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Abstract: Groundwater plays a critical role in the global water cycle and is the drinking source for
almost half of the world’s population. However, exact quantification of its storage change remains
elusive due primarily to limited ground observations in space and time. The Gravity Recovery and
Climate Experiment (GRACE) twin-satellite data have provided global observations of water storage
variations at monthly sampling for over a decade and a half, and is enable to estimate changes in
groundwater storage (GWS) after removing other water storage components using auxiliary datasets
and models. In this paper, we present an overview of GWS changes in three main aquifers within
China using GRACE data, and conduct a comprehensive accuracy assessment using in situ ground
well observations and hydrological models. GRACE detects a significant GWS depletion rate of
7.2 ± 1.1 km3/yr in the North China Plain (NCP) during 2002–2014, consistent with ground well
observations and model predictions. The Liaohe River Basin (LRB) experienced a pronounced GWS
decline during 2005–2009, at a depletion rate of 5.0 ± 1.2 km3/yr. Since 2010, GRACE-based GWS
reveal a slow recovery in the LRB, with excellent agreement with ground well observations. For the
whole study period 2002–2014, no significant long-term GWS depletion is found in the LRB nor in the
Tarim Basin. A case study in the Inner Tibetan Plateau highlights there still exist large uncertainties
in GRACE-based GWS change estimates.

Keywords: GRACE; groundwater storage; satellite gravimetry; China; hydrological model; groundwater
level; North China Plain

1. Introduction

Groundwater, as an important component of the global water cycle, is a vital resource of fresh
water to sustain agricultural, industrial, and domestic development in many parts of the world,
especially in arid and semi-arid regions [1,2]. Globally, groundwater uses in irrigation account
for ~43% of the total consumptive irrigation water use [3]. Groundwater also supplies ~50% of
drinking water and ~40% of industrial water globally [4]. More than 1.5 billion people worldwide
rely on groundwater as the primary source of drinking water [1]. Due to extreme climate episodes,
population growth, and extensive groundwater mining and over-exploitation, long-term groundwater
depletion has occurred in many regions of the world, exacerbated by various adverse environment
impacts, including groundwater quality deterioration, land subsidence, seawater intrusion, and soil
salinization [5,6]. Groundwater depletion has been considered as a serious threat to sustainability of
water supplies.
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From a perspective of water balance, groundwater storage (GWS) change in an aquifer system
is referred to as the budget between recharge (e.g., seepage from soil/surface water, and lateral
inflow) and discharge (e.g., groundwater withdraws and lateral outflow) [7]. However, it is difficult
to quantify groundwater recharge rates and discharge rates directly from in situ hydrological
measurements [8]. Alternatively, water level observations from monitoring wells provide the principal
source of information on groundwater systems. Groundwater level changes can be further converted
to storage changes by multiplying by storage coefficients, e.g., specific yields for unconfined aquifers.
However, groundwater levels are often poorly monitored with adequate spatial resolutions due to
limited available well networks in many areas around the world.

In addition to being monitored by in situ well observations, GWS changes can be simulated by
hydrological models. At global scales, hydrological models can be divided into two categories: land
surface models (LSMs) and hydrological water balance models (HMs). Most global LSMs developed
by the atmospheric community or climate scientists can simulate water and energy fluxes between
the land surface and the atmosphere in general circulation models, which generally can be used to
predict soil moisture and water storage changes, but they mostly fail to simulate GWS changes [9,10].
Global HMs, however, are developed for global water resources assessments; therefore, human water
uses, e.g., irrigation water use, domestic and industrial water use, are considered in these HMs [10].
Thus, groundwater, as an important source of water use in many arid regions, is generally simulated
in the HMs. However, accurate estimation of GWS changes and their trends from global HMs remains
a challenge, due to the imperfect parameterization of HMs, the limited knowledge about groundwater
recharge/abstractions, and the scarcity of independent ground observations to calibrate models [11].
At regional scales, numerical groundwater flow models can be used to simulate groundwater dynamics
and GWS changes in a specific region. To construct a reliable regional groundwater model, however,
detailed hydrogeologic data (e.g., hydraulic parameters, water level observations, geology, aquifer
materials/channels), climate forcing data, and land use data, among others, need to be collected. It is
often difficult to obtain a comprehensive dataset for regional groundwater modeling.

Apart from ground well observations and global/regional models, independent remote
sensing-based estimates of water storage changes provide the potential to monitor GWS changes
from space. The Gravity Recovery And Climate Experiment (GRACE) twin-satellites provide a direct
measure of monthly total water storage (TWS) changes globally at a spatial resolution longer than
~300 km for over a decade and a half since 2002 [12,13]. GRACE-derived TWS changes can be further
used to infer GWS changes, if other water storage components from soil moisture, snow/ice, and
surface water can be accurately estimated from models or observations and removed from TWS
changes [14]. Thus, GRACE represents a powerful tool to estimate GWS changes, especially in
regions where groundwater depletion is significant but groundwater levels are unmonitored or poorly
monitored. Many studies have successfully used GRACE data to estimate GWS changes especially its
depletion in many regions, e.g., in India [15–17], California’s Central Valley, USA [18,19], High Plains,
USA [20,21] and in the North China Plain (NCP) [22].

As the largest developing country, China has been increasingly experiencing severe water scarcity
with rapid population growth and socio-economic development. Especially in the North China, due
to drying climate and intensive human activities in the past four decades, groundwater is used and
even over-exploited to meet ever-expanding water demand [23,24]. GRACE data have been widely
used to estimate TWS/GWS changes over China. Zhong et al. [25] was one of the first to assess
long-term TWS changes over the whole China using GRACE. Based on GRACE observations, they
found TWS declines in the NCP and the southern Tibetan Plateau (TP) and TWS increase in the Three
Gorges Reservoir (TGR) and the Inner TP (ITP) during 2003–2007 [25]. With the increase of GRACE
observations over time, seasonal, interannual, and long-term TWS variations in China at basin scales
were further analyzed using GRACE [26,27]. Later, numerous case studies have shown that GRACE
can be used to detect spatio-temporal TWS/GWS changes and anomalies in many regions of China,
which are related to climate extremes and human activities. For example, GRACE successfully detects
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significant TWS deficits in the Southwestern China during the severe droughts in 2010 and 2011 [28,29].
Similar water storage deficits during droughts are also captured by GRACE in the Yangtze River Basin
(YRB) [30–32], the Northwest China [33,34], and the North China [35,36]. In addition, considering the
water fluxes from a hydrological point of view, GRACE is also used to estimate river discharge in the
YRB and human-induced evapotranspiration (ET) change in the NCP [37,38]. By integrating GRACE
data into hydrological models, Huang et al. [39] found human-induced TWS increase in the middle
and lower reaches of YRB due to intensive irrigation and reservoir operation. Based on GRACE data,
some other studies also found human-induced increment in TWS due to water impoundment of TGR
in the middle of the Yangtze River [27,40].

In addition to surface water regulation, another potentially significant anthropogenic impact on
TWS changes can be groundwater pumping especially in the arid/semiarid North China. Extensive
groundwater pumping could lead to irreversible groundwater depletion, which might be detectable
for GRACE. In the NCP, Feng et al. [22] found a GWS depletion rate of 8.3 ± 1.1 km3/yr from 2003 to
2010 using GRACE, which can be attributed to intensive groundwater-based irrigation. Since then,
several studies reported GRACE-based GWS changes in some regions of China [41–46].

According to the World-wide Hydrogeological Mapping and Assessment Programme
(WHYMAP), China has three of the world’s thirty-seven large aquifer systems [47], i.e., the North
China Aquifer System, the Song-Liao Basin, and the Tarim Basin (Figure 1). The diversity in climate
conditions and human activity intensity in these three aquifer systems will result in different GWS
changes. Although prior studies have reported GWS changes in some of these aquifers, earlier results
did not provide a thorough or comprehensive characterization, nor an elaborate error assessment on
the contemporary, i.e., last decade and a half, GWS changes in these aquifers within China. This study
provides a quantification of GWS changes in the three main aquifers of China based on comprehensive
comparisons of GRACE satellite data, ground well observations, and hydrological models. This paper
is organized as follows. In Section 2, we briefly explain the GWS change estimation methods based
on GRACE and the data used in this study. Section 3 presents GWS change estimates in three main
aquifers of China. In Section 4, we discussed the uncertainties in GRACE-based GWS change estimates,
taking the ITP as a case study. The study is summarized and concluded in Section 5.
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Figure 1. Map of China showing three main aquifer basins (i.e., (1) North China Aquifer System;
(2) Song-Liao Basin; and (3) Tarim Basin). The boundaries of the three aquifers are based on the
delineation of the world’s 37 large aquifer systems from the World-wide Hydrogeological Mapping
and Assessment Programme (WHYMAP) [47]. The white areas denote glaciers from the Randolph
Glacier Inventory (RGI 6.0) [48].
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2. Data and Methodology

2.1. Groundwater Storage Change Estimation from GRACE

GRACE-derived TWS changes represent an integrated change in various water storage
components, i.e., soil moisture storage (SMS), snow water equivalent storage (SWES), surface
water reservoir storage (RESS), and groundwater storage (GWS). To separate GWS changes from
GRACE-derived TWS changes, other water storage components of TWS have to be estimated from
auxiliary data or hydrological models. Thus, changes in GWS can be expressed as follows:

∆GWS = ∆TWS − ∆SMS − ∆SWES − ∆RESS (1)

Time series of GWS changes in a given region can be estimated by various methods. As we
know, original GRACE products in terms of spherical harmonics (SH) (i.e., Stokes coefficients) contain
correlated errors in the spectral domain, i.e., north-south stripes in the spatial domain [49]. Thus,
destriping (decorrelation) and Gaussian smoothing have to be applied to the GRACE SH products (i.e.,
Level-2 data) to remove correlated errors and high-frequency noises. The mass variations outside the
study region will leak into the region (i.e., leakage-in effect); meanwhile, the signal in the region can
also leak out to its surroundings (i.e., leakage-out effect). In general, the composited leakage effect will
cause the actual signal inside the region attenuated. In addition, truncation of GRACE SH products
with limited degree and order can also result in leakage effect and signal attenuation. Truncation,
destriping, and smoothing of SH are hereinafter referred to as filtering or post-processing.

To restore the actual signal in a given region from filtered GRACE products, leakage-in corrections
need to be applied, which are estimated by simulated TWS from models generally; and then scaling
factor method can be used to restore the leakage-in corrected mass change from filtered GRACE
products. There are two methods to estimate scaling factors. In the first method, a basin-scale single
scaling factor can be estimated from the ratio of the unfiltered and filtered basin function [50–52].
The basin function is defined as 1 inside the basin and 0 outside. The basin-scale scaling factor can
also be estimated by minimizing the misfit between unfiltered and filtered mass change time series
in the basin from models through least-squares fitting [53]. In the second method, however, gridded
scaling factor can be estimated from the ratio of the gridded unfiltered and filtered mass changes
from models [53]. No matter which method is used, we can finally derive unbiased time series of
TWS changes from GRACE. Then, with estimates on other water storage components from models or
observations, we can obtain time series of GWS changes as follows:

∆GWS = s f ∗ ∆TWS f − ∆SMS − ∆SWES − ∆RESS (2)

where s f represents scaling factor; subscript f represents filtered.
There is another alternative method to derive more reliable GWS changes with a minimum

leakage effect if a priori information on GWS changes is available [18]. In this method, other water
storage components (SMS, SWES, and RESS) from models are filtered in the same way as the GRACE
data. After removing these filtered model grids from GRACE-derived TWS changes, we can obtain
filtered GWS grids as follows:

∆GWS f = ∆TWS f − ∆SMS f − ∆SWES f − ∆RESS f (3)

We assume that GWS changes are concentrated inside the area of interest. Therefore, the leakage-in
effect should be negligible because there is no GWS change outside the area. Thus, restoring the actual
GWS changes only require rescaling of signal amplitude by a scaling factor and no leakage correction
is needed:

∆GWS = s f ∗ ∆GWS f (4)
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where s f represents the scaling factor to restore filtered GWS changes, which needs to be estimated
based on independent information on spatial distribution of GWS changes from in situ observations or
models. It should be noted that this updated method requires a priori knowledge of GWS changes to
obtain the scaling factor.

In addition to traditional SH products, in which leakage reduction and signal restore are needed
in the post-processing procedure, GRACE mascon solutions are developed to localize the mass changes
at the specific mass concentration (mascon) blocks or mass tiles [54,55]. Correlated errors and signal
attenuation can be minimized by applying constraints or regularization during the mascon gravity
inversion. A recent comprehensive product intercomparison indicates that mascon solutions are
generally consistent with SH products in large-scale basins; however, the variability among different
GRACE products, particularly for long-term trends, is also significant especially in small-scale basins,
which needs to be evaluated on a case-by-case basis [56,57].

2.2. Data

2.2.1. GRACE Data and Land Surface Models

Monthly GRACE release 5 (RL05) data products, generated by the University of Texas at
Austin’s Center for Space Research (CSR), were used to obtain TWS changes. The products were
provided in the form of spherical harmonic (SH) coefficients, i.e., Stokes coefficients, up to degree
and order 60. The GRACE data were processed as follows. The degree 1 coefficients and the zonal
degree 2 coefficients were replaced by more reliable estimates as suggested by Swenson et al. [58]
and Cheng et al. [59]. Long-term non-hydrological mass change signal due to the Glacial Isostatic
Adjustment (GIA) process was removed based on the model from A et al. [60]. In addition, we
applied the DDK4 filter to reduce correlated errors and high-frequency noises in the original SH
coefficients [61].

To further estimate GWS changes using GRACE, changes in SMS and SWES were estimated
using four versions of LSMs from the Global Land Data Assimilation System (GLDAS), i.e., Noah [62],
CLM [63], MOSAIC [64] and VIC [65]. By integrating ground- and space-based observations and
using data assimilation techniques, the GLDAS LSMs can simulate optimal fields of land surface
water/energy fluxes. The average values of the four versions of LSMs were computed as the final
estimates of ∆SMS and ∆SWES. Then, gridded ∆SMS + ∆SWES data are filtered in the same way as
the GRACE data and removed from GRACE-derived TWS changes to derive filtered GWS changes,
as indicated in Equation (3). Based on the statistics of surface water reservoir storages from the
China Water Resources Bulletins (CWRB) published by the Ministry of Water Resources of China
(MWR) [66], the ∆RESS trend in the NCP is ~0.3 km3/yr during 2002–2014, which is removed from the
GRACE-based GWS rate estimate; while the ∆RESS trends in the other two main aquifers of China
are negligible and not considered in the following analysis. To obtain undamped time series of GWS
changes from filtered GWS changes based on GRACE and LSMs, we further estimated the scaling
factors for recovering actual GWS signals. Gridded GWS changes from the average of two global
hydrological models, i.e., the WaterGAP Global Hydrological Model (WGHM), and the PCRaster
Global Water Balance (PCR-GLOBWB) model, were used to estimate the scaling factors in the three
aquifers of China. These scaling factors were used to derive final time series of GWS changes in our
study regions. Considering that Aquifer 1 and 2 (Figure 1) are close to the ocean, the leakage effects
due to ocean mass changes might be significant in these two aquifers. We calculated the ocean leakage
effects based on the ocean bottom pressure data from the Estimating the Circulation and Climate of
the Ocean (ECCO) model and found that the leakage effects on the GWS changes and on the GWS
rates are negligible. Thus, leakage is not considered for these aquifers in the following analysis. The
uncertainties in GRACE-derived time series of GWS changes were estimated considering the GRACE
measurement errors and uncertainties in LSMs. More details on uncertainty estimation can be found
in [22].
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2.2.2. Hydrological Water Balance Models

The WGHM model and the PCR-GLOBWB model were also used to quantify the spatio-temporal
GWS changes in our study regions. The WGHM model simulates water fluxes and storages globally
with a spatial resolution of 0.5◦ × 0.5◦ [67]. The WGHM model was developed to assess water
availability and water uses of the globe, as well as to generate scenarios of changes in water resources.
It is worth noticing that, different from most LSMs, the WGHM model considers sectoral water
uses for irrigation, livestock, households, manufacturing, and cooling of thermal power plants [68].
Groundwater withdrawals and recharge are simulated in WGHM; thus, we can estimate GWS changes
based on these data. In this study, the WGHM model developed by the University of Frankfurt with
the version of 2.2b was used [68].

In addition to the WGHM model, we used GWS outputs from the PCR-GLOBWB model, which is
also a state-of-the-art grid-based global hydrology and water resources model and developed by the
Utrecht University [69,70]. PCR-GLOBWB simulates spatio-temporal water fluxes, e.g., evaporation,
discharge, groundwater recharge, and human water use. GWS changes simulated by PCR-GLOBWB
have been widely used to quantify the global groundwater depletion rate and its contribution to sea
level change [71–73]. Both models are forced by the same climate forcing data, i.e., the WATCH Forcing
Data methodology applied to ERA-Interim reanalysis data (WFDEI). Monthly gridded GWS changes
over China from WGHM and PCR-GLOBWB at 0.5◦ resolution were used and compared with other
estimates in this study.

2.2.3. Ground Well Observations

Groundwater level observations were further collected and analyzed to validate GWS change
estimates from GRACE and HMs. For the NCP, monthly water levels from 64 phreatic monitoring
wells and 66 confined monitoring wells were obtained from the groundwater yearbooks published by
the China Institute of Geological Environment Monitoring (CIGEM) over the period 2005–2013 [74].
Another observation network in the NCP deployed by the MWR contains more than 1000 monitoring
wells. However, the original level observations from the network were inaccessible. Fortunately,
basin-scale mean level changes over the NCP based on the network were available and used to
estimate the temporal variability of GWS changes in the NCP from 2002 to 2014.

For the Song-Liao Basin, water level observations from 151 wells were collected from the CIGEM
and the Hydrological Bureau of Inner Mongolia (HBIM) from 2005–2013. It should be noted that,
considering the uneven distribution of wells, water levels were averaged over a 1◦ × 1◦ mesh where
each cell of the mesh was assigned the mean value of water levels within it [20]. Then, mean water
level change over the study region was calculated as the area-weighted average of values in all cells of
the mesh within the region. For the Tarim Basin, however, water level observations are limited to 6
wells; and half of them contain significant gaps from 2005–2013. Therefore, we fail to estimate GWS
changes over the Tarim Basin based on ground well observations.

To estimate GWS changes from ground well observations, level changes should be multiplied by
specific yields. For the NCP, the specific yield map based on pumping tests from Zhang et al. [75] was
used, with an average of 0.06 over the NCP. For the Song-Liao Basin, a mean specific yield value of
0.09 was used according to pumping tests by Yu et al. [76].

2.2.4. Precipitation Data and Drought Index

Monthly gridded precipitation products from the China Meteorological Data Sharing Service
System (CMDSSS) were used to obtain annual precipitation anomalies in our study regions, which
are based on 2472 meteorological stations over China and the thin plate spline interpolation method.
Additionally, a monthly dataset of Palmer Drought Severity Index (PDSI) on a 2.5◦ grid was used to
quantify the dry or wet conditions in our study regions [77]. The PDSI data used in this study was
downloaded from the University Corporation for Atmospheric Research (UCAR), U.S..
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3. Results

Figure 2a shows the large-scale spatial variability of GWS rates from GRACE over China during
2002–2014. Among the three main aquifers in China, the North China Aquifer (NCA) experienced the
most significant GWS depletion in its northern part (Figure 2a). Both WGHM and PCR-GLOBWB also
highlight remarkable GWS depletion in the northern part of NCA, consistent with GRACE results
(Figure 2b,c). It should be noted that, in the NCA, the magnitudes of GWS depletion signals from
WGHM and PCR-GLOBWB are larger than that from GRACE (Figure 2). It is evident in Figure 2a,
which shows the filtered GRACE-based GWS rates in the spatial domain. GRACE also reveals
apparent significant GWS depletion in the eastern Himalaya Mountains and the north of the Tarim
Basin (Figure 2a). However, these apparent mass loss signals are caused by glacier mass change rather
than groundwater depletion, concluded by some previous studies [78–81]. Note that glacier mass
budget is not simulated in LSMs, so glacier mass change signals in these mountain regions still exist in
GRACE-derived GWS changes. Spatio-temporal GWS changes in the three main aquifers of China are
further discussed as follows.

Figure 2. GWS rates over China from (a) GRACE; (b) WGHM; and (c) PCR-GLOBWB during 2002–2014.
Blue lines highlight the three main aquifer basins in China.

3.1. North China Plain

The NCP, also known as the Huang-Huai-Hai Plain, is the largest alluvial plain and the most
important agriculture base in China (Figure 1). The NCP covers an area of 320,000 km2 with a
population of about 300 million. The narrow definition of the NCP, which is more widely used, refer to
the plain area between the Taihang Mountains in the northwest and the Yellow River in the southeast,
with an area of 140,000 km2 (Figure 3a). Hereinafter, we will adopt this narrow definition of the
NCP. From a hydrogeological perspective, the NCP can be divided into three distinct hydrogeological
zones: i.e., the piedmont region of the Taihang Mountains, central plain, and coastal plain [82,83],
which include all the plains in Beijing and Tianjin municipalities, Hebei province, and northern parts
of plains in Henan province and Shandong province. Due to long-term warm and dry climate and
intensive anthropogenic activities (agriculture, industry, and urbanization), the groundwater in the
NCP has been over-exploited since the 1970s [24]. More than 70% of groundwater exploitation is used
for irrigation in the NCP [84,85]. Based on groundwater well observations, some studies have reported
long-term groundwater level declines and GWS depletion in some parts of the NCP [24,83,86].
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Figure 3. (a) Topography of the North China. The black boundary outlines the NCP. The red boundary
shows the study region including the whole NCP and mountains in Hebei province and Shanxi
province. The white line shows the boundary of the North China Aquifer System, same as Figure 1.
The blue line shows the Yellow River. GWS rates from (b) GRACE; (c) WGHM; and (d) PCR-GLOBWB
in the North China during 2002–2014.

Zhong et al. [25] found the large-scale mass loss in the NCP using GRACE satellites, with a
rate of 2.4 cm/yr from 2003 to 2007. Similar mass loss signal in this region was also revealed by
other studies [35,36]. Further, Feng et al. [22] concluded that the majority of the mass loss is mainly
caused by groundwater depletion in the NCP and found a GWS depletion rate of 8.3 ± 1.1 km3/yr
(2.2 ± 0.3 cm/yr) from 2003 to 2010. Since the GWS depletion rate in shallow aquifers from the
government reports is only ~2.5 km3/yr in the same time period, far less than the GRACE estimate,
Feng et al. [22] concluded that the difference between the estimates from GRACE and official reports
indicate the great contribution of GWS depletion from deep aquifers in the NCP. Further study by
Huang et al. [43] revealed the heterogeneous GWS change features in the NCP, i.e., faster depletion in
the piedmont region of the NCP.

As shown in Figure 3b,d, GRACE-derived GWS rates show the GWS loss in the NCP with
relatively coarse spatial resolution and damped magnitude compared to the results from WGHM and
PCR-GLOBWB. At a spatial resolution of 0.5 degrees, GWS rates from WGHM and PCR-GLOBWB
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further highlight the significant GWS depletion in the NCP, consistent with some regional groundwater
models [87,88].

Figure 4a,b show groundwater level rates from 2005 to 2013 based on ground monitoring wells in
the NCP from unconfined and confined aquifers, respectively. Significant groundwater declines in
shallow unconfined aquifers are located in the piedmont region of the Taihang Mountains (Figure 4a);
while the groundwater depletion in confined aquifers occurs over the whole plain (Figure 4b).

Figure 4. Groundwater level rates based on ground monitoring wells from (a) unconfined and
(b) confined aquifers in the North China during 2005–2013.

For shallow unconfined aquifers, GWS changes can be estimated by multiplying phreatic
groundwater levels with specific yields. Based on the mean groundwater level changes in the NCP from
MWR and the mean specific yield of 0.06, the GWS rate in the NCP is −1.5 km3/yr during 2002–2014.
For deep confined aquifers, however, GWS changes contain elastic and inelastic components [89].
Elastic GWS changes can be estimated by multiplying water levels in confined aquifers with elastic
storage coefficients. The mean elastic storage coefficient of deep confined aquifers in the NCP is
0.00125, which is about 2% of the mean specific yield of shallow unconfined aquifers [22,87]. Thus, the
elastic GWS changes in the NCP is negligible. The other GWS change component, i.e., inelastic GWS
changes, represents the irreversible water storage released due to inelastic compaction of the aquifer
system [89]. Thus, land subsidence volume represents the change in water storage in the aquifer
system [89,90]. Based on the GPS observation network in the NCP, the surface vertical deformation in
volume is −6.3 km3/yr from 2002 to 2014 [91]. In Figure 5a, the time series of GWS changes in the NCP
from in situ observations represent a sum of GWS changes in unconfined aquifers from monitoring
wells and the long-term trend in GWS in confined aquifers from GPS observations.

As shown in Figure 5a, GWS changes in the NCP during 2002–2014 from WGHM and
PCR-GLOBWB mainly show a linear decline, at a rate of 12.8 ± 0.2 km3/yr and 9.7 ± 0.2 km3/yr,
respectively. GWS depletion rate in the NCP from GRACE is 7.2 ± 1.1 km3/yr for the same time period,
which agrees with the result from in situ observations (i.e., 7.8 km3/yr) better than those from WGHM
and PCR-GLOBWB. Good agreement between space- and ground-based observations indicates that
global hydrological models prone to overestimate the GWS depletion signal in the NCP. For example,
Döll et al. [11] also found that WGHM 2.2a overestimates the GWS depletion rate in the NCP in the
2000s (i.e., ~20 km3/yr) by approximately a factor of 4, compared with the independent estimates
from GRACE and from regional groundwater models. Döll et al. [11] attribute this overestimation of
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GWS depletion rate to the strong underestimation of diffuse groundwater recharge in the NCP from
WGHM. The updated WGHM 2.2b model, however, improves the simulation of GWS depletion signal
in the NCP significantly, although the overestimation still exists.
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Figure 5. (a) Time series of GWS changes in the NCP from GRACE, in situ observations, WGHM and
PCR-GLOBWB from 2002 to 2014. Shaded areas are estimated uncertainties in GRACE-derived GWS
changes. (b) Annual precipitation anomalies and PDSI values in the NCP from 2002 to 2014.

In addition to linear negative trend signal, GWS changes from in situ observations show significant
seasonal variability and interannual fluctuations. GRACE-derived GWS changes agree well with those
from in situ observations at seasonal and interannual timescales. Both of them reach maxima in early
February. Interannual fluctuations in GWS in the NCP from GRACE and in situ observations show
favorable agreement with annual precipitation anomalies. As shown in Figure 5, GRACE-derived
GWS recovery for 2003–2004 and 2012–2013 is consistent with positive precipitation anomalies in these
years. In contrast, accelerated GWS declines in 2002, 2006 and 2014 inferred from in situ observations
and from GRACE can be attributed to the strong droughts in these years (Figure 5).

The values of PDSI in the NCP are generally negative since 2002, which indicate a long-term
drying climate in the past decade (Figure 5b). This continuous drought condition in the NCP agrees
well with the long-term GWS depletion signal inferred from GRACE, ground observations, and
hydrological models. Temporal variability in PDSI, similar to annual precipitation anomalies, is also
consistent with interannual GWS changes from GRACE and ground observations (Figure 5).

3.2. Song-Liao Basin

Song-Liao Basin, located in the northeast of China, includes the plain regions of the Songhua River
Basin and the Liaohe River Basin (LRB) (Figure 1). In this study, we focus on the GWS changes in the
LRB considering the significant GWS depletion and the availability of ground well observations in this
region. The LRB is an important grain-production and heavy-industry base in China, covering an area
of 260,000 km2. Due to the rapid development of agriculture, industrialization, and urbanization and
consequent severe surface water pollution, groundwater has become a major source of water resources
utilization in the LRB [92–94]. About 60% of water consumption in the LRB is from groundwater in
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the past decade [66]. Long-term dry conditions and extensive groundwater mining for agricultural,
industrial and domestic consumption result in significant groundwater declines in the LRB in the past
two decades [94]. Based on GRACE data, Zhao et al. [95] found a GWS decline rate of 13.5 ± 1.9 mm/yr
from 2003 to 2010 and the largest GWS depletion rate of 26 mm/yr for 2005–2009 in Horqin Sandy
Land, i.e., the upstream of the Liaohe River including Tongliao City, which is consistent with limited six
monitoring well observations they collected from the CIGEM. Zhong et al. [46] found a GWS decline
rate of 6.8 ± 3.6 mm/yr during 2005–2011 in the western LRB using GRACE.

In the spatial domain, GRACE detects large-scale GWS depletion over the LRB during
2005–2009 (Figure 6b). WGHM shows significant GWS depletion near Tongliao and Shenyang;
while PCR-GLOBWB highlights the mass loss near Tongliao and Chifeng (Figure 6c,d). For temporal
variability in GWS, GRACE observes obvious interannual GWS variations during 2002–2014 (Figure 7a).
GRACE-derived GWS increased during 2002–2005, followed by a significant GWS decline from 2005 to
2009 at a rate of −5.0 ± 1.2 km3/yr (Table 1), and then groundwater recovered again since 2010. GWS
results from well observations also show a similar GWS declining rate in 2005–2009 (−5.1 ± 0.5 km3/yr,
Table 1) and a GWS increase in 2010–2013, consistent with GRACE results. PCR-GLOBWB, however,
only indicates a long-term GWS declining rate, similar to its estimates in the NCP.

Figure 6. (a) Topography of the LRB and its surroundings. The red boundary outlines the basin. The
white line shows the boundary of the Song-Liao Basin, same as Figure 1. Locations of three main
cities in the LRB, i.e., Shenyang, Chifeng, and Tongliao, are also shown. GWS rates from (b) GRACE,
(c) WGHM and (d) PCR-GLOBWB in the LRB and its surroundings during 2005–2009.
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Figure 7. (a) Time series of GWS changes in the LRB from GRACE, PCR-GLOBWB and well
observations from 2002 to 2014. Shaded areas are estimated uncertainties in GRACE-derived GWS
changes; (b) Same as (a), but from WGHM and groundwater bulletins; (c) Annual precipitation
anomalies and PDSI values in the LRB from 2002 to 2014.

Table 1. GWS rates (km3/yr) in the LRB based on GRACE, well observations, HMs and groundwater
bulletins for 2005–2009 and 2002–2014.

GWS Rates 2005–2009 2002–2014

GRACE −5.0 ± 1.2 −0.5 ± 0.5
Well observations −5.1 ± 0.5 -

PCR-GLOBWB −2.0 ± 0.1 −1.8 ± 0.1
WGHM −1.3 ± 0.1 −0.6 ± 0.1

Groundwater bulletins −1.1 ± 0.2 −0.4 ± 0.1

Different from PCR-GLOBWB, changes in GWS from WGHM show similar interannual
fluctuations as results from GRACE and well observations, but with significantly smaller magnitude
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(Figure 7b). Note that different scales were used for y-axes in Figure 7a,b. Based on the Groundwater
Bulletins of China Northern Plains (GBCNP) and the Groundwater Bulletins of Song-Liao River
Basin (GBSLRB) released by the MWR, annual GWS anomalies in the plain area of LRB are in good
agreement with results from WGHM at interannual time scales (Figure 7b). It should be noted that the
groundwater bulletins only provide annual GWS changes in the plain of LRB. However, the largest
GWS depletion occurs in the mountain regions, i.e., in Chifeng, as shown in Figure 8. Thus, the GWS
depletion signal from bulletins is less than that from monitoring wells and GRACE. Compared with
GRACE and well observations, both WGHM and PCR-GLOBWB underestimate the amplitude of
temporal variability of GWS changes signal in the LRB (Figure 7a,b). Nevertheless, in the spatial
domain, GWS declines in Chifeng and Tongliao can still be captured by WGHM and PCR-GLOBWB
(Figures 6 and 8).

Figure 8. Groundwater level rates based on ground monitoring wells in the LRB and its surroundings
during 2005–2013.

In addition, interannual variability of GWS from GRACE, well observations, WGHM, and
groundwater bulletins agrees well with annual precipitation anomalies and PDSI over the LRB.
As shown in Figure 7, during the drought conditions from 2006–2009, the GWS declined significantly.
Due to more precipitation in 2010 and 2013, the groundwater recovered correspondingly as shown
in results from GRACE and WGHM. PCR-GLOBWB, however, fails to simulate interannual GWS
variations in the LRB well.

3.3. Tarim Basin

Based on the WHYMAP delineation of world’s largest aquifer systems, the Tarim Basin aquifer is
defined as the plain area of Tarim River Basin (TRB), with an area of 450,000 km2 (Figure 1). In addition
to the plain area, the entire TRB also includes the southern foot of the Tien Shan Mountains, eastern
foot of the Pamir Mountains, and northern foot of the Kunlun Mountains (Figure 9), where melting
glaciers and snowpack are primary contributors to streamflow and groundwater recharge over the
TRB [96,97]. As the largest endorheic basin in China, the TRB is also known as the driest region
on the Eurasian landmass with the Taklamakan Desert in its center occupying 33% of the TRB’s
area. The average annual precipitation in the TRB is about 120 mm [98]; while the average annual
potential evapotranspiration reaches 1000 mm [99]. Due to increasing temperature in the TRB since
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the 1970s [98,99], glacier retreat and enhanced snowmelt in the mountain regions of TRB, especially in
the Tien Shan Mountains, lead to significant seasonal changes of glacier-fed runoff in the TRB [96].

Figure 9. (a) Topography of the TRB and its surroundings. The red boundary outlines the plain region
of TRB. The blue line shows the boundary of the TRB, same as Figure 1. Locations of two cities where
well observations are available, i.e., Korla and Kashgar, are also shown. GWS rates from (b) GRACE,
(c) WGHM and (d) PCR-GLOBWB in the TRB and its surroundings during 2002–2014.

Although the TRB is extremely arid, GRACE satellites still provide useful information on TWS
changes in the basin [34,100,101]. Based on GRACE data, Yang et al. [101] found an increasing TWS
rate of 1.6 ± 0.6 mm/yr (1.7 ± 0.6 km3/yr) over the TRB during 2003–2011. However, Yang et al. [34]
and Zhao et al. [100] showed a negative GRACE-derived TWS rate of −1.6 ± 1.1 mm/yr and
−1.4 ± 0.5 mm/yr during 2002–2015, respectively. The discrepancy between the results in the first
study and the following two studies can be attributed to the different time spans used in these studies,
considering the significant interannual variability in TWS from 2002 to 2015 in the TRB [34,100].
It should be noted that only gridded Level-3 GRACE products were used in these studies, without
considering the leakage errors in the products. Although gridded scaling factors were used in their
studies to correct leakage errors and signal attenuation in estimating TWS changes, there are large
uncertainties in these scaling factors [53,102]. Because the scaling factors were calculated based on
hydrological models, which generally fail to simulate actual TWS changes accurately especially in
arid and semiarid regions [102]. Take the TRB as an example, the glacial meltwater from surrounding
mountains has a decisive effect on river runoff and water availability over the basin [96]. However,
glacier dynamics cannot be included in most models. It will result in large uncertainties in scaling
factor estimates, which are calculated based on these models.

As shown in Figure 9, there is no significant or undetectable GWS rate in the TRB simulated
by WGHM or PCR-GLOBWB. However, GRACE detects a significant mass increase in the Kunlun
Mountains and mass loss in the Tien Shan Mountains. It is worth noting that only changes in soil
moisture and snow were simulated from models and subtracted from GRACE-derived TWS changes
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to obtain GWS changes. Thus, trend signals from other TWS compartments, e.g., glacier and surface
water, might be non-negligible and included in GWS rates from GRACE. For the TBR, the mass loss
to the north of TBR shown in Figure 9b is confirmed to be attributed to glacier mass loss in the Tien
Shan Mountains [78,79]; while the mass increase to the south of TBR can be explained by lake mass
increase in the TP [103]. Thus, the nominal GWS rates in these two regions are caused by changes in
other TWS compartments rather than GWS. If the entire TBR is included to obtain GWS changes using
GRACE and models, significant non-groundwater mass change signals outside the basin will leak into
the basin and result in the biased GWS change estimates in the TBR. To reduce the leakage effect, we
only calculated the time series of GWS changes in the plain area of TBR, following the definition of the
Tarim Basin aquifer from WHYMAP. For temporal variability in GWS, the magnitudes of GWS changes
from WGHM and PCR-GLOBWB are far smaller than that from GRACE (Figure 10). An obvious GWS
decline from 2006 to 2009 is detected by GRACE (Figure 10a), consistent with less annual precipitation
in the same period (Figure 10b).
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Figure 10. (a) Time series of GWS changes in the Tarim Basin during 2002–2014 from GRACE, WGHM,
and PCR-GLOBWB. Shaded areas are estimated uncertainties in GRACE-derived GWS changes.
(b) Annual precipitation anomalies and PDSI values in the Tarim Basin from 2002 to 2014.

Unfortunately, there are few long-term monitoring well observations available over the TRB.
Only three monitoring wells are located in Korla at the northeast of TRB, with groundwater level data
available from 2007 to 2013. For the other three wells in Kashgar at the west of TRB, there are many
gaps in groundwater level data. As shown in Figure 11, the groundwater tables are generally deeper
in Korla than those in Kashgar. Steady groundwater level declines are observed in Korla at a rate of
~0.6 m/yr during 2007–2013 (Figure 11). Although there is no information on specific yields in the TRB
to translate level changes into storage changes, the negative level rate from ground wells is consistent
with the GWS decline from GRACE during the same period. Additionally, the well station #3 in
Kashgar shows an obvious recovery of water level in 2010, which is also consistent with GRACE-based
GWS results and positive annual precipitation in the same year.
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Figure 11. Time series of groundwater table depths in six wells in the Tarim Basin from 2007 to 2013.

4. Discussion

4.1. Errors in GRACE-Derived TWS Changes

According to Equation (1), GWS changes can be estimated as the difference between
GRACE-derived TWS changes and non-groundwater storage changes from models. Therefore,
uncertainties in GWS changes can be resulted from errors in GRACE-derived TWS changes or from
errors in non-groundwater storage changes.

For traditional GRACE products in the form of SH coefficient parameters, errors in TWS changes
include GRACE measurement errors and post-processing errors. GRACE measurement errors arise
from errors in the measurements of satellite payloads, and errors from the imperfect removal of oceanic
and atmospheric mass redistribution during GRACE processing. The measurement errors can be
estimated as the root mean square (RMS) of the residuals after removing seasonal cycles and long-term
trend from original TWS time series [104]. This method might overestimate the errors if there are
significant interannual signals in original time series. In addition, the RMS over the ocean with the
same latitude zone as the study region on land can be used empirically as the measurement errors
too [105]. These two methods generally give comparable estimates of measurement errors [105].

Given the limited accuracy of GRACE observations and orbit configuration of GRACE satellites,
GRACE products are generally expressed as SH coefficients with a limited degree and order. Low
signal-to-noise ratios for high degree and order and correlated errors in SH coefficients result in
north-south stripes in the spatial domain. Therefore, further post-processing for GRACE data (i.e.,
destriping and smoothing) is needed to remove noises and stripes, which will inevitably result in
signal leakage and attenuation. To obtain unbiased TWS changes, leakage removal and signal rescaling
should be considered, which highly depend on model-simulated TWS in general. Signal distortion
during destriping and smoothing, i.e., errors in leakage corrections and rescaling, can be considered as
post-processing errors.

For GRACE mascon products in terms of mass concentration parameters, the mass changes are
defined as point masses or tiles, in which leakage effect is prone to be minimized. For mascon solutions
from the Jet Propulsion Laboratory (JPL), errors in gridded TWS results are provided directly [55].
For CSR mascon solutions, however, no error information is available [54]. Thus, the methods for
measurement error estimation for traditional SH products can be used to quantify errors in CSR
mascon-derived TWS changes [106,107].

In addition to aforementioned uncertainties, TWS changes based on GRACE products from
different agencies using various data-processing strategies are likely to show significant discrepancies



Remote Sens. 2018, 10, 674 17 of 25

in some regions. To demonstrate these discrepancies in the spatial domain, we compared the TWS
rates over the TP and its surroundings using different GRACE products and post-processing methods.
As shown in Figure 12, the most obvious mass loss signal is located in northern India, due to extensive
irrigation with groundwater depleted [15,16]. Additionally, there exist significant mass increase in
the ITP, which can be attributed to lake mass increase [103] or groundwater increase [108]. However,
obvious differences among various methods are illustrated in Figure 12. TWS rates based on CSR
SH products with the DDK4 filtering applied show relatively uniform mass increase at the north of
ITP (Figure 12b); while TWS rates based on the same products but with 100-km Gaussian smoothing
applied highlight three mass increase domes located at the northeast, northwest, and south of ITP,
respectively (Figure 12c). However, TWS rates from CSR mascon products only indicate the significant
mass gain at the northeast of ITP (Figure 12d). Results from JPL mascon products show two mass
increase domes at the northeast and northwest of ITP, respectively (Figure 12e). Figure 12f further
shows TWS rates from JPL mascon with scaling factors applied. Significant spatial differences in TWS
rates in Figure 12 indicate the potential uncertainty caused by selecting difference GRACE solutions
and methods.

Figure 12. (a) Topography of the TP and its surroundings. TWS rates from GRACE during 2002–2014
based on CSR SH products with (b) the DDK4 filtering, (c) 100-km Gaussian smoothing applied,
and based on (d) CSR mascon products, (e) JPL mascon products, and (f) JPL mascon products with
gridded scaling factors applied. The white line shows the boundary of TP. The red boundary outlines
the Inner TP.
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4.2. Errors in Non-Groundwater Storage Changes

To obtain GWS changes, other water storage components, simulated by models or measured by
observations, need to be removed from GRACE-derived TWS changes. Errors in these components
will inevitably result in uncertainties in final GWS estimates. In situ soil moisture monitoring networks
are still scarce in most regions of the world. Snow water equivalent products from passive microwave
sensors also have large uncertainties [109]. Therefore, simulated SMS and SWES from models are
generally used to isolate GWS changes from GRACE-derived TWS changes. However, there are
inevitable errors in model-simulated water storage, due to uncertainties in input meteorological
forcing data and imperfect simulation of models to mimic actual hydrological processes. RESS from
lakes, reservoirs, and rivers can be simulated by some hydrological models or monitored by limited
ground- and space-based observations [11,18,19,110].

We take SMS changes in the TP from GLDAS LSMs as an example to demonstrate the uncertainties
in models. Figure 13 shows the comparisons of long-term SMS rates from four versions of GLDAS.
Although these four GLDAS LSMs adopt the same forcing data, there are still significant discrepancies
among these model outputs. The magnitudes of SMS rates from MOSAIC are largest among four
models; while the estimates from CLM are far less than those from other three models (Figure 13).
The significant differences among them in the TP exemplify the uncertainties in GLDAS LSMs due to
different parameterization schemes of land surface. Other reasons for large uncertainty in simulated
SM over the TP could be the limitation of available ground hydrometeorological observations to
constrain models in this region and the complexity of hydrologic processes among surface water, soil
water, glaciers, snowpack, groundwater, and permafrost [111]. Especially, the TP contains the largest
alpine permafrost area in the world [112]; while permafrost-related hydrologic processes still fail to
be simulated in most global models, which will attribute to large uncertainty in models over the TP.
Nearly all GRACE-related mass balance studies on the TP highly reply on hydrological models, only
with which other components, e.g., surface water [113], glaciers [80,114], and groundwater [108], can
be disaggregated from GRACE-observed total mass changes. Therefore, there would be potentially
large uncertainties in these studies, due to imperfectly simulated hydrologic processes in models
over the TP. It remains a challenge to quantifying GWS changes in the TP accurately. Fortunately,
most of regions, where groundwater has been depleted significantly due to agriculture irrigation or
other anthropogenic activities, are in arid or semi-arid plains. Therefore, non-groundwater storage
changes and their errors from models are relatively small in these regions. Thus, GRACE along with
ancillary models can still be used to estimate long-term GWS changes accurately in places where the
contributions from other mass change components are relatively small.
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Figure 13. SMS rates from GLDAS LSMs during 2002–2014 with the versions of (a) NOAH, (b) VIC,
(c) MOSAIC, and (d) CLM.

5. Conclusions

GRACE satellites have revolutionized our understanding of the Earth’s gravity field changes,
and the inferred mass transport and redistribution. From a hydrological perspective, GRACE
provides a novel measure of water storage/flux changes from space, and brings new insights into
global/regional water cycling and climate change research. As an important component of terrestrial
water, groundwater is poorly monitored by ground observations at regional and global scales. By
inferring column-integrated water storage changes from time-variable gravity fields observed by twin
satellites, GRACE mission provides a new dimension for measuring GWS changes from space.

Among three main aquifer systems in China, GRACE detects significant GWS depletion in the
NCP, with a rate of 7.2 ± 1.1 km3/yr over the period 2003–2014, consistent with the estimate from
ground well observations. Compared to GRACE and ground observations, two global HMs (WGHM
and PCR-GLOBWB) also captured the GWS depletion signal in this region, but with overestimated
rates. Long-term groundwater decline in the NCP can be attributed to a decade-long drought period
and intensive groundwater-based irrigation in this region. Ground well observations also highlight
the heterogeneous contributions of GWS depletion from different aquifers. In the piedmont region
of the Taihang Mountains, groundwater depletion mainly occurred in unconfined aquifers; while
groundwater from confined aquifers was depleted over the whole NCP. For the LRB, significant
interannual fluctuations in GWS were detected by GRACE, consistent with annual precipitation
anomalies in the region. GRACE-derived GWS in the LRB declined at a rate of 5.0 ± 1.2 km3/yr from
2005 to 2009, and recovered slowly since 2010, agreeing remarkably with ground well observations.
However, GWS decline rates simulated from WGHM and PCR-GLOBWB are underestimated over
the period 2005–2009. Ground well observations highlight that the depletion mainly occurred in
the western part of LRB. For the Tarim Basin, in the spatial domain, there is no significant GWS
depletion signal within the basin based on GRACE. In addition, there exists significant long-term
non-groundwater mass loss/gain signal on the north/south of the basin. Limited ground well
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observations show groundwater level declines on the north of the basin, consistent with slowly
declining time series in GWS from GRACE.

GRACE-based GWS change estimation still contains large uncertainties due to the errors in both
GRACE-derived TWS changes and non-groundwater storage changes from models. Any uncertainty in
model-simulated storage changes, especially in soil moisture, will result in uncertainties in final GWS
estimates. Additionally, potential significant contributions from surface water and glaciers, which
are not considered in most LSMs, might cause biases in final GWS estimates too. Another challenge
is the errors in GRACE-derived TWS changes. At present, the original GRACE Level-2 products are
still dominated by correlated errors; thus, post-processing is needed to suppress the noises, which in
turn has resulted in signal attenuation. Current spatial resolution of GRACE is limited to ~300 km or
longer, due primarily to intrinsic measurement errors in satellite payloads and the orbit configuration
of satellites. Coarse resolution of GRACE also limits its applications in groundwater hydrology [115].
GRACE has ended science operations in September 2017, after more than 15 productive years in
orbit [116]. Its successor mission, GRACE Follow-On (GFO), is scheduled to be launched in May 2018
to continue GRACE’s climate data record. A new payload, i.e., the laser-ranging interferometer (LRI),
will be on the GFO satellites as an experimental instrument, and on the future Next Generation Gravity
Mission (NGGM) satellites. New constellation designs along with LRI onboard NGGM satellites will
significantly improve the spatial and temporal resolution of TWS changes as compared to GRACE,
and provide a great potential to further enhance our understanding of GWS changes at regional scales
in the near future [117].
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