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Abstract: This paper studies the classification problem of hyperspectral image (HSI). Inspired
by the great success of deep neural networks in Artificial Intelligence (AI), researchers have
proposed different deep learning based algorithms to improve the performance of hyperspectral
classification. However, deep learning based algorithms always require a large-scale annotated
dataset to provide sufficient training. To address this problem, we propose a semi-supervised deep
learning framework based on the residual networks (ResNets), which use very limited labeled data
supplemented by abundant unlabeled data. The core of our framework is a novel dual-strategy
sample selection co-training algorithm, which can successfully guide ResNets to learn from the
unlabeled data by making full use of the complementary cues of the spectral and spatial features
in HSI classification. Experiments on the benchmark HSI dataset and real HSI dataset demonstrate
that, with a small number of training data, our approach achieves competitive performance with
maximum improvement of 41% (compare with traditional convolutional neural network (CNN) with
5 initial training samples per class on Indian Pines dataset) for HSI classification as compared with
the results from those state-of-the-art supervised and semi-supervised methods.

Keywords: hyperspectral image classification; deep learning; residual networks; co-training;
sample selection

1. Introduction

Hyperspectral image (HSI) collected by imaging spectrometers captured rich spectral and spatial
information simultaneously [1]. For this reason, hyperspectral data are used on a wide range of
applications such as environmental sciences [2], agriculture [3], and mineral exploitation [4]. HSI
classification is one of the most important topics in remote sensing. Specifically, combining the rich
spectral information and spatial information as complementary cues represents an opportunity to
dramatically improve the performance of HSI classification.

Most recently, deep learning has emerged as the state-of-the-art machine learning technique with
a great potential for HSI classification. Instead of depending on manually-engineered shallow features,
deep learning techniques automatically learn hierarchical features (from low-level to high-level) from
raw input data [5,6]. Inspired by the great success of deep learning for image classification, remarkable
efforts have been invested for spectral-spatial HSI classification by deep learning techniques in the last
few years [7–12]. These deep learning algorithms falls into two broad categories. The first category
includes features learning and classification steps. For example, Chen et al. [7] applied deep feature
learning by including stacked autoencoder (SAE) and deep belief network (DBN) [8] for spectral–spatial
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feature extraction. Then, multiclass logistic regression is used for classification. The main drawback
of these approaches is that it has not built a unified solution for feature learning and classification.
The second category tries to concatenate the spectral and spatial features as well as classification, as
shown in Figure 1a. For example, Yue et al. and Chen et al. [9–11] have utilized convolutional neural
networks (CNNs) to jointly learn the features and classifiers in an end-to-end fashion. Specifically, as
described by Yue et al. [9], a 2D-CNN with two convolutional layers and three subsampling layer is
used to extract deep features from HSI with a spatial size of 42 × 42. Chen et al. [10] used deep CNN
with three convolutional layers and one fully connected layer to extract deep features from HSI with a
spatial size of 27 × 27. Li et al. [11] proposed a 3D-CNN framework to extract deep spectral-spatial
combined features with two 3D convolution layers, one fully connected layer and one classification
layer; the spatial size is empirically set to 5 × 5.

Figure 1. The structures of (a) supervised and (b) semi-supervised spectral–spatial deep learning for
HSI classification.

It should be noted that deep neural networks always require a large number of datasets for
supervised training, e.g., ImageNet with millions of annotated images [12]. However, labeling a large
archive of hyperspectral data for classification task is very expensive and time consuming. To address
this challenge, Yang et al. [13] proposed a deep CNN with two-branch architecture to extract the joint
spectral-spatial features from HSI which is reportedly beneficial when the number of training samples
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is limited. Ma et al. [14] developed a spatial updated deep autoencoder, in order to deal with the small
training set using deep features, a collaborative representation-based classification is applied.

Although previous works use the supervised method with a small training samples, they do
not benefit from the massive unlabeled data to promote the classification performance. Thus, it
is necessary to develop a new effective training framework for deep learning to benefit from the
massive unlabeled data which is already available. To make full use of massive unlabeled samples,
some semi-supervised methods exist in the literature [15,16], we are particularly interested in the
co-training algorithm, which is an important paradigm of semi-supervised methods [17–19]. Blum
and Mitchell [20] have given theoretical proofs to guarantee the success of co-training in utilizing the
unlabeled samples. At each iteration of the co-training process, two learners are trained independently
from two views and are required to label some unlabeled examples for each other to augment the
training set [19]. The co-training strategy has already been considered to solve HSI classification
on the conditions that: (1) Each example contains two views, either of which is able to depict the
example well; and (2) the two views should not be highly correlated. Hyperspectral data matches
the two conditions well by providing the spectral features and spatial features that are conditionally
independent [21], and co-training can exploit the limited labeled data with the massive unlabeled data
to improve the performance. Romaszewski et al. [18] used co-training approach with the P-N learning
scheme, which P-expert assumes the same class labels for spatially close pixels and the N-expert
detects pixels with similar spectra. P-expert and N-expert take advantage of the spatial structure
and the spectral structure respectively. Tan et al. [17] used to tri-training to exploit spectral and
spatial information for hyperspectral data classification is presented based on an active learning and a
multi-scale homogeneity. In order to make accurate predictions of the unknown labels of a sparsely
labeled image, Appice et al. [21] applied a transductive learning approach with a co-training schema.

To the best of our knowledge, in previous co-training algorithms, unlabeled samples selected for
augmenting the training set are the ones with the highest confidence from a single view (spectral or
spatial) sample selection criteria, such as the spatial neighbors sample selection with active learning [17],
the spectral neighbors sample selection with Euclidean spectral distance [18], spatial information
extracted with segmentation algorithm [22], the spatial example selection with the diversity class
criterion [19]. However, when only few training data are available, as is the case with spectral-spatial
HSI classification, this strategy is not appropriate because the training samples are too few to describe
adequately the distribution of the data from either the spectral view or spatial view. To address this
issue, we propose a new sample selection scheme for co-training process based on spectral features
and spatial features views.

Another obstacle of deep neural networks training is that when deeper networks are able to
start converging, a degradation problem has been exposed [23]. Fortunately, degradation problem
with the increase of convolutional layers can be solved by adding shortcut connections between
every other layer and propagating the value of features by the latest residual networks learning
framework (ResNet) as proposed by He et al. [23]. Zhong et al. [24] have used ResNet for supervised
HSI classification, but the method has not exploited the unlabeled data. In this paper, therefore, the
goal is to develop a semi-supervised deep learning classification framework based on co-training. The
framework is illustrated in Figure 1b.

The pipeline of the framework can be summarized as follows. First, the spectral-ResNet and
spatial-ResNet models are trained on the given labeled data of the respective views. Then at each
iteration of co-training, two models are applied to predict the unlabeled sets, and the most confident
labeled samples are used to augment the training set of the other model (view). The iterative process is
repeated until some stopping criterion has been reached. Finally, the classification result of the spectral
features is fused with that of the spatial features to obtain the label of the test data.

The main contribution of this paper can be summarized as three aspects. Firstly, ResNets are used
to extract the spectral features and spatial features for HSI classification. The identity mapping of the
ResNet can alleviate the degradation of the classification performance of deep learning models caused
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by increased depth. Secondly, in order to select a set of informative and high confident samples from
the unlabeled datasets to update the next round training of the deep learning models effectively, a new
sample selection scheme for co-training process based on spectral features and spatial features views
is proposed. Finally, we verify the advantages of our method by testing it on several benchmark HSI
datasets and a selected Hyperion dataset.

The remainder of this paper is organized as follows. In Section 2, the general framework is
presented, and a sample selection scheme is presented in detail. We present the experimental results
and discuss about the experimental results in Sections 3 and 4, respectively. Finally, in Section 5, the
paper is summarized, and the future works are suggested.

2. Method

2.1. Overview

The proposed framework aims at learning a powerful semi-supervised deep learning framework
for HSI classification based on limited labeled data and the wealth of unlabeled data. To be specific,
we have a small labeled pool L, and we have a large-scale unlabeled hyperspectral dataset U. The
proposed framework is shown in Figure 2, where a spectral-spatial co-training algorithm based on
deep learning is introduced to learn from the unlabeled data. Now, three important phases of the
framework will be introduced.

Figure 2. Overview of semi-supervised deep learning framework for hyperspectral image (HSI)
classification. The training of the framework mainly two iterative steps: (1) Training the spectral- and
spatial- models over the respective data based on the labeled pool (indicated as solid lines); (2) applying
each model to predict the unlabeled HSI data and use respective sample selection strategy to select
the most confident samples for the other (indicated as dashed lines. See details in the text). After all
iterations of co-training are completed, the classification results of the test dataset which obtained
through two training networks were fused, and then the label of the test dataset was obtained (indicated
as solid black lines).

Network Architectures. Building a suitable network architecture is the first prerequisite of
the whole system. This paper adopts the architecture of ResNet (Section 2.2) to extract both the
spectral and spatial features. Residual Networks can be regarded as an extension of CNN’s with
skipped connections that facilitate the propagation of gradients and perform robustly with very deep
architecture [24]. However, the extremely limited number of training samples for such deep learning
models is difficult. To address this problem, we utilized the regularization method Batch Normalization
(BN) [25] to prevent the learning process from overfitting.

Training Process. Training of the semi-supervised deep learning framework mainly involves two
iterative steps: Training each ResNet model and updating the labeled pool as illustrated in Figure 2.
More specifically, we denote the state of the system at the t-th iteration of co-training as Lt and Ut

are denoted as labeled training samples and unlabeled samples respectively. To effectively select
informative and confident samples from Ut to update the next round training set of the deep learning
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models, a dual-strategy sample selection co-training algorithm based on spectral and spatial features
is introduced in Section 2.3.

The goal of the proposed dual-strategy sample selection method is that labeling and selecting
the unlabeled samples for each model are based on both spectral and spatial features. To this end, for
spectral view of the co-training, we propose a new similarity metric based on deep spectral feature
learning, it is a measurement to define the relationship between two samples. In particular, we extract
the hierarchical features from a deep network on all available samples (labeled samples and unlabeled
samples), and then the distance between labeled samples and unlabeled samples is given by the
Euclidean distance. Using this method, we can select the most confident spectral samples with high
similarity for each labeled sample to be included in the new training set on the condition that the
spectral-ResNet agree on the labeling of these unlabeled samples. For spatial view of the co-training,
we use a spatial neighborhood information extraction strategy to select the most confident spatial
neighbors as the new training set based on the condition that spatial-ResNet agree on the labeling
of these unlabeled samples. Such dual-strategy is believed to select the most useful and informative
samples to update the training set for the next round of training of the deep learning models.

Testing Process. The iterative process is repeated until some stopping criterion has been reached.
After the fully connected layers, the output of the fully connected layers represent the spectral features
and spatial features, which are followed by a softmax regression classifier (defined in this work as
spectral classifier and spatial classifier) to predict the probability distribution of each class. Finally,
the prediction probability vector of the test dataset from the two channels are summed to get the final
classification result, and then the label of the test dataset was obtained, as shown in Figure 2 indicated
as solid black lines.

2.2. Networks Architectures Based on Spectral and Spatial Features

ResNet is constructed via stacking residual blocks, and it skips blocks of convolutional layers by
using shortcut connections to form residual blocks. By using shortcut connections, residual networks
perform residual mapping fitted by stacked nonlinear layers, which is easier to be optimized than
the original mapping [23]. These stacked residual blocks significantly improve training efficiency
and largely resolve the degradation problem by employing batch normalization BN [25]. Inspired by
the latest residual networks learning framework proposed by He et al. [23], the architecture of our
networks for each model, as shown in Figure 3, contains one convolutional layer and two “bottleneck”
building blocks, and each building block has one shortcut connection. Each residual block can be
expressed in a general form as follows:

xl+1 = h(xl) + F(xl , Wl),
xl+1 = f (yl),

(1)

where xl and xl+1 are input and output of the l-th block, respectively. Wl denotes the parameters of
the residual structure. F(x) is a residual mapping function and h(xl) = xl is an identity mapping
function, and f is a Rectified Linear Units (ReLU) [26] function. For each residual mapping function F,
the “bottleneck” building block has a stack of 3 layers. Take spatial-ResNet in the right of Figure 3
for example, the three layers are [1 × 1, 20], [3 × 3, 20], and [1 × 1, 80] convolutions, where 1 × 1
convolutions layers are responsible for reducing and then increasing (restoring) dimensions, leaving
the 3 × 3 convolutions layer a bottleneck with smaller input/output dimensions [23]. To regularize
and speed up the training process, we adopt batch normalization BN [25] right after each convolution
and before activation. BN standardizes the mean and variance of hidden layers for each mini-batch, is
defined as follows.

x̂(i) =
x(i) − E(x(i))

VAR
(

x(i)
) , (2)
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where x̂(i) is the i-th dimension of feature batch x, E(·) represents the expected value and VAR(·) is
the variance of the features. In order to prevent overfitting, ‘dropout’ (random omission of part of the
feature during each training case) is employed in our method after the average pooling in each branch,
the dropout rate is set to 0.5.

Figure 3. A residual network for spatial-ResNet model, which contains two “bottleneck” building
blocks, and each building block has one shortcut connection. The number on each building block is the
number of output feature map. F(x) is the residual mapping and x is the identity mapping, for each
residual function, we use a stack of 3 layers. The original mapping is represented as F(x) + x.

In the spectral-ResNet model, for one pixel of HSI which is to be dealt with, a 3× 3×K-sized cube
is extracted from its eight neighborhoods as its original input data (the size of spatial neighborhood
is empirically determined). To meet the input requirement of spectral-ResNet, the original data is
re-arranged into nine pixel vectors, and the length of each pixel vector is K, K is the number of bands,
as shown in Figure 2. It should be noted that the 1D kernels are exploited to effectively capture intrinsic
spectrum content along the 1D spectral dimensions. In the 1D convolution operation, the input data
is convolved with 1D kernels, and then the convolved input data go through the activation function
to form the feature vectors. The data is re-arranged in the spectral-ResNet to extract the high-level
abstract spectral features. Suppose the set of labeled samples is Lspectral

t , and the set of the unlabeled
samples is denoted as Uspectral

t .
In the spatial-ResNet model, for a certain pixel in the original HSI, it is natural to consider its

neighboring pixels for the extraction of spatial features. However, due to the hundreds of bands
along the spectral dimension of HSI, the region-based feature vector will result in too large as an
input dimension. This problem could be solved by principal component analysis (PCA), and as PCA
is conducted on the pixel-spectrum, the spatial information remains intact. We reduce the spectral
dimension of the original HSI to three which is empirically chosen as a trade-off between accuracy
and computational complexity with minimum information loss. Then, for each pixel, we choose a
relatively large image patch (the patch is 27 × 27 in our experiment) from its neighborhood window as
the input of the spatial-ResNet model, as shown in Figure 2. In each 2D convolutional layer, the image
patch is convolved with 2D kernels, then goes through the activation function to form the feature maps.
Then the high-level spatial features can be extracted by the spatial-ResNet model. Suppose the set of
labeled samples is denoted as Lspatial

t , and the set of the unlabeled samples is denoted as Uspatial
t .
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2.3. Dual-Strategy Sample Selection Co-Training

The goal of the dual-strategy sample selection co-training algorithm is to select highly confident
examples with predicted labels from the unlabeled pool based on spectral and spatial features. These
newly labeled examples by each model can boost the performance in the next round of training. Now
we introduce the three main components of the iteration algorithm. For clarity, we omit the iteration
number t of co-training in the equations below.

2.3.1. New Sample Selection Mechanism Based on Spectral Feature

For spectral-ResNet model, all bands of the labeled data are used to train the model, so we
take full advantage of the spectral characteristics and the inherent deep features to select the most
confident samples. Thus we proposed a new sample selection mechanism based on spectral feature
and deep learning.

Since the spectral information of the same class is similar and the labeled samples is limited, we
intend to take the samples with the highest similarity to be the most confident samples for this class.
First, we define a distance metric from the test sample and a class dataset. For the t-th iteration of
co-training, we get a candidate set for each class after the unlabeled samples Uspectral

t was classified by
spectral-ResNet. A candidate set is denoted as Hspectral

t = {(X1, y1), . . . , (XM, yM)}, where XM is the
candidate set with label yM, M is the number of the class. Then we try to search for the most confident
samples for each class with the spectral similarity metric from the candidate set. For each sample xM

of XM and labeled set Lspectral
t = {(L1, y1), . . . , (LM, yM)}, where LM is the training set with label yM,

we define the distance metric from xM to LM as:

d(xM, LM) = inf{d(xM, lM) : lM ∈ LM}, (3)

where inf represents the infimum, lM is each sample in the training set with label yM.
Then, the main problem is how to define the distance between two samples. In order to take

advantage of the deep features inherent to describe the distribution of the hyperspectral data, we
give a definition of a new metric between two hyperspectral samples based on deep learning. Some
research [27,28] have been shown that combining the features from lower layers can capture finer
features. Moreover, using the hierarchical feature to describe the distribution of the data can alleviate
the problem of intra- and inter-class variation in data [29]. Inspired by this observation, for the
spectral-ResNet described in Section 2.2, we can extract a multi-level representation for each of the
unlabeled samples. The multi-level representation consists of the output of the first convolutional
layer and the two building blocks, which are denoted as r1, r2, r3 respectively. Then, the hierarchical
representation of each sample is represented as r = [r1; r2; r3]. The distance between two samples such
as xM and lM is given by the distance between two hierarchical representations:

d(xM, lM) = ‖r(xM) − r(lM)‖
1
2
2 . (4)

Last, we define a similarity metric between the xM and the training set LM based on this distance
metric as:

s(xM, LM) = exp(−d(xM, LM)). (5)

For this similarity metric, the most confident samples belonging to LM are those with distance
close to zero, and the corresponding similarity is close to one.

2.3.2. Sample Selection Mechanism Based on Spatial Feature

For spatial-ResNet model, PCA is executed to map the hyperspectral data in the first step, this
step can keep spatial information intact but cast away part of the redundant spectral information.
Since spatial consistency has been found among neighboring pixels. Neighbors of the labeled samples
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are identified using a second-order spatial connectivity by the spatial consistency assumption. Then
the most confident samples are selected by the classification of the spatial-ResNet and neighbors of
labeled samples.

For illustrative purpose, Figure 4 shows a toy example illustrating the process of sample selection
mechanism based on spatial feature. In the left of Figure 4, we display the available labeled samples
for two different classes, 1 and 2. These labeled samples are used to train the Spatial-Resnet, and
the second-order neighborhood of the labeled samples are labeled by the trained Spatial-Resnet, as
illustrated in the upper middle part of Figure 4. In the middle of the lower part of Figure 4, we label
the neighbors of the labeled samples by the spatial consistency assumption. Finally, the most confident
samples are selected as shown in the right of Figure 4.

Figure 4. The process of sample selection mechanism based on spatial feature.

2.3.3. Co-Training

Finally, the two well-trained ResNet models are utilized to predict the unlabeled pool over the
respective modalities. A highly confident set Hspectral and Hspatial can be selected with the new sample
selection mechanism. Now we attach the spectral data Hspectral and spatial data Hspatial to update the
labeled pool as

Lspectral
t+1 = Lspectral

t ∪ Hspatial
t ,

Lspatial
t+1 = Lspatial

t ∪ Hspectral
t .

(6)

This step basically identifies the labeled samples with the highest confidence scores combined from
both views. During the next round training, Hspectral will improve the spatial-ResNet model as they
are new and informative labeled samples, which is the same with the Hspatial for the spectral-ResNet.

3. Experimental Results and Analyses

In this section, the effectiveness of the proposed method is tested in the classification of three open
source hyperspectral datasets, namely, the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS)
Indian Pines datasets, the Reflective Optics System Imaging Spectrometer (ROSIS-03) University
of Pavia datasets, the AVIRIS Salinas Valley datasets and one selected Hyperion dataset. In our
experiments, firstly, the performance of the proposed method is compared with three state-of-the-art
HSI classification methods: (1) CNN [10], a supervised classification using deep CNN to extract the joint
spectral–spatial features from HSI; (2) CDL-MD-L [15], a self-training semi-supervised classification
approach based on contextual deep learning classification (CDL) and multi-decision labeling (MD-L);
(3) Co-DC-CNN, DC-CNN [30] is a dual-channel CNN with non-residual networks from our previous
work, we extend it to a co-training approach denoted as Co-DC-CNN. Then, we compared our
results against three semi-supervised classification methods based on spectral-spatial feature and
co-training: (1) PNGrow [18], a semi-supervised classification algorithm using co-training approach
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with the P-N learning scheme, P-expert and N-expert take advantage of the spatial structure and the
spectral structure respectively; (2) TT_AL_MSH_MKE [17], tri-training technique for spectral-spatial
HSI classification based on an active learning (AL) and a multi-scale homogeneity(MSH), MKE is
a combination of MLR, KNN and ELM, and (3) S2CoTraC [21], the semi-supervised classification
algorithm using co-training approach with both spectral information and spatial information which
are iteratively extracted at the pixel level via collective inference. All the parameters in the compared
methods are set according to the authors’ suggestion or tuned to achieve the best performance. It should
be noted that the result of TT_AL_MSH_MKE are taken from the results reported by Tan et al. [17].
Additionally, the quantitative comparisons of the classification results are based on class-specific
accuracy, overall accuracy (OA), average accuracy (AA), kappa coefficient (κ) and F1-meaure [31].

3.1. Dataset Description and Experimental Settings

The Indian Pine image was recorded by the AVIRIS sensor over the Indian Pines site in
Northwestern Indiana. It consists of 145 × 145 pixels and 220 spectral reflectance bands in the
wavelength range 0.4–2.5 µm. Twenty spectral bands were removed due to noise and water absorption,
and the remaining 200 bands was used for the experiments. The ground-truth data contains sixteen
classes, and the false-color composite of the Indian Pines image and the corresponding reference image
are shown in Figure 5a,b, respectively.

Figure 5. AVIRIS Indian Pines image. (a) False-color image. (b) Reference image. Black area denotes
unlabeled pixels.

The Pavia University image was gathered by the ROSIS-03 sensor during a flight campaign
over Pavia, northern Italy, having 610 × 340 pixels. A total of 115 spectral bands were collected,
at the range 0.43–0.86 µm. Twelve spectral bands were removed due to noise and the remaining
103 bands were used for classification. Nine land-cover classes were selected, and the true color
composite of the University of Pavia image and the corresponding reference image are shown in
Figure 6a,b, respectively.
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Figure 6. ROSIS-03 University of Pavia image. (a) True color image. (b) Reference image. Black area
denotes unlabeled pixels.

The Salinas Valley image was captured by the AVIRIS sensor over Salinas Valley, California. The
image consists of 512 × 217 pixels and 224 spectral bands in the range from 0.4 to 2.5 µm, where
20 water absorption bands were removed. The reference of this image contains sixteen ground-truth
classes. Figure 7 shows the true color composite of the Salinas Valley image and the corresponding
reference data.

Figure 7. AVIRIS Salinas Valley image. (a) True color image. (b) Reference image. Black area denotes
unlabeled pixels.

The Hyperion image was gathered over Lafayette, Indiana, USA on 14 October 2015. There are
242 spectral bands in the spectral range of 0.4–2.5 µm. After removing the noisy bands and water
absorption bands, there are 175 bands remained. A sub-image with size 341 × 307 pixels and thirteen
land-cover classes is used as study area. The true color composite of the image and the corresponding
reference image are shown in Figure 8a,b, respectively.
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Figure 8. Hyperion image. (a) True color image. (b) Reference image. Black area denotes
unlabeled pixels.

For all the experiments with the four HSI datasets, limited training samples were randomly
selected from each class, and the rest of the samples were set as unlabeled data for co-training. To obtain
a more convincing estimate of the capabilities of the proposed method, we run the experiment 10 times
for each dataset. The training sample sizes of all the experiments were quite limited, which is a
challenge for the classification task.

For the four datasets, the structure of the networks was set to the same depth and same width
with a fair comparison. For the spectral-ResNet, it contains one convolutional layer and two building
blocks. The first layer contains [3× 1, 20] convolutional kernels, is followed by one pooling layer with
pooling size [2,1] and stride [2,1]. For each building block, the three stacked layers contains [1× 1, 20],
[3× 1, 20] and [1× 1, 80] convolutional kernels. Finally, the network ends with a global average pooling,
a fully connected layer, and softmax. In training a network, one epoch means one pass of the full
training set. This network is trained over 240 epochs (160 epochs with learning rate 0.01, 80 epochs
with learning rate 0.001). Each iteration of training network randomly takes 20 samples, where weight
decay, momentum and dropout rate are set to 0.0005, 0.9 and 0.5, respectively. For the spatial-ResNet,
three Principal Components are extracted from the original HSI and then 27× 27× 3-sized image
patches are extracted as the input data. The network structure is same as spectral-ResNet. The first
layer contains [3× 3, 20] convolutional kernels, is followed by one pooling layer with pooling size
[2,2] and stride [2,2]. For each building block, the three stacked layers contains [1× 1, 20], [3× 3, 20]
and [1× 1, 80] convolutional kernels. It is trained over 200 epochs (140 epochs with learning rate 0.01,
60 epochs with learning rate 0.001). At each iteration of training network, 20 samples are randomly
selected from the training set. Weight decay, momentum and dropout rate are set to 0.0005, 0.9 and 0.5,
respectively. In order to prevent overfitting, ‘dropout’ is employed in our method after the average
pooling in each branch, the dropout rate is set to 0.5. In the dual-strategy sample selection method,
the spectral similarity between the tested samples and training set is empirically set as s ≥ 0.9 for
selection, the eight neighbors of labeled training samples are used as the candidate set.

3.2. Experimental Results on the AVIRIS Indian Pines Dataset

The first group of experiments was conducted on AVIRIS Indian Pines dataset. Firstly, we tested
the proposed method in different scenarios, where an increased amount of initial training samples
was used, respectively ({5, 10, 15, 20} samples per class). In particular, for Grass-pasture-mowed and
Oats, the number of initial training samples is at most 10. For the co-training progress, three iterations
of co-training were performed, the iteration number of co-training is denoted as t = 3. The detailed
results are listed in Table 1, and classifications are shown in Figure 9. We make two observations on
Table 1: First, as the initial training samples increase, the OA is in an upward trend until it becomes
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stable, and the OA of 20 training samples improves a little bit as compared with 15. Furthermore, in
the case of 15 initial training samples, the network structure and sample selection strategy used in the
proposed method can be used to train the network well. Second, we analyze the classification results
of each class. For the classes with very few samples, Alfalfa, Grass-pasture-mowed and Oats, the
classification accuracy had already reached 100% when the initial training samples is 10. Furthermore,
when the initial training samples is set as 5 or 10, the classification accuracy for each class is not stable,
especially for Corn-notill, Soybean-mintill and Woods, as for those classes the number of samples is
large. However, the results are more stable when the initial training samples size is set as 15 and 20.

Table 1. Classification accuracy (%) of the proposed algorithm for AVIRIS Indian Pines with 5, 10, 15
and 20 initial training samples per class and t = 3 iterations of co-training.

Class Labeled Samples Per Class

No. Number of Samples 5 10 15 20

1 46 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00
2 1428 82.99 ± 6.41 94.56 ± 2.12 97.27 ± 1.07 97.74 ± 0.52
3 830 86.16 ± 8.97 94.07 ± 0.99 97.57 ± 1.39 96.69 ± 1.14
4 237 99.57 ± 0.67 98.40 ± 2.57 99.48 ± 0.72 95.08 ± 3.34
5 483 95.68 ± 1.85 98.87 ± 1.17 99.22 ± 0.66 99.35 ± 0.41
6 730 98.83 ± 0.95 99.64 ± 0.76 99.86 ± 0.22 99.74 ± 0.27
7 28 97.83 ± 3.64 99.31 ± 1.97 100.00 ± 0.00 100.00 ± 0.00
8 478 99.83 ± 0.25 99.97 ± 0.07 100.00 ± 0.00 100.00 ± 0.00
9 20 95.56 ± 5.44 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00
10 972 87.94 ± 3.53 96.09 ± 2.11 98.38 ± 0.92 98.67 ± 1.34
11 2455 76.40 ± 11.03 92.07 ± 2.17 96.26 ± 1.64 97.26 ± 0.46
12 593 93.31 ± 4.47 95.22 ± 2.36 98.82 ± 0.70 98.14 ± 1.52
13 205 99.42 ± 0.80 84.93 ± 13.47 92.98 ± 6.97 96.04 ± 3.24
14 1265 96.93 ± 3.67 95.45 ± 2.03 97.41 ± 0.74 97.20 ± 0.69
15 386 96.33 ± 2.25 96.44 ± 2.54 97.71 ± 1.53 93.03 ± 6.84
16 93 98.86 ± 1.44 99.55 ± 0.90 97.44 ± 3.89 99.32 ± 1.15

OA 88.42 ± 3.07 95.07 ± 1.02 97.66 ± 0.63 97.66 ± 0.85
AA 94.11 ± 1.12 96.54 ± 0.88 98.28 ± 0.71 98.39 ± 0.49

κ 86.90 ± 3.44 94.39 ± 1.16 97.34 ± 0.72 97.36 ± 0.40
F1-measure 90.09 ± 0.01 95.66 ± 0.01 97.87 ± 0.01 97.27 ± 0.01

Figure 9. Classification results of AVIRIS Indian Pines. (a) False-color image. (b) Reference image.
(c) Label = 5, OA = 92.35%. (d) Label = 10, OA = 96.34%. (e) Label = 15, OA = 98.38%. (f) Label = 20,
OA = 98.2%.
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Then we compare the proposed method with three HSI classifiers algorithms in Table 2. In order to
evaluate the performance of co-training in the proposed algorithm, firstly, we compare the proposed
algorithm with a state-of-the-art supervised spectral–spatial deep learning algorithm CNN and
a self-training based semi-supervised classification approach CDL-MD-L. It is obvious especially
when there is a very small initial training samples that the performance between our method and
other two algorithms shows the significant advantage (maximum improvement of 41% in 5 initial
training samples per class). To validate the effectiveness of the residual network in the proposed
framework, we also compare the proposed algorithm with a co-training CNN with non-residual
networks Co-DC-CNN, it can be found in Table 2 that the proposed algorithm achieves a better
performance using the residual network.

Table 2. Classification accuracy (%) of state-of-the-art HSI classifiers algorithms on AVIRIS Indian
Pines with 5, 10, 15 and 20 initial training samples per class.

Algorithm Labeled Samples Per Class

5 10 15 20

CNN
OA 47.33 ± 4.19 64.09 ± 2.76 68.90 ± 1.73 79.62 ± 1.06
AA 57.71 ± 2.74 78.5 ± 2.61 83.38 ± 1.25 88.73 ± 0.89

κ 41.95 ± 4.45 59.77 ± 2.74 65.15 ± 1.26 79.93 ± 0.93

CDL-MD-L
OA 74.85 86.46 ± 1.78 90.22 91.54
AA 72.98 79.30 ± 1.66 85.12 88.02

κ 74.13 84.63 ± 2.00 88.94 91.06

Co-DC-CNN
OA 85.81 ± 3.33 92.31 ± 1.23 95.13 ± 0.79 94.89 ± 1.02
AA 91.58 ± 1.32 93.53 ± 1.09 95.37 ± 0.87 95.40 ± 0.79

κ 84.64 ± 3.39 91.40 ± 1.54 94.88 ± 0.95 94.01 ± 0.74

Proposed
OA 88.42 ± 3.07 95.07 ± 1.02 97.66 ± 0.63 97.66 ± 0.85
AA 94.11 ± 1.12 96.54 ± 0.88 98.28 ± 0.71 98.39 ± 0.49

κ 86.90 ± 3.44 94.39 ± 1.16 97.34 ± 0.72 97.36 ± 0.40

Moreover, we compare the proposed method with four different semi-supervised approaches.
As the results show in Table 3, the proposed method provides the best performance even with small
number of initial training samples. In particular, when the initial training sample is 5, the proposed
method obtained the best result OA of 88.42%, which is 6.31% higher than the second best (82.11%)
achieved by PNGrow.

Table 3. Classification accuracy (%) of semi-supervised classifiers algorithms on AVIRIS Indian Pines
with 5, 10, 15 and 20 initial training samples per class.

Algorithm Labeled Samples Per Class

5 10 15 20

PNGrow
OA 82.11 ± 2.69 89.18 ± 1.54 91.80 ± 2.07 93.22 ± 1.10
AA 88.60 ± 1.2 92.58 ± 1.1 94.26 ± 1.1 94.96 ± 0.7

κ 79.74 ± 3.0 87.70 ± 1.7 90.66 ± 2.3 92.27 ± 1.2

TT_AL_MSH_MKE
OA 71.05 ± 7.76 79.36 ± 6.95 83.44 ± 5.45 n/d
AA 80.48 ± 5.86 86.45 ± 4.93 89.38 ± 3.55 n/d

κ 67.88 ± 8.17 77.02 ± 7.46 81.45 ± 5.91 n/d

S2CoTraC
OA 69.15 ± 2.25 79.18 ± 0.56 90.40 ± 1.65 93.53 ± 0.69
AA 82.96 ± 2.64 88.93 ± 1.38 94.83 ± 0.94 94.20 ± 0.41

κ 65.97 ± 2.30 76.69 ± 0.53 89.10 ± 1.85 92.61 ± 0.78

Proposed
OA 88.42 ± 3.07 95.07 ± 1.02 97.66 ± 0.63 97.66 ± 0.85
AA 94.11 ± 1.12 96.54 ± 0.88 98.28 ± 0.71 98.39 ± 0.49

κ 86.90 ± 3.44 94.39 ± 1.16 97.34 ± 0.72 97.36 ± 0.40
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3.3. Experimental Results on the ROSIS-03 University of Pavia Dataset

The second experiment was conducted on the ROSIS-03 University of Pavia Dataset. The results
are listed in Table 4, and the visual classification results are shown in Figure 10. In this dataset, as the
initial training samples increases, the OA improves and the per-class accuracy is more stable. The
comparison between our proposed method and state-of-the-art HSI classifiers algorithms are presented
in Table 5. The comparison between our proposed method and other semi-supervised methods are
presented in Table 6. The proposed method obtained the best result on the 10, 15, 20 initial training
samples, but on the 5 initial training samples, the OA and κ is lower than PNGrow. However, the
iteration of proposed method is only three where the iteration of PNGrow is ten. In Section 4, we will
discuss the relationship between classification results and the number of iterations in co-training.

Table 4. Classification accuracy (%) of the proposed algorithm for ROSIS Pavia University data with 5,
10, 15 and 20 initial training samples per class and t = 3 iterations of co-training.

Class Labeled Samples Per Class

No. Number of Samples 5 10 15 20

1 6631 78.96 ± 9.94 93.40 ± 3.26 97.31 ± 0.66 98.51 ± 0.72
2 18,649 83.10 ± 5.93 96.40 ± 2.28 98.88 ± 0.55 99.28 ± 0.53
3 2099 89.14 ± 3.76 97.57 ± 1.52 98.55 ± 0.66 99.18 ± 0.49
4 3064 97.49 ± 0.35 97.54 ± 0.75 98.03 ± 0.75 98.71 ± 0.42
5 1345 100.00 ± 0.00 100.00 ± 0.00 99.97 ± 0.06 99.99 ± 0.03
6 5029 90.17 ± 5.20 97.58 ± 1.34 99.74 ± 0.28 99.96 ± 0.04
7 1330 98.68 ± 0.97 98.35 ± 0.68 99.93 ± 0.09 99.90 ± 0.11
8 3682 91.33 ± 2.27 93.15 ± 4.35 97.65 ± 0.69 98.27 ± 0.74
9 947 99.05 ± 0.66 99.08 ± 1.02 99.95 ± 0.08 99.87 ± 0.25

OA 86.69 ± 2.94 96.16 ± 1.05 98.64 ± 0.21 99.16 ± 0.24
AA 91.99 ± 1.04 97.01 ± 0.66 98.89 ± 0.12 99.30 ± 0.14

κ 82.94 ± 3.57 94.95 ± 1.36 98.21 ± 0.27 98.89 ± 0.32
F1-measure 86.19 ± 0.01 96.23 ± 0.01 97.76 ± 0.01 98.60 ± 0.00

Table 5. Classification accuracy (%) of state-of-the-art HSI classifiers algorithms on ROSIS Pavia
University data with 5, 10, 15 and 20 labeled samples per class.

Algorithm Labeled Samples Per Class

5 10 15 20

CNN
OA 55.40 ± 3.89 69.02 ± 2.26 72.38 ± 1.26 79.34 ± 0.51
AA 55.89 ± 3.31 63.13 ± 1.77 69.79 ± 1.37 77.52 ± 0.58

κ 44.16 ± 3.84 59.86 ± 1.95 64.62 ± 1.48 73.84 ± 0.43

CDL-MD-L
OA 72.85 82.61 ± 2.95 88.04 91.89
AA 78.58 85.10 ± 2.45 89.12 91.32

κ 63.71 0.7807 ± 0.03 83.64 88.42

Co-DC-CNN
OA 83.47 ± 3.01 94.99 ± 1.49 95.33 ± 0.32 97.45 ± 0.45
AA 88.52 ± 1.39 95.51 ± 1.13 96.68 ± 0.27 98.72 ± 0.23

κ 81.78 ± 3.81 93.63 ± 1.31 95.72 ± 0.49 98.67 ± 0.40

Proposed
OA 86.69 ± 2.94 96.16 ± 1.05 98.64 ± 0.21 99.16 ± 0.24
AA 91.99 ± 1.04 97.01 ± 0.66 98.89 ± 0.12 99.30 ± 0.14

κ 82.94 ± 3.57 94.95 ± 1.36 98.21 ± 0.27 98.89 ± 0.32
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Figure 10. Classification results of ROSIS Pavia University data. (a) True color image. (b) Reference
image. (c) Label = 5, OA = 89.7%. (d) Label = 10, OA = 97.13%. (e) Label = 15, OA = 98.9%. (f) Label =
20, OA = 99.40%.

Table 6. Classification accuracy (%) of semi-supervised classifiers algorithms on ROSIS Pavia University
data with 5, 10, 15 and 20 labeled samples per class.

Algorithm Labeled Samples Per Class

5 10 15 20

PNGrow
OA 88.11 ± 2.87 93.85 ± 2.23 93.77 ± 3.42 96.90 ± 0.90
AA 91.53 ± 1.3 95.32 ± 0.6 95.96 ± 1.1 97.47 ± 0.4

κ 84.64 ± 3.5 91.95 ± 2.8 91.89 ± 4.3 95.90 ± 1.2

TT-AL-MSH-MKE
OA 79.04 ± 3.95 86.00 ± 3.04 90.20 ± 2.51 n/d
AA 85.99 ± 3.84 89.80 ± 2.74 92.16 ± 1.92 n/d

κ 85.99 ± 3.84 82.05 ± 3.87 87.24 ± 3.20 n/d

S2CoTraC
OA 50.76 ± 1.68 80.75 ± 0.35 82.87 ± 1.42 93.67 ± 1.51
AA 62.37 ± 1.96 82.37 ± 1.29 90.06 ± 0.84 92.45 ± 0.30

κ 42.62 ± 1.81 75.11 ± 1.21 78.56 ± 1.73 91.69 ± 1.88

Proposed
OA 86.69 ± 2.94 96.16 ± 1.05 98.64 ± 0.21 99.16 ± 0.24
AA 91.99 ± 1.04 97.01 ± 0.66 98.89 ± 0.12 99.30 ± 0.14

κ 82.94 ± 3.57 94.95 ± 1.36 98.21 ± 0.27 98.89 ± 0.32

3.4. Experimental Results on the AVIRIS Salinas Valley Dataset

The third experiment was conducted on the AVIRIS Salinas Valley. We tested the proposed method
on different initial training samples sizes same as the AVIRIS Indian Pines Dataset. The detailed results
are listed in Table 7, and the classifications are shown in Figure 11. In this dataset, as the initial training
samples increases, the OA have been improved and the per-class accuracies are more stable. The
comparison between our proposed method and other methods are presented in Tables 8 and 9. For
each class, the number of sample is large. With large number of samples, the classification results after
three iterations of co-training are not ideal, especially on the two classes with high number of samples,
Grapes_untrained and Vinyard_untrained.
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Table 7. Classification accuracy (%) of the proposed algorithm for AVIRIS Salinas Valley with 5, 10, 15
and 20 initial labeled samples per class and t = 3 iterations of co-training.

Class Labeled Samples Per Class

No. Number of Samples 5 10 15 20

1 2009 99.80 ± 0.15 99.68 ± 0.75 99.89 ± 0.26 99.92 ± 0.07
2 3726 98.80 ± 1.80 99.96 ± 0.09 99.76 ± 0.64 100.00 ± 0.00
3 1976 99.98 ± 0.04 99.99 ± 0.02 100.00 ± 0.00 100.00 ± 0.00
4 1394 99.89 ± 0.08 99.98 ± 0.04 100.00 ± 0.00 100.00 ± 0.00
5 2678 99.15 ± 0.39 99.21 ± 0.33 99.45 ± 0.19 99.69 ± 0.29
6 3959 99.91 ± 0.23 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00
7 3579 99.62 ± 0.35 99.92 ± 0.13 99.99 ± 0.02 100.00 ± 0.00
8 11,271 84.79 ± 5.97 91.39 ± 3.77 94.11 ± 1.77 95.45 ± 0.85
9 6203 99.38 ± 0.46 99.75 ± 0.16 99.84 ± 0.12 99.89 ± 0.12

10 3278 98.46 ± 0.61 99.34 ± 0.27 99.62 ± 0.25 99.35 ± 0.26
11 1068 99.87 ± 0.16 99.91 ± 0.09 99.91 ± 0.11 99.81 ± 0.21
12 1927 99.98 ± 0.03 99.76 ± 0.41 100.00 ± 0.00 100.00 ± 0.00
13 916 99.73 ± 0.39 99.85 ± 0.17 99.91 ± 0.10 99.80 ± 0.22
14 1070 98.51 ± 1.54 99.51 ± 0.27 99.80 ± 0.17 99.84 ± 0.18
15 7268 78.20 ± 13.77 94.55 ± 2.20 96.77 ± 3.88 98.42 ± 0.80
16 1807 99.10 ± 0.52 99.74 ± 0.35 99.83 ± 0.29 99.90 ± 0.17

OA 93.50 ± 1.40 97.31 ± 0.60 98.23 ± 0.39 98.75 ± 0.22
AA 97.20 ± 0.62 98.91 ± 0.18 99.30 ± 0.20 99.50 ± 0.10

κ 92.77 ± 1.57 97.01 ± 0.66 98.03 ± 0.43 98.61 ± 0.24
F1-measure 96.11 ± 0.01 98.53 ± 0.01 99.03 ± 0.01 99.46 ± 0.01

Table 8. Classification accuracy (%) of state-of-the-art HSI classifiers algorithms on AVIRIS Salinas
Valley with 5, 10, 15 and 20 initial training samples per class.

Algorithm Labeled Samples Per Class

5 10 15 20

CNN
OA 75.96 ± 2.48 76.33 ± 1.24 86.89 ± 0.98 87.67 ± 0.33
AA 80.19 ± 2.19 85.91 ± 1.75 92.82 ± 0.87 94.4 ± 0.48

κ 73.26 ± 2.51 73.79 ± 1.51 85.46 ± 0.93 86.38 ± 0.31

Co-DC-CNN
OA 90.18 ± 1.59 94.45 ± 1.12 95.16 ± 0.34 95.72 ± 0.29
AA 93.63 ± 1.22 95.60 ± 0.68 96.54 ± 0.31 96.68 ± 0.15

κ 89.87 ± 1.21 94.64 ± 1.03 94.99 ± 0.54 95.70 ± 0.55

Proposed
OA 93.50 ± 1.40 97.31 ± 0.60 98.23 ± 0.39 98.75 ± 0.22
AA 97.20 ± 0.62 98.91 ± 0.18 99.30 ± 0.20 99.50 ± 0.10

κ 92.77 ± 1.57 97.01 ± 0.66 98.03 ± 0.43 98.61 ± 0.24

Table 9. Classification accuracy (%) of state-of-the-art semi-supervised classifiers algorithms on AVIRIS
Salinas Valley with 5, 10, 15 and 20 initial training samples per class.

Algorithm Labeled Samples Per Class

5 10 15 20

PNGrow
OA 95.35 ± 1.3 97.36 ± 0.5 98.30 ± 0.4 98.61 ± 0.2
AA 96.48 ± 1.0 98.13 ± 0.4 98.60 ± 0.3 98.75 ± 0.2

κ 94.83 ± 1.5 97.06 ± 0.5 98.11 ± 0.5 98.45 ± 0.2

TT-AL-MSH-MKE
OA 89.32 ± 2.02 90.72 ± 1.38 92.34 ± 1.00 n/d
AA 93.88 ± 1.11 94.79 ± 0.77 95.67 ± 0.49 n/d

κ 88.14 ± 3.84 89.68 ± 1.53 91.48 ± 1.11 n/d

S2CoTraC
OA 77.46 ± 1.06 82.22 ± 0.85 95.82 ± 1.39 94.62 ± 1.17
AA 89.14 ± 2.16 92.88 ± 2.04 98.59 ± 0.34 98.00 ± 0.66

κ 75.61 ± 1.21 80.51 ± 0.91 95.36 ± 1.54 94.02 ± 1.31

Proposed
OA 93.50 ± 1.40 97.31 ± 0.60 98.23 ± 0.39 98.75 ± 0.22
AA 97.20 ± 0.62 98.91 ± 0.18 99.30 ± 0.20 99.50 ± 0.10

κ 92.77 ± 1.57 97.01 ± 0.66 98.03 ± 0.43 98.61 ± 0.24
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Figure 11. Classification results of AVIRIS Salinas Valley. (a) True color image. (b) Reference image.
(c) Label = 5, OA = 95.69%. (d) Label = 10, OA = 98.09%. (e) Label = 15, OA = 98.59%. (f) Label = 20,
OA = 99.08%.

3.5. Experimental Results on Hyperion Dataset

The fourth experiment was conducted on a Hyperion dataset. We tested the proposed method on
different initial training samples, respectively ({5, 10, 15} samples per class). Because the number of
samples per class is small, we didn’t test the experiment on 20 initial training samples. The number of
iterations in co-training is two. The results are listed in Table 10, and the visual classification results
are shown in Figure 12. In this dataset, as the initial training samples increases, the OA have been
improved and more stable. The comparison between our proposed method and the state-of-the-art HSI
classifiers method are presented in Table 11. According to Table 11, the proposed method performs best.

Table 10. Classification accuracy (%) of the proposed algorithm for Hyperion data with 5, 10 and 15
initial training samples per class and t = 2 iterations of co-training.

Class Labeled Samples Per Class

No. Number of Samples 5 10 15

1 24 86.84 ± 11.89 89.80 ± 9.09 91.11 ± 14.49
2 61 68.45 ± 14.49 84.87 ± 9.72 89.13 ± 2.66
3 54 62.92 ± 28.32 77.92 ± 2.16 86.67 ± 4.21
4 51 79.06 ± 35.51 90.86 ± 5.36 98.33 ± 1.52
5 32 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00
6 148 63.29 ± 13.17 76.71 ± 2.76 85.71 ± 1.68
7 49 86.36 ± 7.04 100.00 ± 0.00 100.00 ± 0.00
8 39 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00
9 82 83.34 ± 11.18 100.00 ± 0.00 100.00 ± 0.00

10 67 90.59 ± 17.74 99.25 ± 1.38 100.00 ± 0.00
11 20 72.23 ± 13.61 91.43 ± 12.15 100.00 ± 0.00
12 53 68.75 ± 12.29 100.00 ± 0.00 100.00 ± 0.00
13 79 64.64 ± 12.66 82.19 ± 8.99 88.44 ± 1.408

OA 77.04 ± 4.48 89.17 ± 1.68 93.26 ± 0.83
AA 80.71 ± 4.01 91.80 ± 1.48 95.34 ± 0.89

κ 74.66 ± 4.90 87.92 ± 1.85 92.40 ± 0.93
F1-measure 78.30 ± 0.05 89.77 ± 0.03 94.57 ± 0.00
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Figure 12. Classification results of Hyperion data with 5, 10 and 15 initial labeled samples per class.
(a) True color image. (b) Label = 5, OA = 82.56%. (c) Label = 10, OA = 91.89%. (d) Label = 15,
OA = 93.97%.

Table 11. Classification accuracy (%) of state-of-the-art HSI classifiers algorithms on Hyperion data
with 5, 10 and 15 initial training samples per class.

Algorithm Labeled Samples Per Class

5 10 15

CNN
OA 39.77 ± 4.84 74.56 ± 3.14 72.16 ± 2.26
AA 37.70 ± 4.61 77.78 ± 2.98 78.72 ± 1.99

κ 33.09 ± 5.22 71.71 ± 3.27 68.89 ± 2.17

Co-DC-CNN
OA 72.58 ± 4.27 82.47 ± 2.14 90.84 ± 1.30
AA 75.63 ± 4.09 84.70 ± 1.95 92.63 ± 1.28

κ 70.44 ± 4.95 81.99 ± 1.89 91.87 ± 1.34

S2CoTraC
OA 61.35 ± 1.06 79.54 ± 0.85 84.49 ± 1.39
AA 47.85 ± 2.16 70.51 ± 2.04 79.59 ± 0.34

κ 56.50 ± 1.21 77.26 ± 0.91 82.71 ± 1.54

Proposed
OA 77.04 ± 4.48 89.17 ± 1.68 93.26 ± 0.83
AA 80.71 ± 4.01 91.80 ± 1.48 95.34 ± 0.89

κ 74.66 ± 4.90 87.92 ± 1.85 92.40 ± 0.93

4. Discussion

4.1. Influence of Network Hyper-Parameters

For the proposed classification framework, the choice of network hyper-parameters has an effect
on the training process and classification performance. In this section, we investigate the impact on the
proposed framework from two aspects: The kernel number of convolutional layers and the spatial size
of the input image patch in the spatial-Resnet.

For the “bottleneck” building block, the number of kernel and the quadruple operation is designed
by referring to the literature [23]. The two blocks do not use pooling and therefore it does not increase
the number of dimensions and feature channels to compensate for the loss of information after pooling,
so the adjacent two blocks are with the same width. Then we experimentally verified the kernel number
of convolutional layers (the width of the network). We assessed different kernel numbers from 10 to 25
in an interval of 5 in each convolutional layer to find a general framework. The classification results of
all datasets using different number of kernels with 5 initial training samples per class in Figure 13a.
The framework with 20 kernels in each convolutional layer achieved the highest classification accuracy
in the Indian Pines, Pavia University datasets and Hyperion data, and the framework with 15 kernels
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obtained the best performance in the Salinas Valley dataset, but it is a little bit higher than the 20
kernels. To maintain data consistency, we use 20 kernels for all datasets.

Figure 13. Influence of network hyper-parameters. (a) Overall accuracies of different kernel numbers.
(b) Overall accuracies of different spatial size.

In order to get an appropriate size of spatial neighborhood in the spatial-Resnet, we tested 15 × 15,
19 × 19, 23 × 23, 27 × 27, 31 × 31, 35 × 35, 39 × 39 and 43 × 43. Figure 13b shows the classification
results of all datasets using different sizes of spatial neighborhood with 5 initial training samples
per class. It can be seen that the accuracy increases quickly with the increase of spatial size at first,
then plateaued when the spatial size reached 27 × 27. Therefore, as a trade-off between accuracy and
amount of data involved, we empirically choose 27 × 27 as the spatial neighborhood size.

4.2. Effect of the Number of Iterations in Co-Training

As mentioned in Section 3, when the dataset is large as well as the initial training samples is
extremely small, the classification results with 3 iterations of co-training are not ideal. Therefore, it is
interesting to understand the relationship between classification results and the number of iterations in
co-training, using OA and computation time. Experiments are performed on the ROSIS-03 University
of Pavia Dataset and the AVIRIS Salinas Valley Dataset by co-training strategy, the initial training
labeled set is with 5 per class. The accuracy and computation time are plotted in Figure 14a–c. From the
results we see that with large dataset, increase of iteration of co-training will improve the classification
results but drastically increase the time costs. Specifically, the first iteration of the co-training actually
is a supervised classification. From Figure 14a we can see, on the first iteration of the method, the
accuracies are very low. With the samples added based on our sample selection mechanism and sample
addition mechanism of co-training, the accuracies are greatly improved. Moreover, as we can see from
Figure 14b,c, the computation time increases drastically with the increase of number of iterations of
co-training, the main factor comes from the network training time. Therefore, we suggest a moderate
number (e.g., three) of iterations in co-training, which keeps satisfactory performance and relatively
low time cost simultaneously. We can always set the number of iterations of co-training as 6 to achieve
better classification results, if the computational cost is still affordable.
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Figure 14. Performance analysis of effect of the number of iterations of co-training. (a) Classification
accuracies of different iterations. (b) Time cost of the network training progress of different iterations
of co-training. (c) Time cost of the sample selection progress of different iterations of co-training.

4.3. Sample Selection Mechanism Analysis in Co-Training

The effectiveness of the proposed co-training method has been validated, as it not only uses
the labeled data, but also exploits and labels the most confident unlabeled data to help learning.
In this part, we analyze the performance of the dual-strategy sample selection method in co-training.
Experiments are carried out on two HSI data which have relatively large number of samples-the
ROSIS-03 University of Pavia Dataset and the AVIRIS Salinas Valley Dataset. Tables 12 and 13 display
for each iteration of co-training method on the two HSI data with 5 per class initial training data set,
the number of initial training samples, the number of selected samples from spectral-spatial feature
and classification results. It should be noted that the accuracies of the selected samples are also listed
next to the number of selected samples in Tables 12 and 13.

Table 12. Sample selection mechanism analysis on ROSIS Pavia University data.

Iteration 1 Iteration 2 Iteration 3 Iteration 4

training samples (spectral) 45 ± 0.00 108 ± 3 537 ± 8 1136 ± 8
training samples (spatial) 45 ± 0.00 215 ± 1 462 ± 12 1439 ± 43

selected samples (spectral) 170 ± 1 (99.19%) 248 ± 13 (99.45%) 977 ± 55 (99.88%) 1167 ± 47 (99.98%)
selected samples (spatial) 63 ± 3 (100.00%) 429 ± 11 (99.83%) 598 ± 16 (99.96%) 1459 ± 76 (99.91%)

OA (%) 54.2 ± 2.12 67.81 ± 4.85 86.69 ± 2.94 97.58 ± 0.13
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Table 13. Sample selection mechanism analysis on the AVIRIS Salinas Valley.

Iteration 1 Iteration 2 Iteration 3 Iteration 4

training samples (spectral) 80 ± 0.00 462 ± 66 1510 ± 19 3659 ± 149
training samples (spatial) 80 ± 0.00 557 ± 18 1473 ± 13 3936 ± 105

selected samples (spectral) 477 ± 18 (99.26%) 916 ± 31 (99.52%) 2463 ± 115 (99.48%) 3552 ± 102 (99.84%)
selected samples (spatial) 382 ± 66 (100.00%) 1048 ± 47 (99.79%) 2149 ± 130 (99.93%) 3816 ± 80 (99.87%)

OA (%) 67.02 ± 2.29 80.44 ± 1.87 93.5 ± 1.42 98.32 ± 0.52

Firstly, as is shown in first column of Table 12, the number of initial training samples and selected
samples are small and the corresponding classification results (54.2%) are relatively poor, which is
normal. However, after two iterations of co-training with new samples added, the classification
results have been greatly improved. It can be seen that the selected samples by the proposed sample
selection mechanism can effectively promote the training of the network and improve the classification
results. Secondly, again from the first column of the Table 12, in the first iteration of co-training, the
number of samples selected from the two models have a large difference (e.g., 170 and 63). However,
the selected samples are used to augment the training set of the other model in the next iteration
of co-training, which pushed the network performance to excel. Furthermore, the selected samples
from the spatial view with local distributions and the selected samples from the spectral view with
global distributions, they added into each other’s strength and facilitate the selection of samples next
round. Third, considering that the proposed method is based on the deep learning framework, the
corresponding training time is relatively longer. The number of selected samples of each iteration of
co-training is also relatively larger than other co-training based algorithms [17,18]. Although there are
mislabeled samples, its number is extremely small compared to the total training samples, and the
impact on network training is negligible. Overall, it shows the robustness of our proposed network
and the effectiveness of the co-training structure. The same conclusion can be obtained by analyzing
the AVIRIS Salinas Valley in Table 13.

5. Conclusions

This paper proposed a semi-supervised deep learning framework for HSI classification, which
is capable of reducing the dependence of deep learning method on large-scale manually labeled HSI
data. The key to the framework are two parts: (1) The spectral- and spatial-ResNet for extracting the
spectral features and spatial features and (2) the dual-strategy sample selection co-training algorithm
for effective semi-supervised learning. Experimental results on the benchmark HSI data and a selected
Hyperion data demonstrate the effectiveness of our approach. In terms of future research, we plan
to design an adaptive network structure to better classify different HSI data. Moreover, it would be
interesting to investigate a completely unsupervised setting where an advanced clustering algorithm
can be used to initialize the network parameters.

Acknowledgments: This work was supported by National Key Research and Development Program
(2016YFB0502502), Foundation Project for Advanced Research Field (614023804016HK03002), Shaanxi
International Scientific and Technological Cooperation Project (2017KW-006). The authors wish to thank Annalisa
Appice for providing the code of S2CoTraC.

Author Contributions: All the authors made significant contributions to this work. Bei Fang and Ying Li devised
the approach and analyzed the data; Jonathan Cheung-Wai Chan helped design the experiments and provided
advice for the preparation and revision of the work; Bei Fang performed the experiments; and Haokui Zhang
helped with the experiments.

Conflicts of Interest: The authors declare no competing financial interests. The founding sponsors had no role in
the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, and
in the decision to publish the results.



Remote Sens. 2018, 10, 574 22 of 23

References

1. Landgrebe, D. Hyperspectral image data analysis. IEEE Signal Proc. Mag. 2002, 19, 17–28. [CrossRef]
2. Bioucas-Dias, J.M.; Plaza, A.; Camps-Valls, G.; Scheunders, P. Hyperspectral remote sensing data analysis

and future challenges. IEEE Geosci. Remote Sens. Mag. 2013, 1, 6–36. [CrossRef]
3. Agapiou, A.; Hadjimitsis, D.G.; Alexakis, D.D. Evaluation of broadband and narrowband vegetation indices

for the identification of archaeological crop marks. Remote Sens. 2012, 4, 3892–3919. [CrossRef]
4. Yokoya, N.; Chan, J.C.-W.; Segl, K. Potential of resolution-enhanced hyperspectral data for mineral mapping

using simulated EnMAP and Sentinel-2 images. Remote Sens. 2016, 8, 172. [CrossRef]
5. Lecun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [CrossRef] [PubMed]
6. Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016.
7. Chen, Y.; Lin, Z.; Zhao, X.; Wang, G. Deep learning-based classification of hyperspectral data. IEEE J. Sel.

Top. Appl. Earth Obs. Remote Sens. 2014, 7, 2094–2107. [CrossRef]
8. Chen, Y.; Zhao, X.; Jia, X. Spectral–spatial classification of hyperspectral data based on deep belief network.

IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 1–12. [CrossRef]
9. Yue, J.; Zhao, W.; Mao, S.; Liu, H. Spectral-spatial classification of hyperspectral images using deep

convolutional neural networks. Remote Sens. Lett. 2015, 6, 468–477. [CrossRef]
10. Chen, Y.; Jiang, H.; Li, C.; Jia, X.; Ghamisi, P. Deep feature extraction and classification of hyperspectral

images based on convolutional neural networks. IEEE Trans. Geosci. Remote Sens. 2016, 54, 6232–6251.
[CrossRef]

11. Li, Y.; Zhang, H.; Shen, Q. Spectral-spatial classification of hyperspectral imagery with 3D convolutional
neural network. Remote Sens. 2017, 9, 67. [CrossRef]

12. Deng, J.; Dong, W.; Socher, R.; Li, L.J.; Li, K.; Li, F.F. ImageNet: A large-scale hierarchical image database.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 20–25
June 2009; pp. 248–255.

13. Yang, J.; Zhao, Y.Q.; Chan, J.C.-W. Learning and transferring deep joint spectral-spatial features for
hyperspectral classification. IEEE Trans. Geosci. Remote Sens. 2017, 55, 4729–4742. [CrossRef]

14. Ma, X.; Wang, H.; Geng, J. Spectral–spatial classification of hyperspectral image based on deep auto-encoder.
IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 4073–4085. [CrossRef]

15. Ma, X.; Wang, H.; Wang, J. Semisupervised classification for hyperspectral image based on multi-decision
labeling and deep feature learning. ISPRS J. Photogramm. Remote Sens. 2016, 120, 99–107. [CrossRef]

16. Zhao, W.; Du, S. Spectral–spatial feature extraction for hyperspectral image classification: A dimension
reduction and deep learning approach. IEEE Trans. Geosci. Remote Sens. 2016, 54, 4544–4554. [CrossRef]

17. Tan, K.; Zhu, J.; Du, Q.; Wu, L.; Du, P. A novel tri-training technique for semi-supervised classification of
hyperspectral images based on diversity measurement. Remote Sens. 2016, 8, 749. [CrossRef]

18. Romaszewski, M.; Głomb, P.; Cholewa, M. Semi-supervised hyperspectral classification from a small number
of training samples using a co-training approach. ISPRS J. Photogramm. Remote Sens. 2016, 121, 60–76.
[CrossRef]

19. Zhang, X.; Song, Q.; Liu, R.; Wang, W.; Jiao, L. Modified co-training with spectral and spatial views for
semisupervised hyperspectral image classification. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7,
2044–2055. [CrossRef]

20. Blum, A.; Mitchell, T. Combining labeled and unlabeled data with co-training. In Proceedings of the 11th
Annual Conference on Computational Learning Theory, Madison, WI, USA, 24–26 July 1998; pp. 92–100.

21. Appice, A.; Guccione, P.; Malerba, D. A novel spectral-spatial co-training algorithm for the transductive
classification of hyperspectral imagery data. Pattern Recognit. 2017, 63, 229–245. [CrossRef]

22. Tan, K.; Li, E.; Du, Q.; Du, P. An efficient semi-supervised classification approach for hyperspectral imagery.
ISPRS J. Photogramm. Remote Sens. 2014, 97, 36–45. [CrossRef]

23. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.

24. Zhong, Z.; Li, J.; Ma, L.F.; Jiang, H.; Zhao, H. Deep residual networks for hyperspectral image classification.
In Proceedings of the IEEE International Geoscience & Remote Sensing Symposium, Fort Worth, TX, USA,
23–28 July 2017.

http://dx.doi.org/10.1109/79.974718
http://dx.doi.org/10.1109/MGRS.2013.2244672
http://dx.doi.org/10.3390/rs4123892
http://dx.doi.org/10.3390/rs8030172
http://dx.doi.org/10.1038/nature14539
http://www.ncbi.nlm.nih.gov/pubmed/26017442
http://dx.doi.org/10.1109/JSTARS.2014.2329330
http://dx.doi.org/10.1109/JSTARS.2015.2388577
http://dx.doi.org/10.1080/2150704X.2015.1047045
http://dx.doi.org/10.1109/TGRS.2016.2584107
http://dx.doi.org/10.3390/rs9010067
http://dx.doi.org/10.1109/TGRS.2017.2698503
http://dx.doi.org/10.1109/JSTARS.2016.2517204
http://dx.doi.org/10.1016/j.isprsjprs.2016.09.001
http://dx.doi.org/10.1109/TGRS.2016.2543748
http://dx.doi.org/10.3390/rs8090749
http://dx.doi.org/10.1016/j.isprsjprs.2016.08.011
http://dx.doi.org/10.1109/JSTARS.2014.2325741
http://dx.doi.org/10.1016/j.patcog.2016.10.010
http://dx.doi.org/10.1016/j.isprsjprs.2014.08.003


Remote Sens. 2018, 10, 574 23 of 23

25. Ioffe, S.; Szegedy, C. Batch normalization: Accelerating deep network training by reducing internal covariate
shift. In Proceedings of the International Conference on Machine Learning, Lille, France, 6–11 July 2015;
pp. 448–456.

26. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet classification with deep convolutional neural networks.
Adv. Neural Inf. Process. Syst. 2012, 25, 1097–1105. [CrossRef]

27. Liu, W.; Anguelov, D.; Eran, D.; Szegedy, C.; Reed, S.; Fu, C.-Y.; Berg, A.C. SSD: Single Shot MultiBox
Detector. In Proceedings of the European Conference on Computer Vision, Amsterdam, The Netherlands,
8–16 October 2016; pp. 21–37.

28. Huang, G.; Liu, Z.; Weinberger, K.Q.; Laurens, V.D.M. Densely connected convolutional networks.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA,
21–26 July 2017; pp. 4700–4708.

29. Hu, J.; Lu, J.; Tan, Y.P. Discriminative deep metric learning for face verification in the wild. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 24–27 June 2014;
pp. 1875–1882.

30. Zhang, H.K.; Li, Y.; Zhang, Y.Z.; Shen, Q. Spectral-spatial classification of hyperspectral imagery using a
dual-channel convolutional neural network. Remote Sens. Lett. 2017, 8, 438–447. [CrossRef]

31. Powers, D.M. Evaluation: From precision, recall and F-measure to ROC, Informedness, Markedness and
Correlation. J. Mach. Learn. Technol. 2011, 2, 37–63.

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1145/3065386
http://dx.doi.org/10.1080/2150704X.2017.1280200
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Method 
	Overview 
	Networks Architectures Based on Spectral and Spatial Features 
	Dual-Strategy Sample Selection Co-Training 
	New Sample Selection Mechanism Based on Spectral Feature 
	Sample Selection Mechanism Based on Spatial Feature 
	Co-Training 


	Experimental Results and Analyses 
	Dataset Description and Experimental Settings 
	Experimental Results on the AVIRIS Indian Pines Dataset 
	Experimental Results on the ROSIS-03 University of Pavia Dataset 
	Experimental Results on the AVIRIS Salinas Valley Dataset 
	Experimental Results on Hyperion Dataset 

	Discussion 
	Influence of Network Hyper-Parameters 
	Effect of the Number of Iterations in Co-Training 
	Sample Selection Mechanism Analysis in Co-Training 

	Conclusions 
	References

