Walden et al. [11]. This is in contrast to
many forest inventory studies where there is canopy closure and, thus, it is not possible to differentiate
between individual trees and height has a large contribution to overall tree mass. For both this study
and that of Suganuma et al. [25], the canopies were separated, thus we can suggest that canopy
coverage approaches may be applicable to carbon inventory in open woodlands as well as shrubby
systems. Similar relationships between canopy coverage and biomass have also been reported in the
semiarid savanna of Sudan [53], and in semi-arid Senegal [54]. However, different vegetation types
showed significantly different estimation accuracy [26].

For other vegetation indices in our study (i.e., NDVI, SAVI and RVI) that are derived from red
and NIR bands, similar strong relationships with carbon storage of saltbush were observed at both
individual plant and plot scales. This similarity may be because of their use of the same spectral bands
(Table 1). Both NDVI and RVI have been widely used for estimating AGB [17,23,43,55,56].

Linear regression has been widely used to build the relationship between vegetation indices and
carbon stocks, which demonstrates a satisfactory performance for carbon estimation. Overall, the linear
regression models indicated strong relationships between the vegetation indices and carbon stocks,
explaining around 80% of the variation, while the exponential function models explained around
85% of the variation (Table A2). However, in this study, the exponential function and polynomial
function models showed much better accuracy than the linear model in the comparison with different
densities (Figure 5). Similarly, other studies found close relationships between RVI and AGB with
power and exponential functions [57]. A power function model was also found for grassland [21,48].
Furthermore, Santin-Janin et al. [58] developed a generalized non-linear model for the relationship
between biomass and NDVI for Acaena magellanica and Taraxacum officinale. Meanwhile, as for the
sensitivity of vegetation indices to planting density, a slightly stronger relationship was found in
low density plots (R2 = 0.96, p ~0.01) than in high density plots (R2 ~0.90, p ~0.01) at the individual
plant scale (Figures 5 and A2), but at the plot scale, a much higher difference occurred (Figure A1).



Remote Sens. 2017, 9, 545 14 of 23

This difference between the low and high density plots can be ascribed to the effects of a higher ratio of
pasture in the low density plots than in high density plots. In addition to the effects of Pasture at plot
scale, the accuracy of vegetation classification can be another factor inducing a different relationship
between low and high density plots. The difference of the best-fit regression model between high and
low density plots also resulted from the different canopy coverage of each plant. Generally, low density
plots have a higher canopy coverage (an average of 2.66 × 2.80 m2) than those in high density plots (an
average of 1.51 × 1.56 m2) [7], which resulted in the different performance of each vegetation index on
carbon estimation. Besides, carbon storage can be different even for the same canopy coverage because
of the difference in height of plants between low (an average of 2.1 m) and high density (an average of
1.7 m) plots.

4.3. Limitations and Future Research

The object-based classification method was successfully used to distinguish pasture and saltbush
from the high resolution image data. Although the efficacy of the technique was demonstrated here
at a single location, the underlying allometric equation between saltbush carbon yield and stand
parameters had been calibrated at six sites across southern Australia [11], and this suggests that our
results are broadly applicable across other regions.

The mean classification stability and best classification results were 0.7 and 0.85, respectively,
but there is still uncertainty related to the identification of the boundary of each saltbush plant.
Although the annual pastures had died/senesced by the time the dry season image was acquired,
it was still difficult to distinguish the boundary of each saltbush due to its overall low coverage
(approximate fc of 0.17 to 0.69). Moreover, compared to the size of the saltbush canopy (an average of
1.79 × 1.85 m2), the pixel size of our image (0.5 m) is still relatively coarse, which makes the pixels
in the boundary area to be a mixture of both soil background and saltbush branches, especially in
high density plots. Therefore, it is impossible to find a fixed threshold to distinguish saltbush and
soil. The spectral response from saltbush in some pixels may be confounded by that from the soil
background, and saltbush pixels could therefore be misclassified as pasture during the classification
process. Therefore, the potential use of images with finer pixels should enhance the accuracy of
remotely sensed data in the future.

The relationships between remote sensing indices and carbon storage will vary in relation to the
site-specific properties of soil condition, shadow, different species, and canopy structure. Meanwhile,
soil background also has high spatial and seasonal variation. Therefore, the regression quality reported
by previous studies varies strongly, R2 with a range of 0.32 to 0.95 and our relationships may only
be suitable for similar climatic and vegetation types as in the study, especially as the assumption of
a set root mass to canopy relationship is inherent in our calibration data. However, our findings do
demonstrate the capability of this approach to estimate carbon stocks using high-resolution remote
sensing images in vegetation with non-overlapping canopies.

The applicability of our results could be further validated in other regions where abandoned
farmland is being revegetated to ameliorate negative impacts of agricultural practices. With the
advent of unmanned aerial vehicle (UAV) technology, there is the potential to gain significantly higher
resolution imagery at a much lower cost (ca. USD$4000 for a DJI Phantom 4 Pro and a NDVI supported
camera [59]) and with far greater flexibility of application and hence the rapid and cheap assessment of
carbon. Recent examples of sensors mounted on UAV have included pixel resolutions as fine as 0.01 m,
which provides sufficiently detailed information for estimating biomass of crops and monitoring
forests [60]. The technical specifications of sensors mounted on UAV clearly have the potential to be
used for monitoring biomass of vegetation used for carbon stocks, but the design of such a monitoring
system has additional requirements, such as determining the best seasonal timing of measurements
and assessing the potential for monitoring at the tree- or stand-scale.

With the possibility of finer resolution images for monitoring vegetation, remote sensing
methodologies could potentially deliver estimates of biomass with greater precision and accuracy,
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as more accurate classification results are likely to be achieved for canopy classification with the
Objective-based classification method. Finally, as canopy coverage and vegetation indices show high
accuracy for estimating carbon stocks at the plot scale, some frequently used sources of image data, for
example, Landsat-TM and SPOT, which are of medium spatial resolution and can provide an estimation
of canopy coverage, may also be useful for broad scale biomass estimation.

5. Conclusions

This study suggests that there is a potential to use high spatial resolution airborne digital
multispectral imagery to rapidly estimate the carbon storage of shrublands resulting from revegetation
of abandoned farmland. Carbon stocks were significantly correlated with both canopy coverage and
spectrally-based vegetation indices with or without the use of the NIR band. With the comparison
of seasonal performances on carbon estimation, we concluded that estimates of saltbush carbon
storage could be enhanced by image acquisition during the dry season even without the refinement
of using a vegetation classification in the image analysis. This approach will have application in the
management of revegetation-based carbon sink projects generally, and particularly in situations where
this revegetation is based on discrete shrubs or trees in open woodlands. This is applicable not only
to the large areas of land affected by salinity in Australia but also to similar degraded lands in other
countries and particularly where these lands form part of the respective countries national carbon
mitigation targets (INDCs). Historic aerial photography exists in many areas and the strength of our
relationships based on canopy coverage and GCC implies that this photography could be interpreted to
produce estimates of long-term carbon dynamics. To extend the present study, further ground-truthing
is required to test these models on other Atriplex stands in other regions where aboveground biomass
estimations are already known.
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Appendix A

Table A1 Mean values for vegetation indices and sequestered CO2 results per plot in 2010 and
2011. Table A2 Models for estimating carbon stocks (Ct) of A. nummularia for different planting
densities at the individual plant scale in the dry season (March-2010-dry). Figure A1. Relationship
between vegetation indices and carbon stocks (Ct) for the A. nummularia shrubs sampled from the
500 and 2000 plants ha−1 treatments in two seasons (dry season “March-2011-Dry” and green season
“September-2010-Green”) at plot scale. Figure A2. Relationship between vegetation indices and carbon
stocks (Ct) for the A. nummularia shrubs sampled from the 500 and 2000 plants ha−1 treatments in
two seasons (dry season “March-2011-Dry” and green season “September-2010-Green”) at individual
plant scale.
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Table A1. Mean values for vegetation indices and sequestered CO2 results per plot in 2010 and 2011.

Plot Name Year NDVI RVI SAVI GCC fc Carbon Stocks (C, t·ha−1)

S1An1LD
2010 0.17 1.42 0.10 0.37 0.29

19.32011 0.20 1.52 0.13 0.35 0.35

S1An2LD
2010 0.16 1.40 0.09 0.37 0.26

18.12011 0.19 1.47 0.12 0.34 0.31

S1An3LD
2010 0.29 1.82 0.15 0.39 0.69

26.82011 0.21 1.56 0.14 0.34 0.37

S2An1LD
2010 0.19 1.47 0.11 0.37 0.35

32.92011 0.22 1.57 0.14 0.34 0.38

S2An2LD
2010 0.16 1.40 0.09 0.37 0.26

41.72011 0.22 1.59 0.14 0.34 0.39

S2An3LD
2010 0.18 1.46 0.10 0.37 0.33

18.82011 0.23 1.64 0.14 0.34 0.42

S1An1HD
2010 0.20 1.51 0.12 0.38 0.39

23.82011 0.20 1.49 0.13 0.34 0.33

S1An2HD
2010 0.18 1.45 0.11 0.38 0.33

14.72011 0.20 1.51 0.13 0.35 0.34

S1An3HD
2010 0.23 1.62 0.12 0.38 0.50

22.12011 0.19 1.47 0.12 0.34 0.31

S2An1HD
2010 0.15 1.35 0.08 0.36 0.20

42.52011 0.19 1.49 0.12 0.34 0.33

S2An2HD
2010 0.14 1.32 0.08 0.37 0.17

24.52011 0.19 1.49 0.13 0.34 0.33

S2An3HD
2010 0.16 1.39 0.09 0.37 0.25

39.32011 0.20 1.53 0.13 0.34 0.35

Table A2. Models for estimating carbon stocks (Ct) of A. nummularia for different planting densities at
the individual plant scale in the dry season (March-2010-dry). Model is the fitted regression models
(exponential function model, linear function model, logarithm function model, polynomial function
model, and power function model), R2 is the coefficient of determination, RMSE is the relative root
mean square error (%) of estimate, and LOOCV RMSE is the RMSE from leave-one-out cross-validation
(LOOCV).

Variable Model R2 RMSE (%) LOOCV RMSE (%)

Vegetation index NDVI y = 12.06e12.62x 0.84 14.6 16.8
y = 335.87x + 7.09 0.78 16.1 18.8

y = 13.68 ln(x) + 67.28 0.63 20.9 27.8
y = 3290.91x2 − 36.87x + 15.64 0.83 14.4 17.5

y = 122.52x0.53 0.75 17.2 20.4
RVI y = 11.61e1.78x 0.87 12.9 15.3

y = 47.28x + 6.09 0.81 14.9 17.9
y = 14.23 ln(x) + 40.22 0.64 20.5 28.6

y = 70.47x2 − 11.85x + 16.24 0.87 12.5 15.9
y = 42.68x0.56 0.78 16.1 19.3

SAVI y = 11.89e20.04x 0.84 15 17.6
y = 530.30x + 6.83 0.77 16.3 19.2

y = 13.95 ln(x) + 74.20 0.63 20.9 27.7
y = 7923.11x2 − 41.81x + 15.24 0.81 14.8 18.1

y = 161.53x0.55 0.74 17.4 20.7
GCC y = 11.28e8.29x 0.89 12 15

y = 220.24x + 5.35 0.83 14.4 17.5
y = 14.72 ln(x) + 62.73 0.65 20.3 29.3

y = 1520.43x2 − 62.34x + 16.19 0.89 11.5 15.8
y = 102.84x0.57 0.80 15.4 18.6
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Table A2. Cont.

Variable Model R2 RMSE (%) LOOCV RMSE (%)

Vegetation coverage fc y = 12.42e7.05x 0.81 14.9 18
y = 187.72x + 7.86 0.76 16.9 19.5

y = 13.28 ln(x) + 58.98 0.62 21.2 27.3
y = 945.73x2 + 2.22x + 15.18 0.79 15.7 18.9

y = 88.60x0.52 0.72 18 21.2
Rveg y = 11.32e2.81x 0.89 11.9 14.6

y = 74.71x + 5.44 0.83 14.3 17.4
y = 14.62 ln(x) + 46.75 0.65 20.3 29.5

y = 178.87x2 − 22.86x + 16.40 0.89 11.4 15.4
y = 55.11x0.57 0.80 15.4 18.6
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Figure A1. Relationship between vegetation indices and carbon stocks (Ct) for the A. nummularia 
shrubs sampled from the 500 (∆, LD symbols) and 2000 (●, HD symbols) plants ha−1 treatments in two 
seasons (dry season “March-2011-Dry” (a–e) and green season “September-2010-Green” (f–j)) at plot 
scale. The straight line is the linear model and dashed line is the non-linear regression model fitted. 

Figure A1. Relationship between vegetation indices and carbon stocks (Ct) for the A. nummularia
shrubs sampled from the 500 (∆, LD symbols) and 2000 (•, HD symbols) plants ha−1 treatments in two
seasons (dry season “March-2011-Dry” (a–e) and green season “September-2010-Green” (f–j)) at plot
scale. The straight line is the linear model and dashed line is the non-linear regression model fitted.
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Figure A2. Relationship between vegetation indices and carbon stocks (Ct) for the A. nummularia 
shrubs sampled from the 500 (∆, LD symbols) and 2000 (●, HD symbols) plants ha−1 treatments in two 
seasons (dry season “March-2011-Dry” (a–e) and green season “September-2010-Green” (f–j)) at 
individual plant scale. The straight line is the linear model and dashed line is the non-linear 
regression model fitted. 
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