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Abstract: Land cover classification of Landsat images is one of the most important applications developed
from Earth observation satellites. The last four decades were marked by different developments in
land cover classification methods of Landsat images. This paper reviews the developments in land
cover classification methods for Landsat images from the 1970s to date and highlights key ways
to optimize analysis of Landsat images in order to attain the desired results. This review suggests
that the development of land cover classification methods grew alongside the launches of a new
series of Landsat sensors and advancements in computer science. Most classification methods were
initially developed in the 1970s and 1980s; however, many advancements in specific classifiers and
algorithms have occurred in the last decade. The first methods of land cover classification to be
applied to Landsat images were visual analyses in the early 1970s, followed by unsupervised and
supervised pixel-based classification methods using maximum likelihood, K-means and Iterative
Self-Organizing Data Analysis Technique (ISODAT) classifiers. After 1980, other methods such
as sub-pixel, knowledge-based, contextual-based, object-based image analysis (OBIA) and hybrid
approaches became common in land cover classification. Attaining the best classification results
with Landsat images demands particular attention to the specifications of each classification method
such as selecting the right training samples, choosing the appropriate segmentation scale for OBIA,
pre-processing calibration, choosing the right classifier and using suitable Landsat images. All these
classification methods applied on Landsat images have strengths and limitations. Most studies
have reported the superior performance of OBIA on different landscapes such as agricultural areas,
forests, urban settlements and wetlands; however, OBIA has challenges such as selecting the optimal
segmentation scale, which can result in over or under segmentation, and the low spatial resolution of
Landsat images. Other classification methods have the potential to produce accurate classification
results when appropriate procedures are followed. More research is needed on the application of
hybrid classifiers as they are considered more complex methods for land cover classification.
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1. Introduction

The launch of the Earth Resource Technology Satellite (ERTS) 1, later called Landsat 1 in July 1972,
has contributed significantly to the development of remote sensing applications such as land cover
classification [1,2]. The main aim of the Landsat satellite program was to provide a tool for continuous
monitoring of Earth’s resources [1,3,4]. With the Landsat program running for over four decades now,
different methods for classifying land cover were developed. The development of these methods
was largely attributed to the improvements in Landsat images, advancement of computer technology,
development of geographic information systems (GIS) and the Landsat free access policy [5,6].

Land cover classification using Landsat images has evolved over the last four decades. Land cover
is the physical substance covering the Earth’s surface, for example forests, water and grasslands [7].
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Thus, land cover classification involves the discrimination of land cover types through different
classification methods which were developed in the field of remote sensing [8,9]. The launch of new
satellites with high spatial, spectral, temporal and radiometric resolution, and increasing knowledge in
the field of information technology were the major advancement in the development of contemporary
land cover classification methods. Land cover classification methods using Landsat images originated
from early aerial photo interpretation methods which were common in the 1950s and 1960s [10,11].
During this period, land cover was classified based on visible image properties such as texture, color,
shape and compactness [12,13]. The visual image analysis was done on printed images from which,
boundaries of different land cover types were delineated and represented with different symbols.

Improvements in computer software and hardware have contributed significantly to the
development of image interpretation methods through the development of pattern recognition
techniques [5]. The introduction of numeric-based pattern recognition algorithms was a major
breakthrough in land cover classification and it is the basis of modern classification methods [5,6].
The last four decades have seen the development of land cover classification such as pixel-based,
knowledge-based, object-based and many other classification algorithms highlighted in this review.
Furthermore, the change in the Landsat data access policy from a commercial to a free access approach
in 2008 and the advent of high performance computing capabilities have led to wider applications of
these remote sensing classification methods to Landsat images [4,14–16].

Since the launch of the first satellite, Landsat 1, in 1972, the Landsat program has launched seven
other satellites, six of these satellites were successfully launched, with the objectives of maintaining
continuity of the Earth’s monitoring mission and developing improvements to the sensors [4,17,
18]. The Landsat program provides four types of images (Table 1): Multispectral Scanner (MSS) by
Landsat 1, 2 and 3; Thematic Mappers (TM) by Landsat 4 and 5, which also provided MSS images;
Enhanced Thematic Mappers (ETM+) by Landsat 7; and Observation Land Images (OLI) provided by
Landsat 8 [18]. Landsat MSS, TM, ETM+ and OLI have all been used in land cover classification using
different methods of land cover classification [9,19]. In order to maintain continuity in the provision of
Landsat data, Landsat 9 will be launched in 2023 with improved qualities [4].

Research on land cover classification methods based on Landsat images has been an important
topic over the past four decades, especially with the current effects of climate change [20–22].
While many review articles covered topics related to Landsat and land cover classification [9,14,15,19];
there is no review of the development of Landsat land cover classification methods. In this review,
we address the major developments in land cover classification methods based on Landsat images
by looking at: (1) the major trends in the development of classification methods; and (2) the methods
suitable for specific land cover types. The first part of this paper (Section 2) presents the overview of the
Landsat program. Section 3 focuses on the actual classification methods by reporting the developments,
accuracy, strengths and limitations of these methods. Finally, we make recommendations for optimal
ways to use Landsat images in land cover classification in Sections 4–6.
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Table 1. Summary of different types of Landsat images indicating spatial, temporal, radiometric and spectral resolution.

Landsat 1–3 (MSS) 1 Landsat 4–5 (MSS) Landsat 4–5 (TM) Landsat 7 (ETM+) Landsat 8 (OLI)
1972–1983 1975–2013 1975–2013 1999 to Present 2013 to Present

Temporal Radiometric Temporal Radiometric Temporal Radiometric Temporal Radiometric Temporal Radiometric
18 days 6 bits 18 days 6 bits 16 days 8 bits 16 days 9 bits 16 days 12 bits

Band Name Spectral
(µm)

Spatial
(m) Band Name Spectral

(µm)
Spatial

(m) Band Name Spectral
(µm)

Spatial
(m) Band Name Spectral

(µm)
Spatial

(m) Band Name Spectral
(µm)

Spatial
(m)

Band 4-Green 0.5–0.6 60 Band 4-Green 0.5–0.6 60 Band 1-Blue 0.45–0.52 30 Band 1-Blue 0.45–0.52 30 Band 1-Ultra 0.43–0.45 30
Band 5-Red 0.6–0.7 60 Band 5-Red 0.6–0.7 60 Band 2-Green 0.52–0.60 30 Band 2-Green 0.52–0.60 30 Band 2-Blue 0.45–0.51 30
Band 6-NIR 0.7–0.8 60 Band 6-NIR 0.7–0.8 60 Band 3-Red 0.63–0.69 30 Band 3-Red 0.63–0.69 30 Band 3-Green 0.53–0.59 30
Band 7-NIR 0.8–1.10 60 Band 7-NIR 0.8–1.10 60 Band 4-NIR 0.76–0.90 30 Band 4-NIR 0.77–0.90 30 Band 4-Red 0.64–0.67 30

Band 5-NIR 0.85–0.88 30
Band 5-SWIR1 1.55–1.75 30 Band 5-SWIR1 1.55–1.75 30 Band 6-SWIR1 1.57–1.65 30
Band 7-SWIR2 2.08–2.35 30 Band 7-SWIR2 2.09–2.35 30 Band 7-SWIR2 2.11–2.29 30

Band 8-Pan 0.52–0.90 15 Band 8-Pan 0.50–0.68 15
Band 9-Circus 1.36–1.38 30

Band 6-TIR 10.40–12.50 120 Band 6-1-TIR 10.40–12.50 60 Band 10-TIR 10.60–11.19 100
Band 6-2-TIR 10.40–12.50 60 Band 11-TIR 11.50–12.51 100

1 The original pixel size for Landsat MSS was 79 × 57 m; however, most literature reports the spatial resolution of 60 m because the data has been resampled to 60 m pixel size.
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2. Developments of Landsat Data

The Landsat program has been providing images which have been applied in monitoring the
surface of the Earth since 1972 [14]. In January 2015, the Landsat archive held over five million unique
images [4]. While other satellites were launched to monitor the Earth’s surface in the last three decades,
the Landsat program is unique in the application of land cover classification because: (1) it is the
longest running uninterrupted Earth observation program; and (2) its archives are the first to offer
global images free of charge [4,16].

The long archive period of Landsat images offers researchers a chance to gain insights into past
trends which are important when monitoring land cover changes [4,14]. Haack [1] indicated that
Landsat images are used to solve problems of having inadequate information on the quality and
quantity of resources, especially in developing countries. Furthermore, studies which cover larger
areas can be more costly if commercial satellite images are used. However, the free access to Landsat
images offers opportunities to researchers who cannot afford commercial satellite images because of
the higher prices [16,23,24]. This solves the problem of many resource constrained researchers as these
images can be accessed free of charge.

Landsat images are constantly improving due to new generations of satellites being launched
with new and improved sensors [14,15]. The improvements are mainly defined by the richness in
spectral, spatial, radiometric and temporal resolution [18]. Landsat MSS has a spatial resolution of
60 m while Landsat TM, ETM+ and OLI have a spatial resolutions of 30 m. Additionally, Landsat ETM+
and OLI have a panchromatic band with a spatial resolutions of 15 m which can be used to improve the
spatial resolution of other bands by using a pan-sharpening technique [4]. Landsat MSS images have a
radiometric resolution of 6 bits, Landsat TM has eight bits, Landsat ETM+ has nine bits, and Landsat
OLI has 12 bits radiometric resolution [25,26]. With respect to spectral resolution, Landsat MSS has
four bands, Landsat TM has seven bands and ETM+ has eight bands. However, the malfunction
of the Scan Line Corrector (SLC) on the ETM+ sensor makes the application of ETM+ images
limited [27,28]. The latest version of the Landsat images, the Landsat OLI, has 11 bands (Table 1).
Current research indicates that Landsat OLI images give good results in many applications as they have
good qualities [18,29,30]. Choosing the appropriate Landsat images is important; however, researchers
will be faced with a few limitations because of the uniqueness of sensors at a particular time, and data
gaps in the Landsat archives [4]. The data gaps have greatly reduced because of the on-going Landsat
archive consolidation initiative which started in 2010 [4,31].

Landsat data is stored by a network of ground systems located in different countries through a
community of international co-operators (IC) and other stations owned by the United States Geological
Survey (USGS) [4]. In the past, the ICs had a mandate of receiving and distributing the data to other
users at a fee; however, an open access policy was adopted in 2008 [14,16]. Over the years, the ICs
around the world collectively accumulated more data than the USGS archives. This means that the
Landsat images held by USGS were limited compared with collective images held by ICs around
the world. In 2008, the USGS recognized the need for consolidating their Landsat database through
a Landsat Global Archive Consolidation (LGAC) initiative and this program, which started in 2010,
was initially planned for six years; however, the program is still on-going [4]. The total number of
Landsat images held by USGS archives before the consolidation process was reported to be over
5 million in 2015. The consolidation process identified additional 2.5 million images around the world
to fill the data gaps. By 2016, more than 2.3 million unique images had been identified and were
yet to be added to the USGS archives [4]. The consolidation program aimed at minimizing the data
gaps and securing the global dataset by creating a database in a common format. The number of
unique images available on the USGS Earth Explorer are a testament to the success of the LGAC
program [31]. At the end of 2016, more than 57% of the images held by USGS were from this initiative;
however, the USGS is still not a one-stop-shop and there are no indications if or when this may happen.
Nevertheless, the consolidation program is on-going. The USGS still has small data gaps due to the
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challenges in converting the data collected from some of the ICs, because they are in unknown formats
or not in good condition [4].

3. Landsat Land Cover Classification Methods

3.1. Early Landsat Land Cover Classification: Visual Approach

The early Landsat land cover classification methods were similar to those used in conventional
aerial photo interpretations in the 1950s and 1960s [13,32]. Generally, Landsat images were used in the
same way as aerial photographs, which were rich sources of information for spatially characterizing
landscapes on cartographic maps with different scales [10,33]. In the early 1970s, Landsat land cover
classification was visual and manual. This was done through the examination of printed aerial
images [7,34]. Haack [1] mentioned that the images were in print format and were obtained as black
and white composite or individual bands.

Early land cover classification with Landsat images involved delineating land cover classes in a
systematic way by marking boundaries of land cover types by using transparent surfaces. In the final
stage of classification, the land cover types were marked with specific symbols to differentiate land
cover types [11,35]. In visual classification, the delineation of land cover was based on the differences
in tones, shapes, sizes and patterns [7,11]. Land cover extents were calculated based on derived scales
of the relationship of image distance and actual distance on the ground [36,37].

3.2. Landsat Land Cover Classification Using Digital Format

3.2.1. Digital Numbers

The advancement in digital land cover classification is based on the numerical manipulation
of digital number (DN) or brightness values (BV) of remote sensing images (Figure 1). Thus digital
images are composed of picture elements called pixels located at the intersection of each row and
column of an image [11]. The lower the DN values, the lower the radiance being represented in
that pixel (Figure 1). The changes in radiance values in the pixels represent the variation of the land
cover surfaces. The DN values are presented in pixels of single images; however, Landsat images
are presented as multispectral images in which the same scene is recorded simultaneously in several
bands of the electromagnetic spectrum [38].

Digital image processing involves the mathematical transformation of digital values to form
useful information relating to land cover types. Image processing generally involves three major
stages: (1) pre-processing, (2) image enhancement, and (3) classification. Under pre-processing,
the DN values are calibrated to rectify distortion and remove noise by conducting atmospheric and
topographic correction [38,39]. The DN values are processed into radiance values which correspond
to top of atmosphere reflectance and ground reflectance through different methods as explained in
Song, Woodcock, Seto, Lenney and Macomber [39]. After pre-processing, image enhancement is done
to improve the quality and visual appearance of the image; however, this step is not so important and
can be omitted. Classification involves mathematical grouping of pixel values (pre-processed DN) into
themes which correspond to particular land cover types on the Earth’s surface [35,38].
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3.2.2. Early Landsat Digital Land Covers Classification Principles

The Landsat program contributed to the rapid and broad usage of digital analysis of satellite
images for Earth’s observations because they were the only available satellite images in the early
1970s [5]. In the late 1970s, digital image analysis by computers was carried out only in specialized
research institutions; personal computers and many remote sensing software packages which are
now available, did not exist [6,11]. The development of remote sensing technology advanced in line
with the development of GIS which provided the platform for bringing remote sensing data and other
geospatial information into a common framework [5,6].

Early automatic methods of image processing can be classified as partial filtering techniques
or numerical classification methods [5]. The spatial filtering methods deal with transformation of
images into more useful forms and involves processes such as smoothing, sharpening and feature
extraction [5]. The numerical classification approach is one of the most important developments
in pattern recognition and is the foundation of modern land cover classification methods [11,40].
Generally, pattern recognition employs similarities between objects in classification of land cover
types [6]. Modern classification methods were developed from the early pattern recognition techniques
and were implemented on computer-automated programs through machine learning and artificial
intelligence theories.

The most common types of similarities used in pattern recognition are based on correlation
and Euclidean distance between objects [6]. In classification, these techniques may be used
as a single technique; however, Steiner [5] reported that a combination of the two techniques
produces superior results. Other important aspects of pattern recognition used in classification
are discrimination and grouping techniques. Discrimination techniques are useful in establishing
boundaries between patterns, which were recognized based on similar properties [5,6]. These methods
employ linear or non-linear transformation methods depending on the normal distribution of the
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data involved. Steiner [5] reported that non-linear discrimination methods produce results which are
more accurate than linear methods. Grouping techniques are more useful in establishing groups of
homogeneous characteristics. Generally, the major concern in pattern recognition is to optimize the
discrimination and grouping of classes [5].

3.3. Developments of Computer-Based Land Cover Classification Methods

Modern methods of land cover classification, called classifiers, developed from numeric
approaches to pattern recognition and now run as computer programs [5]. The classifiers are
commonly grouped as parametric or non-parametric classifiers. Parametric classifiers are related
to probability theories because their classification principles are based on the normal distribution of
image values [9,41]. Examples of parametric classifiers are maximum likelihood, minimum distance
and Bayesian classifiers [42]. The early developments of computer programs for land cover
classification were mainly based on a parametric approach as they grouped pixel values based
on a probability distribution. On the other hand, non-parametric approaches such as nearest
neighbor (NN) are independent of the distribution of the image values and hence are based on
deterministic theories [6,11]. The advancement in pattern recognition techniques through artificial
intelligence and machine learning approached contributed significantly to the development of
advanced non-parametric classifiers such as support vector machine (SVM), artificial neural network
(ANN) and decision tree [43].

To date, a number of different classification methods have been developed, especially with the
increasing knowledge in the fields of computer science and GIS [6]. The first methods of Landsat land
cover classification were developed at pixel level (Figure 2) and hence they are called pixel-based
classification [33,41]. The pixel-based approach is commonly divided into supervised and unsupervised
classification methods. Classification methods based on sub-pixel level were later developed in the
1980s to address some of the weaknesses of pixel-based classification such as separation of land covers
in mixed pixels [44].

In the late 1990s, object based analysis (OBIA) was developed with an approach of classifying
images based on grouping pixels rather than operating at an individual pixel [9,45,46]. While pixel
and sub-pixel based approaches were commonly developed and applied on Landsat images,
OBIA classification was developed at a time when finer resolution images were available. Therefore,
this method has been commonly applied on finer resolution imagery than Landsat images [9,19,47].
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3.4. Pixel-Based Classification

The first methods of automated land cover classification methods were developed in the early
1970s on Landsat MSS and were pixel-based [7,19,48]. Pixel-based classification is the process of
assigning each pixel to a class by treating each pixel as an individual unit [45]. Pixels within a class are
more spectrally similar to one another than they are to pixels in other classes.

3.4.1. Supervised and Unsupervised Classification

Pixel-based classification methods are generally grouped as supervised or unsupervised classification.
The major difference between supervised and unsupervised classification is that training of the images
is involved in supervised classification while no training is done for unsupervised classification [19,49].
Data training is the process of selecting a sample of pixels from the image and using it to establish
thresholds to delineate specific land covers on the ground. A representative set of pixel values for
each class is key for the implementation of a supervised classification. Unsupervised classification
methods do not require prior knowledge of land cover types before classification and the interpreter
is responsible for assigning a class to each cluster of pixels [6]. Under unsupervised classification,
clustering algorithms are used to define and group pixels of similar classes based on spectral values.

Both supervised and unsupervised classification methods were developed in the early 1970s when
Landsat MSS images were the only available satellite images (Figure 2). Unsupervised classification was
developed first through different clustering methods such as K-means and Interactive Self-Organization
Data analysis (ISODATA) [7,50,51]. The most common classifiers under supervised classification are
maximum likelihood, minimum distance and artificial neural network (ANN) [19,52,53]. Townshend
and Justice [54] highlighted that it is difficult to completely separate supervised and unsupervised
classification because of their similarities in the operation. Furthermore, methods called bagging,
boosting or hybrid which combine both approaches have been developed to improved pixel-based
classification [9,19,55]. The last decade has seen the development of these hybrid classification methods
in order to compliment the strength of different classification methods [7].

3.4.2. Parametric and Non-Parametric Classifiers

Most of the classifiers under pixel-based classification are grouped into two groups: parametric
and non-parametric classifiers [5,7]. Parametric classifiers assume that the data is representative and
normally distributed. Although parametric classifiers such as maximum likelihood have proved to
be useful, these classifiers have two major drawbacks in land cover classification: (1) data of high
heterogeneous land covers are usually not normally distributed; and (2) a lot of uncertainty is associated
with distribution of land cover surfaces which cannot be described based on data distribution [9].

Non-parametric classifiers such as SVM and ANN have proved to be more useful because they
do not base classification on a normality assumption or statistical parameters [56]. Lu and Weng [9]
explained that non-parametric classifiers are suitable when using non-spectral data in classification
and that these classifiers provide better results than parametric classifiers in complex landscapes.

3.4.3. Contextual-Based Approach

The principles of contextual-based classification are based on information which is derived from
spatial and spectral relationships among pixels within a given image. Contextual-based classifiers were
developed in the 1980s to deal with the problems of interclass spectral variation [57,58]. This approach
was applied to both classified and unclassified pixels, for example, Magnussen, et al. [59] applied
contextual classification to classify forest cover and compared different contextual classifiers with
maximum likelihood. Contextual-based approaches usually operate on preliminary classification to
reassign pixels to appropriate classes according to contextual information such as the position of the
classified pixels in relation to other pixels and spatial data [7].
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Contextual-based classifiers simulate higher order processes used by human interpreters in order
to derive the position of neighboring objects based on the relationship of pixels [57,58]. A common
contextual classifier is the Markov random field based classifier. Li, Zang, Zhang, Li and Wu [19] in a
detailed review of spatial-contextual classification for land cover classification grouped the classifiers
into texture extraction, Markov random fields and image segmentation methods. Generally, contextual
classification methods are commonly used as a post-classification smoothing technique on already
classified images and hence they are important for reclassifying misclassified pixels [7,9].

3.4.4. Multiple (Hybrid) Classifier Approaches

It is difficult to choose the best classification method because each classification method has its
own strengths and limitations. For example, supervised methods such as maximum likelihood
will perform better with sufficient training points and normally distributed image values [9].
However, such methods do not give reliable results in complex landscapes and hence the need
for other complimentary methods through hybrid approaches. Early hybrid methods were developed
using Landsat images and became common in the 1980s just after the development of supervised and
unsupervised classification. However, the development of more advanced classifiers in the last decade
has made the hybrid approach more diverse and powerful [60,61]. In most cases, the results from
hybrid approaches depend on a number of factors such as quality of pre-processing, experience of an
analyst and performance of the classifiers.

Improved classification results may be obtained depending on the combination of different
classification methods [9]. Recent studies have shown that the integration of different approaches or
classifiers can improve the quality and accuracy of a Landsat land cover classification (Table 2) [7,19].
For example, maximum likelihood and ANN were combined to improve land cover classification
using Landsat TM; the results had a higher accuracy as compared to using individual methods [62].

3.5. Sub-Pixel Image Classification

Sub-pixel based classification was developed because most landscapes are made of different
land cover types which might not be easily separated during classification by ordinary pixel-based
classification [63–65]. In pixel-based classification, it is assumed that a pixel is made up of one
homogenous land cover type; however, many pixels record more than one land cover types [63,66,67].
Considering Landsat’s ground resolution of between 60 and 30 m, a number of land cover classes
can constitute a single pixel. The challenges of multiple land cover types in one pixel are common in
Landsat images and can be minimized by using sub-pixel methods [44,68]. Sub-pixel classification
approaches were developed in the 1980s based on fuzzy-set theory, Dempster-Shafter theory and
certainty factor theory [7,19,69]. The most common methods of sub-pixel classification are fuzzy-set
techniques and spectral mixture analysis (SMA) [9,19].

3.5.1. Fuzzy Approach

In order to improve classification accuracy of tradition classification methods such as maximum
likelihood classification, fuzzy classification methods were developed based on a fuzzy-set
technique [44,69,70]. The early developments and application of sub-pixel methods with Landsat
images has been reported in Wang [69], Fisher and Pathirana [44] and Melgani, et al. [71].
In fuzzy-set techniques, each pixel receives a partial membership of all possible classes, thus the
extent of each class within each pixel can be estimated [44].

When using this method, each land cover is assigned a fuzzy membership depending on its
proportion in each pixel. The proportions are in form of ratios, percentages or probabilities which
are converted to actual areas on the ground. Zhang and Foody [70] reported high classification
accuracies of up to 93% when fuzzy classification method was used as compared to maximum
likelihood pixel-based method with 61%. Fuzzy classification has proved important for solving mixed
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pixels problems; however, it has not been commonly applied in practical terms because it is not easy to
use compared to other classification methods [68,72].

3.5.2. Spectral Mixture Analysis (SMA)

SMA has been recognized as the most effective method for dealing with sub-pixel methods,
especially for medium resolution imagery like Landsat [66,73]. This method was developed in the
early 1980s (Figure 2) and has been applied extensively on Landsat land cover classification [63,66,67].
The output of SMA is represented as a fraction of each land cover type called endmembers [74].
For example, Mayes, Mustard and Melillo [23] applied SMA in establishing the extent of dry tropical
forests in Tanzania by establishing the fraction of forest and non-forest endmembers. Most studies
have indicated that SMA is important in improving area estimation of land cover types [23,75,76].

SMA and sub-pixel based classification in general are important for effective classification of
Landsat images as they are of medium resolution and are usually used for large areas which have
heterogeneous land cover types and are likely to have mixed pixels [9,66,75]. The common forms of
SMA are linear spectral mixture analysis (LSMA) and multiple endmember spectral mixture analysis
(MESMA). LSMA is designed to work with a fixed number of endmembers while MESMA can be used
on pixels with different numbers of endmembers [23,77]. The major challenge for SMA is the errors in
the final allocation of fractional endmembers resulting from spectral variability and similarity during
the selection of endmembers [66,67].

3.6. Object-Based Approach

Object-based image analysis (OBIA) uses geographic objects as basic units for land cover
classification [78,79]. This approach reduces the within class variation and generally removes
salt-and-pepper effects which result from isolated pixels mainly due to misclassification. OBIA has
an advantage because it incorporates various sources of information like texture, shape and position
as the basis for classification [19,48,80]. The initial developments of remote sensing object-based
classification approaches were done on Landsat MSS images in the 1970s (Figure 2) by Kettig and
Landgrebe [81]. The application was known as Extraction and Classification of Homogeneous Object
(ECHO). Object-based theories and concepts improved in the 1990s and were commonly applied
as a segmentation procedure; however, the application of these concepts faced the challenge of not
having a user-friendly interface [7,82]. A German company called Definiens developed Cognition
Network Technology (CNT) through Nobel laureate Professor Gerd Binnig and team, which was later
launched as eCognition in May 2000 [7,83]. The eCognition software provides a systematic approach
and user-friendly interface that permits implementation of concepts developed in the past [7,48,82].
In June 2010, Definiens sold its earth science market assets, including eCognition software and the
patent license for CNT to Trimble Navigation Ltd [83].

Object-based methods are commonly applied to images with high spatial resolution such
as IKONOS, GeoEye, QuickBird and SPOT; however, this method has also been applied in land
cover classification using medium resolution Landsat images [19,84,85]. For example, object-based
classification was used on Landsat MSS, TM and ETM+ for land cover classification in Ethiopia and on
urban sprawl in Eritrea [86,87]. Dorren, Maier and Seijmonsbergen [78] applied OBIA on Landsat TM
images to classify vegetation on rugged terrain in Montafon region of Austria. OBIA has also been
applied on Landsat MSS, TM, ETM+ to classify land cover by using new machine learning techniques
such as Random Forests, Nearest Neighbours and SVM [88,89]. The new Landsat images, Landsat OLI,
produced good results (overall accuracy above 90%) when used with OBIA to map different land cover
types such as urban areas [29] and agricultural areas [90]. While object-based land cover classification
has been effective on different Landsat images, not much has been reported on the performance of
OBIA on the earlier version of Landsat images (Landsat MSS) perhaps because of their lower spatial
resolution, or the availability of newer imagery [91,92].
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The success of eCognition (Trimble Navigation Ltd, Sunnyvale, CA, USA) [82] triggered
the development of other commercial OBIA software such as Feature Analyst (Textron Systems,
Providence, RI, USA), ENVI Feature Extraction (HARRIS®, Melbourne, FL, USA) and ERDAS
Imagine (Hexagon Geospatial, Madison, AL, USA). Open source software such as SAGA
(SAGA User Group) [93] and GRASS (GRASS Development Team) are also available for OBIA land
cover classification [94]. OBIA software differs mainly in the way segmentation is done and also the cost.
Setting cost aside, eCognition and ENVI Feature Extraction segments the whole image while Feature
Analyst extracts target features without segmenting the entire image. Feature Analyst is implemented
as an extension in ArcGIS and ERDAS imagine, as such, it is important to have host software [95].

Research comparing OBIA software is rare, with most researchers preferring to focus on algorithm
development and classification performance of individual software packages [96,97]. Most studies
that have focused on comparison have applied the software to high-resolution imagery. For example,
Tsai, et al. [98] compared Feature Analyst, which is based on spatial contextual machine learning
classification, with Feature Extraction in ENVI for their ability to delineate buildings in QuickBird
imagery. Using a measure called correctness, Feature Analyst performed better (62%) than ENVI
Feature Extraction (56%), though the authors did not speculate about the reasons for this result. Meinel
and Neubert [99] compared seven software packages for segmenting IKONOS imagery. Based on
different standards such as quality of segmentation without considering classification accuracy, they
found that eCognition segmentation was better than the alternatives, including ERDAS Imagine,
for a variety of reasons including having different segmentation algorithms and classifiers [82,99].
Software comparison studies using medium resolution imagery are more rare, though Landsat ETM+
imagery was used in a study comparing the performance of SAGA with eCognition [93]. In this study,
the open license SAGA segmentation algorithm was robust in comparison with the commercial
eCognition software algorithm.

3.6.1. Comparisons of OBIA and Pixel-Based Classification Methods of Landsat Images

A number of studies were conducted to compare the performance of object-based and pixel-based
classification of Landsat imagery. In most of these studies, OBIA produced higher classification
accuracies across various land cover types [82,90,100,101]. For example, Flanders, Hall-Beyer and
Pereverzoff [82] used Landsat ETM+ to evaluate the performance of eCognition by comparing the
accuracy of OBIA with pixel-based classification on different forest types. OBIA resulted in a 90%
classification accuracy, while the pixel-based approach yielded a 66% accuracy. Similar results were
attained by Frohn, et al. [102], whereby OBIA had an accuracy of 90.8% and a pixel-based classification
had an accuracy of 78% when Landsat ETM+ was used to classify wetlands in Florida. Li, Wang, Wang,
Hu and Gong [89] reported that OBIA classified Landsat TM imagery of a heterogeneous landscape
with 92% accuracy, exceeding the 84% accuracy achieved with a pixel-based approach. Zerrouki and
Bouchaffra [103] also reported that OBIA had a high classification accuracy of 92.7% compared to 78%
accuracy for a pixel-based classification of Landsat ETM+ imagery. It should be noted that while the
overall accuracy of OBIA classification tends to exceed the overall accuracy of pixel-based approaches,
the classification accuracy of some individual land cover classes could be higher for a pixel-based
approach [46,83,102,104].

Not all studies have reported higher classification accuracy for object-based over pixel-based
classification of Landsat imagery. For example, Dingle Robertson and King [101] reported that the
accuracy for both OBIA and pixel-based approaches was 70% on Landsat ETM+. This was attributed
to the absorption of small classes by large classes during segmentation in OBIA. Similar results
were attained by Dorren, Maier and Seijmonsbergen [78] when OBIA was compared with pixel-based
classification on forest located in the steep Austrian mountains. Notwithstanding the previous example,
OBIA tends to result in greater accuracy than pixel-based classification approaches. It’s believed that
the superior classification accuracy is due to OBIA’s segmentation algorithms, and also the ability to
use spectral, textural, and neighborhood information during classification [82,88,92,104]. In support of
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this latter point, Cai and Liu [100] showed that the results of pixel-based classification of Landsat TM
were improved from 82 to 87% and they matched the accuracy of OBIA when pixel-based classification
was enhanced with contextual information.

3.6.2. Limitations of OBIA Land Cover Classification of Landsat Images

The superior performance and strengths of OBIA are well documented for fine spatial resolution
images compared to the limitations, especially for Landsat images [94,105,106]. The major limitation of
OBIA on Landsat land cover classification are: (1) low resolution of Landsat images, (2) segmentation
scale, and (3) the workflow associated with OBIA. The extraction of small land cover types requires
high levels of spatial detail, which are limited in Landsat images, considering the 60 and 30 m
spatial resolutions. Darwish, et al. [107] compared the classification accuracy of Landsat TM with
Resourcesat-1 (IRS) images which have a 20 m spatial resolution. The results showed that the accuracy
of small land cover types such as building, orchards and small water bodies was low for Landsat
images, mainly because of the low spatial resolution. Similar results were obtained in Ethiopia when
OBIA was used in land cover classification with Landsat MSS (60 m resolution), Landsat ETM+
(30 m resolution) and RapidEye images (5 m resolution) in which the accuracy increased from 85.7%
for Landsat MSS to 90.7% and 93.2% for Landsat ETM+ and RapidEye respectively [86].

OBIA land cover classification using Landsat images also faces a challenge of selecting the optimal
segmentation scale [108,109]. When the segmentation scale is not appropriate, the image can be under
or over segmented [102]. Under segmentation means that the image-objects are larger than the objects
on the ground while over segmentation results in more subdivision. Under segmentation affects
classification accuracy by increasing the chances that two or more land covers will be included in
one large image object, thus resulting in errors of commission. Dronova, Gong, Clinton, Wang, Fu,
Qi and Liu [109] tested segmentation scales ranging from 1 to 10 when classifying wetland areas using
Landsat TM and reported that the highest classification accuracy occurred at a segmentation scale of 8,
which created coarse objects. Likewise, over segmenting an image can result in a real world object
being split into two or more objects of differing classes, especially with low spatial resolution images
such as Landsat images [78,102].

Although different formal approaches, such as using an estimation of scale parameter (ESP)
tool [110] and a segmentation index [108], were developed to address the challenges of establishing
the optimal segmentation scale, using trial-and-error remains the most common approach of selecting
the optimal segmentation scale. Hence, segmentation scale remains an important issue in Landsat
land cover classification when using OBIA [102,108]. The general practice for selecting an appropriate
segmentation scale for Landsat images is to visually compare the segmentation quality for a range
of segmentation scale values [108]. The appropriate segmentation scale occurs at a point when
the segmented objects are large and match target objects on the ground; thus this approach is
subjective [78,108]. Kindu, Schneider, Teketay and Knoke [86] reported that the scale parameter
increases with an increase in spatial resolution; for example, the scale parameter used was 5 for
Landsat MSS, 8 for Landsat ETM+ and 50 for RapidEye. Based on available studies on Landsat
classification with OBIA, the range for the segmentation scale for Landsat MSS is 5–10, Landsat TM,
ETM+ and OLI the range is 5–20, and for pan-sharpened ETM+ and OLI it is 20–50 [78,87,90,102,108].
For all these images, the other segmentation parameters, shape and compaction, were reported to be
0.1–0.5 and 0.5–0.8 respectively [86,87].

The variation in classification accuracy when a range of segmentation scales is used in Landsat
land cover classification has also been tested in some studies. Dronova, Gong, Clinton, Wang, Fu, Qi
and Liu [109] used Landsat TM on wetlands and showed that the classification accuracy increased
from 75% with a segmentation scale of 2, to the highest accuracy of 90% at a scale of 8, and then
decreased to an accuracy of 80% at a scale of 10. Similar results were reported in Dorren, Maier and
Seijmonsbergen [78] in which the classification accuracy was low (62%) at a segmentation scale value
of 2, increased to its highest value (73%) at a scale of 20, before decreasing to 40% at a large scale factor
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of 80. This pattern was consistent in most of the studies where different segmentation scales were
tested on different land cover types such as cropland [90], wetland areas [102] and other land cover
types such as forests, water bodies and urban areas [108].

Another potential drawback of OBIA, which also applies to Landsat images, is related to
workflows, which involve many steps and can be a source of variation, uncertainty and error [82].
These steps, such as selecting segmentation scale, choosing a segmentation method, sample selection,
training, developing rule sets and choosing classifiers when using automated classifiers can make
comparing results between studies difficult [88,92,109]. Nevertheless, in the last decade, OBIA has
become common compared to pixel and sub-pixel based classification methods as indicated by the
continuous increase of published studies on OBIA (Figure 3).
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Figure 3. The number of published articles on pixel, sub-pixel and object-based Landsat land cover
classification methods from Google Scholar.

3.6.3. Knowledge-Based Approaches

Knowledge-based land cover classification uses existing auxiliary data as a means of developing
rules for classification. Tailor, et al. [111] reported the development and application of knowledge-based
imaged land cover classification with Landsat MSS in the early 1980s (Figure 2). The advancement in the
development of knowledge-based image classification can be attributed to the availability of geospatial
information and the development of GIS which is used for combined analysis of different spatial
information [9]. Common auxiliary data used include digital elevation models (DEM), existing maps,
population densities and climatic data [112].

Knowledge-based methods relate land cover types to auxiliary data, for example, vegetation can
be related to slope, elevation or aspect. The procedure for this method involves developing rule sets
which have binding thresholds in relation to particular land cover types [9,111,113]. The development
of knowledge-based image classification is closely associated with image segmentation as the
clusters depend on rule sets developed from other datasets apart from spectral information [9,111].
Different knowledge-based classifiers were developed such as decision trees which use thresholds
from auxiliary data to delineate land cover types [9].

4. Landsat Image Fusions in Land Cover Classification

One major advancement in the application of Landsat images in land cover classification
is the integration of other images with Landsat images through image fusion techniques [114].
The development of effective fusion algorithms coupled with the advent of new remote sensing
data such as advanced very high-resolution radiometer (AVHRR) and moderate-resolution imaging
spectroradiometer (MODIS) has made Landsat images more useful in land cover classification [114,115].
For example, Landsat and MODIS was used to develop improved images for land cover classification
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in China and Southwest Missouri, Unites States of America (USA) [27,85]. AVHRR and MODIS have
low spatial resolution ranging from 0.25 to 8 km [17,85,116]; however, these images have an advantage
of having a high temporal resolution of one day [115,117]. On the other hand, Landsat images have
a higher spatial resolution as compared to MODIS and AVHRR. However, the temporal resolutions
of 18 or 16 days for Landsat images are not ideal for monitoring rapid land cover changes such
as fire incidences. Therefore, complementing Landsat with MODIS or AVHRR, which has a high
temporal resolution of one day, has the potential to take advantage of the best qualities of each type of
imagery [27,118].

During the past two decades, Landsat images have also been integrated with different data such
as panchromatic images, radio detection and ranging (Radar), light detection and ranging (LiDAR) and
high-resolution images [114]. The spatial resolution of Landsat ETM+ and OLI images can be improved
from 30 to 15 m using panchromatic sharpening (pan-sharpening) and this technique has been shown
to improve classification accuracy [90]. Landsat ETM+ images were integrated with synthetic aperture
radar (SAR) in monitoring protected areas in Uganda [117]. Fusion of multispectral images such as
Landsat ETM+ and SAR has two major advantages: (1) enhancement of spectral information; and (2)
reducing the problem of cloud cover because SAR is less affected by cloud cover [119]. LiDAR was
also integrated with Landsat ETM+ images in order to improve mapping of vertical and longitudinal
characteristics of different land cover types [120–122]. Generally, when correct algorithms are applied
during image fusion of Landsat images with other remote sensing data, improvements are expected
on the results of land cover classification [117,123,124].

5. Comparative Performance of Different Landsat Images in Land Cover Classification

Over the last for four decades, four types of Landsat images, Land MSS, TM, ETM+ and OLI,
have been used in different land cover classification applications. A number of studies reported
different results on the comparison of these images in land cover classification. For example, Toll [125]
compared the performance of Landsat MSS to Landsat TM images in land cover classification and
reported that Landsat TM images are superior to Landsat MSS images. The major reason for the
superior performance of Landsat TM images was attributed to the higher spatial resolution, addition of
more spectral bands and the increase of radiometric resolution from 6 bit for Landsat MSS images
to 8 bit for Landsat TM images [4,125]. In a separate study on the performance of Landsat MSS and
TM by Haack, et al. [126]; it was reported that Landsat TM images were more useful in separating
more homogenous near-urban land cover types as compared to heterogeneous urban areas. Most
research has indicated superior performance of Landsat TM as compared to Landsat MSS [125,126]
with a difference in accuracy of between 5 and 7% [127].

Landsat ETM+ as a sensor has improvements as compared to the previous version of Landsat images
(Landsat MSS and TM) because of the higher geodetic accuracy, high radiometric resolution (9 bits) and
reduced periodic sensor noise [2]. In addition, the introduction of a 15 m resolution panchromatic band
was a major improvement to the ETM+, especially in the application of land cover classification [4].
The comparisons of ETM+ with MSS and TM in land cover classification indicate that the performance
of ETM+ is superior to the earlier versions of Landsat images [18]. Masek, Honzak, Goward, Liu and
Pak [2] reported that the superior performance of ETM+ in land cover classification indicates a major
improvement of the sensor based on higher geodetic accuracy and reduced noise levels [18,29].

The launch of Landsat OLI, which produces Landsat OLI images, has proved to be a good
alternative to the malfunctioning ETM+ line scanner. Recent studies indicated that Landsat OLI
performed better than Landsat TM and ETM+ images [18,29]. The performances of Landsat ETM+ and
OLI were compared to Landsat TM by using different classification methods such as OBIA, SVM and
maximum likelihood methods; the results indicated that the performance of all the images largely
depended on the methods of classification [29,128]. Here, OBIA performed better with Landsat OLI
while the use of SVM was good for all the images (Table 2). The differences in the classification results
of Landsat OLI and ETM+ are associated with the narrow spectral band of Landsat OLI [18].
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Table 2. Summary of land cover classification overall accuracies with different classifiers applied on specific Landsat images and land cover type.

Classification Approach Method Classifier Used Landsat Images Used Type of Land Cover Accuracy Attained (%) Source

Pixel-based

Supervised

ML, NN, SVM MSS, TM, OLI Urban area 73–82 [29,125,129]
ML MSS, TM, OLI Forest plantation 61–90 [129–131]
ML MSS, OLI Dense forest 68–90 [129–131]
ML TM, OLI Open forest 52–81 [129,132]

Unsupervised

ISODAT TM Urban area 78–94 [55,133]
ISODAT TM Forest plantation 71–87 [133–135]
ISODAT TM, OLI Dense forest 71–87 [133–135]
ISODAT TM Open forest 69–81 [133,135]

Contextual

ECHO, Majority filter TM Urban area 72–81 [136,137]
ECHO, Majority filter TM Forest plantation 70–81 [136,137]
ECHO, Majority filter TM, ETM+ Dense forest 72–82 [136,137]

NN MSS Open forest 66–90 [57,136,137]
ECHO, Majority filter TM, ETM+ Agricultural area 66–97 [136,137]

Hybrid

ISODAT, fuzzy, ML TM, ETM+ Urban area 64–96 [138,139]
ML, Rule based, ISODAT TM, ETM+, DEM Forest plantation 74–87 [138,139]
ML, Rule based, ISODAT TM, ETM+, DEM Dense forest 79–91 [138,139]
ML, Rule based, ISODAT TM, ETM+ Agricultural area 64–84 [138,139]

Sub-pixel

SMA

LSMA, MESMA TM, ETM+, OLI Urban area 83–90 [29,77]
LSMA TM Forest plantation 77–93 [73,76]
LSMA TM, OLI Dense forest 75–93 [23,73]
LSMA TM Open forest 77–87 [73,140]
LSMA TM, OLI Agriculture area 70–74 [23,141]

Fuzzy analysis

Fuzzy C-Mean MSS Urban area 70–90 [44,71]
Fuzzy partitioning TM Forest plantation 74–90 [68,69]
Fuzzy membership TM Dense forest 74–70 [44,64]

Explicit fuzzy TM Open forest 56–79 [44,71]
Explicit fuzzy TM Agriculture 74–92 [68,71]

Object-based

OBIA 1

SVM, DT, RF, NN ETM+, TM, MSS, OLI Urban areas 73–98 [29,84]
Decision rule ETM+, TM Forest plantation 80–97 [45,84,101]
Decision rule TM Natural forest 77–95 [45,78,84,101]
Decision rule TM Agriculture area 76–90 [78,101]

Knowledge based

Expert-knowledge MSS, TM Urban area 87–90 [111,113,142]
Spectral expert MSS, TM, DEM Forest plantation 86–94 [142,143]
Spectral expert MSS, TM, DEM Dense forest 85–92 [142,143]

Eco-SDSS MSS, TM, GIS Agriculture area 85–88 [112,142]

Note that the values of accuracies presented range from the lowest to the highest overall accuracies for each land cover type. ML is maximum likelihood, NN is nearest neighbor, LSMA is
linear spectral mixture analysis, MESMA is multiple endmember spectral mixture analysis and RF is random forests. 1 The scale parameter range between 5–10 for Landsat MSS and 5–20
for Landsat TM, ETM+ and OLI while shape and compaction were reported to be 0.1–0.5 and 0.5–0.8 respectively.
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6. Best Practices for Landsat Land Cover Classification

In order to obtain the best classification results from Landsat images, a number of factors such as
the selection of an ideal classification method and classifier, the quality of pre-processing and the type
of Landsat images being used need to be considered [18,39,144]. It is important to employ geometric
and radiometric correction on the images using appropriate methods [39]. A lot of variation can
be attained depending on the quality of the pre-processing calibration done on the images before
classification, especially in areas with topographic variations [145,146].

Geometric correction includes orthorectification and registration of the images with ground points.
Orthorectification involves correcting the errors resulting from tilting of the platform on which the
sensor is mounted in order to produce a planimetrically correct image. This tilting usually results in
distortion in the scale parameters of the images [145,147]. Although geometric corrections are important
to Landsat land cover classification, most studies do not apply these corrections because National
Aeronautics and Space Administration (NASA) provides images which are already geometrically
corrected and orthorectified to a level called Landsat Level 1 (L1T) [147,148]. However, Tatem, Nayar
and Hay [147] reported that in a few circumstances, Landsat images did not produce the desired
results because they were not geometrically correct; therefore, it is important to check the geometric
accuracy of the Landsat images before further processing.

The major sources of geometric errors are insufficient ground control points for some scenes,
errors in the geo-registration procedures and the level of calibration of a particular Landsat satellite
sensor [149]. Most of the scenes have been corrected with sufficient ground control points; however,
errors were identified on Landsat 4 and 5 for some scenes such as those from Brazil and Ecuador [150].
The geometric accuracy of L1T products has been increasing with the introduction of new Landsat
satellites. For example, Landsat 8 has the highest geometric accuracy of less than 12 m, Landsat TM and
ETM+ have accuracy of less than 50 m, while Landsat MSS has a geometric accuracy exceeding 50 m.
Roy, et al. [151] highlighted that the Landsat 8 L1T products have high geometric accuracy because
of the pushbroom design and the on-board global positioning system (GPS) which aids in geometric
correction, unlike the other Landsat satellites which are/were dependent on ground control. For the
purpose of land cover and time series studies, the acceptable geometric errors should be less than 12 m
or less than half a pixel and this can be achieved by further georeferencing through image-to-image
registration with geometrically accurate images or by using additional ground control points [149,150].

Another important pre-processing step on Landsat images is the radiometric correction, which
involves the transformation of DN values into top of atmosphere and ground reflectance values [39].
The radiometric correction has two major components: (1) atmospheric correction, which deals
with effects due to scattering and absorption of electromagnetic waves in the atmosphere; and
(2) topographic correction, which comes because of variations on the Earth’s surface [145,152,153].
Tatem, Nayar and Hay [147] indicated that it is important to apply atmospheric correction when
working with more than one scene in which training datasets are transferred to other scenes.
Topographic effects are corrected by adjusting the surface reflectance by using digital elevation models
(DEM) [154]. A number of radiative transfer codes, both simple and complex, have been developed for
atmospheric correction and common application software for atmospheric corrections include Dark
Object Subtraction (DOS) and FLAASH in ENVI and ATCOR which is implemented as a stand-alone
software or incorporated in other software such PCI Geomatica [147].

In land cover classification, OBIA, which has become common in the last decade, has proven to be
superior to other methods of classification [101,139,155]. OBIA produced high classification accuracies
in most studies which were based on Landsat images for different land cover types; however, OBIA‘has
limitations such as choosing the appropriate segmentation scale and dealing with different steps,
which can be a source of variation if not properly handled [94]. The ability to use a diverse range of
information such as shape, texture and compaction to compliment spectral values makes classification
results from OBIA more accurate. Although OBIA has not been commonly applied on the first
Landsat images, Landsat MSS, it has proved to perform better on Landsat TM, ETM+ and OLI [79,88].



Remote Sens. 2017, 9, 967 18 of 25

SMA has proven to be very useful in complex environments such as the tropics, where the landscape
is complex and mixed pixels are common (Table 2). It is worth noting that other classification methods
can equally produce high classification accuracies when appropriate procedures are followed (Table 2).

7. Conclusions

This review focused on the developments of Landsat land cover classification methods and
determining the best ways of using Landsat images in land cover classification. Landsat land
cover classification has continued to be an important application, especially with the continuous
introduction of new sensors and the change in the data access policy from a commercial to a free
access approach [4,151]. The new Landsat imagery has improved qualities such as high spectral,
spatial and temporal resolution. The fact that Landsat images can be accessed for free for nearly
any location on Earth is an added advantage. The land cover classification methods commonly
applied to Landsat imagery can be broadly grouped into pixel-based, subpixel-based and object-based
approaches. While methods for land cover classification have advanced over the last four decades,
the maximum likelihood pixel-based classification method, which was developed in the 1970s, is the
most commonly used method on Landsat images [9,29]. Pixel-based classification has limitations
such as salt-and-pepper effects and challenges due to mixed-pixels, a common issue in medium
resolution imagery like Landsat. The subpixel approach was developed to address the limitations of
the pixel-based approach, especially the mixed pixel effects. However, effects due to spectral variability
and challenges in selecting representative samples for endmembers still remain major challenges for
the subpixel approach [66].

Most studies on Landsat land cover classification have reported the superior performance of
OBIA in various landscapes such as urban areas [89,156], agricultural areas [79,85], forests [86,128]
and wetlands [47,157]. The major advantage of OBIA is that it represents the classification units as
real world objects on the ground and hence reduces the within class variability. Although OBIA has
been commonly applied on fine spatial resolution images, most studies have indicated its superior
performance on Landsat images because it combines different types of information in the classification
procedure [89,128]. However, OBIA land cover classification has limitations such as challenges in
selecting the optimal segmentation scale, which can generate errors due to over or under segmentation,
and misclassification of small land cover types due to the low or medium spatial resolution of Landsat
images [94,105]. The OBIA approach also involves many steps in its workflow such as selecting
training samples, developing rule sets and choosing classifiers, all of which have the potential to affect
the classification accuracy if not properly done [48].

The reviewed studies do not clearly indicate the best classification method for Landsat images,
thus it is important to consider the strengths and limitations of each method as compared to other
methods and hence most of the classification methods remain useful and have the potential to produce
high levels of accuracy. The use of hybrid methods needs to be investigated further because the
combination of different classifiers is complex, but from the limited literature, they appear to show
promise for land cover classification using Landsat imagery.
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