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Abstract: Although advances in remote sensing have enhanced mapping and monitoring of irrigated
areas, producing accurate cropping information through satellite image classification remains elusive
due to the complexity of landscapes, changes in reflectance of different land-covers, the remote sensing
data selected, and image processing methods used, among others. This study extracted agricultural
fields in the former homelands of Venda and Gazankulu in Limpopo Province, South Africa. Landsat
8 imageries for 2015 were used, applying the maximum likelihood supervised classifier to delineate
the agricultural fields. The normalized difference vegetation index (NDVI) applied on Landsat
imageries on the mapped fields during the dry season (July to August) was used to identify irrigated
areas, because years of satellite data analysis suggest that healthy crop conditions during dry seasons
are only possible with irrigation. Ground truth points totaling 137 were collected during fieldwork
for pre-processing and accuracy assessment. An accuracy of 96% was achieved on the mapped
agricultural fields, yet the irrigated area map produced an initial accuracy of only 71%. This study
explains and improves the 29% error margin from the irrigated areas. Accuracy was enhanced through
post-classification correction (PCC) using 74 post-classification points randomly selected from the
2015 irrigated area map. High resolution aerial photographs of the 74 sample fields were acquired by
an unmanned aerial vehicle (UAV) to give a clearer picture of the irrigated fields. The analysis shows
that mapped irrigated fields that presented anomalies included abandoned croplands that had green
invasive alien species or abandoned fruit plantations that had high NDVI values. The PCC analysis
improved irrigated area mapping accuracy from 71% to 95%.

Keywords: remote sensing; accuracy assessment; unmanned aerial vehicle; irrigated areas; mapping;
field verification

1. Introduction

Current inventories and reported statistics on irrigated areas, particularly in developing countries,
are varied and inconsistent due to the host of different methods and data used to map and estimate the
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irrigated areas [1–3]. As a result, there are significant knowledge gaps and uncertainties that remain
in reported statistics of irrigated areas that are supposed to inform investment decisions and policy
making [4]. The Comprehensive Africa Agriculture Development Program (CAADP) set a target to
expand area under irrigation on the continent by at least 5 million ha by 2025 [5,6]. Achieving such a
goal will require the reduction of anomalies and uncertainties in reported information on irrigated
areas, especially on informal irrigation.

As the economies of most African countries are agro-based, their economic development hinges
on irrigation expansion. However, investment and policy change has been slow due to the lack of
accurate information on the status of existing irrigation [1,7]. There are large variations between
reported statistics of irrigated areas and the actual irrigated areas in African and Asian countries [1,8].
These variations and uncertainties render associated policies and investment plans, which base
their analyses on these numbers, much less effective. The unavailability of an accurate, up-to-date
and comprehensive baseline database and timely reporting of changes in irrigated areas and the
corresponding crop production hinders economic development and slows the implementation of
climate change adaptation strategies [1].

Knowledge on irrigated areas is important for water planning and management, particularly
in this era of resource scarcity and climate change [9]. Irrigation plays a pivotal role in ecosystems
related to water and food, and eventually human well-being and the environment [10,11]. Irrigation
is also the largest water use sector in the world, accounting for about 70% of the world’s freshwater
withdrawals [12,13]. National and regional food security targets in developing countries are often built
on irrigation development [6,14]. There are renewed efforts to ensure food and water security as set out
by many countries, development agencies and, globally, the United Nations’ Sustainable Development
Goals (SDGs). Specifically the SDGs 1, 2, and 6 on poverty eradication, zero hunger, and provision of
clean water and sanitation, respectively, are aligned to food and water security. Providing accurate
statistics on irrigated areas benefits decision making and sustainable water management through
improved crop water productivity, which helps countries achieve these goals.

The advent of remote sensing has enabled easier mapping and monitoring of irrigated areas
to better manage water resources and agricultural development [1,8,15]. Valid for application at
multiple scales such as global scale [16], regional scale [17], and basin scale [18], remote sensing
allows mapping large areas within a short period of time and at a low cost. More importantly, remote
sensing can map areas actually irrigated using vegetation indices such as the normalized difference
vegetation index (NDVI) and other algorithms such as Fourier analysis which assesses phenology [1,18].
This helps to map areas that are actually being irrigated rather than areas which are equipped for
irrigation. There can be profound differences between the two: sometimes the actual irrigated area
is larger than the areas equipped for irrigation, particularly in regions where agriculture is more
fragmented with informal irrigation. Sometimes, the actual irrigated area is much smaller, mainly
in the case of large public irrigation schemes where the actual command areas often shrink due to
lack of maintenance [19]. Remote sensing overcomes some of the problems associated with only using
infrastructure information to estimate irrigated area and provides a snapshot of the real situation
during the mapping period [20]. An analysis of the snapshots gives a clearer indication of the dynamics
of the irrigated areas. It further helps understand the ecological footprint of food production, assesses
the potential of agricultural development in regions of limited land and water resources, and achieves
a balance between agricultural and natural ecosystems [1].

The accuracy of irrigated areas mapped through remote sensing can be enhanced by
post-classification correction (PCC) through ground verification of the mapped fields and knowledge
based logic rules [20–22]. This study outlines the use of an unmanned aerial vehicle (UAV), also called
a drone, to improve the mapping accuracy of irrigated fields. Agriculture fields (irrigated and rainfed)
were delineated using the supervised classification of Landsat 8 imageries. Winter NDVI data derived
from Landsat 8 was then used to separate irrigated and rainfed areas. The aim of this study was to
improve the mapping accuracy of irrigated fields.
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2. Materials and Methods

2.1. Study Area

The study was done in the former homelands (areas allocated to indigenous black peasants
during apartheid) of Venda and Gazankulu (Figure 1), located in Vhembe and Mopani districts in the
northeast of Limpopo Province. The two former homelands were chosen as they have the highest
concentration of irrigated areas in Limpopo Province. Within the Limpopo Province, the Mopani
District (in which former Gazankulu homeland is located) lies on the south-east of Vhembe District
(where former Venda homeland is located). The Vhembe District shares borders with Botswana
(northwest), Zimbabwe (north), and Mozambique (east), while Mopani District shares borders with
Mozambique in the east through the Kruger National Park. The study area has a combined area of
16,774 km2, whose population reside mostly in towns of Thohoyandou, Giyani and Tzaneen [23].
The Limpopo River forms the border between the study area and the international neighbours. In the
2017 ground truthing trip, local municipalities of Thulamela and Makhado (Vhembe District) and
Greater Giyani and Greater Letaba (Mopani District) were visited.
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Figure 1. Locational map of Limpopo Province in South Africa, showing irrigated areas in the province
and the study area.

The topography of the area is varied with altitude ranging from 240 to 1400 m above sea level.
The Soutpansberg mountain range stretches in an east-west direction for approximately 150 km,
with the eastern half breaking up into three parallel ranges with fertile valleys between them [24].
The main rivers flowing through the study area and their mean annual runoff (MAR in million m3)
are the Nzhelele (89.4), Nwanedi (24.5), Groot Letaba (380.9), Middle Letaba (151.9), Shingwedzi
(89.8), Mutale (157.1), and Luvuvhu (362.9) [25,26]. The northern section between the mountains and
the Limpopo River is hot and arid. Parts of the central zone as well as the area to the south of the
Soutpansberg range have a hot, humid, subtropical climate with high rainfall averaging 500 mm per
year, and are suitable for agriculture and the growing of subtropical fruits [27]. Rainfall mainly occurs
in the summer (October to April) whilst winters (May to September) are mild and generally frost-free.
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Vembe and Mopani districts are predominantly rural and are known as a legendary cultural
hub, and a catalyst for agricultural and tourism development [23]. There are scattered commercial
farms as well as irrigation schemes producing market garden and other cash crops for sale in nearby
towns. Smallholder farms around mountainous areas mostly use gravity irrigation throughout the
year. Most village households maintain gardens during the summer months to grow the staple crop,
maize. Other crops include vegetables, pumpkins, sweet potatoes, groundnuts, sorghum, and finger
millet. There are fruit trees in most gardens; the most commonly grown fruits are mangoes, papayas,
avocados, bananas, and plantains, with some also producing citrus fruits and macadamia nuts [27].

2.2. Delineation of Agriculture Fields

Cloud free Landsat 8 [28] imageries for the year 2015, with a spatial and temporal resolution of
30 m and 16 days respectively, were used to delineate agricultural fields of the study area. Of the
many Landsat scenes that were downloaded from the United States Geological Surveys (USGS)
Earth-Explorer website [28], only eight scenes, for the months of July and August of 2015 (Table 1) were
used in the classification of agriculture fields and extraction of winter irrigation areas. The visibility of
most summer satellite imageries was deterred by clouds, making it impossible to make a cloud free
mosaic for the summer season. The Landsat 8 scenes that were used, and their dates of acquisition are
listed in Table 1.

Table 1. Landsat 8 scenes used in the classification and extraction of winter irrigation.

Image ID Path/Row Date Acquired Sun Azimuth Sun Elevation

LC81690762015220LGN00 169/076 2015/08/08 41.37094039 39.80762522
LC81690772015220LGN00 169/077 2015/08/08 40.83829258 38.57345370
LC81690782015220LGN00 169/078 2015/08/08 40.35146455 37.33107129
LC81700752015211LGN00 170/075 2015/07/30 40.17890060 39.09253599
LC81700762015211LGN00 170/076 2015/07/30 39.67319419 37.84354791
LC81700772015211LGN00 170/077 2015/07/30 39.21111909 36.58690461
LC81710762015202LGN00 171/076 2015/07/21 38.17775530 36.30092157
LC81710772015202LGN00 171/077 2015/07/21 37.77002560 35.02597225

The satellite imageries were layer-stacked and mosaicked into three segments. A maximum
likelihood supervised classifier was applied as it enables recognizing classes in the imageries based
on prior knowledge of the area (personal experience, ground truth visits, and Google Earth zoom-in
views). Prior knowledge of the area benefited the selection and setting-up discrete samples for each land
use/cover class and assigning names to the classes. These samples, called training sites, and spectral
signatures (mean values and variance of digital number (DN)) of each of the training sites were
computed in ERDAS IMAGINE on the imageries. At least 15 training sites and spectral signatures
were created for each of the four classes of landuses considered: (a) water; (b) urban and bare areas;
(c) natural vegetation and (d) agriculture, although the focus was agricultural area. These were used
as input to perform a maximum likelihood supervised classification in ERDAS IMAGINE to delineate
agricultural fields. Using statistical processing, every pixel on the imageries was compared with the
signatures on the training sites and was assigned to the classes it resembled. Fruit plots and shadenets
that have clear boundaries were classified as agriculture.

2.3. Delineation of Irrigated Areas

NDVI computed on same Landsat 8 (Table 1) cloud free winter imageries (June to August) were
used to identify irrigated areas on the agricultural areas map during the winter season. NDVI
is a vegetation index derived from the reflectance values of near infrared and red portions of
the electromagnetic spectrum, and is used to quantify photosynthetic capacity, moisture stress,
and vegetation productivity [29]. NDVI is calculated as follows [30].
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NDVI =
NIR − R
NIR + R

(1)

where, NIR represents the spectral reflectance in near infrared band and R represents the red band.
Chlorophyll, which is the primary photosynthetic pigment in the plant absorbs visible light (0.4–0.7 µm)
bands but reflects infrared light (0.7–1.1 µm) wavelengths. Healthy vegetation reflects more infrared
and absorbs more red and blue portions of the electromagnetic spectrum. The blue portion is affected
by atmospheric scattering, hence the use of red and near infra-red bands to calculate NDVI and other
vegetation indices. In arid areas and dry season, there is less absorption of the visible light and low
reflection of the infrared light, thereby a low NDVI value and the opposite applies in humid areas and
wet seasons. NDVI values range from −1 to +1 where 0 to 1 represents high plant productivity, and −1
to 0 represent no vegetation cover, presence of clouds, water, or glaciers. NDVI was calculated from
the Landsat 8 cloud free winter images shown on Table 1.

An NDVI threshold of 0.14 was used to separate irrigated from rainfed areas during the dry
season, which falls during the winter season in the study area. The selection of the 0.14 NDVI threshold
value was based on feature extraction method, comparing the Landsat 8 false color composite and
the NDVI image [31]. Pixels with NDVI values above the threshold value were classified as winter
irrigated areas and those below were classified as non-irrigated. This was based on the assumption
that in the study area crops could have healthy conditions during the dry winter season only when
under irrigation. Thus, any pixel within agricultural areas with NDVI above the NDVI threshold
should be irrigated areas. Post-classification techniques were applied in ArcGIS 10 to separate irrigated
and rainfed areas.

2.4. Field Data Collection

Two sets of field surveys were conducted for field verification, accuracy improvement and
post-classification correction on both agricultural and irrigated areas respectively. The first set of field
survey was manually done in the field using Handheld Android GPS compatible with Open Data Kit
(ODK) Collect. The survey was done in the months of September and October of 2014, 2015, and 2016
as shown on Figure 2. Sample fields of both irrigated and rainfed areas were randomly surveyed as the
purpose was mainly to assess the mapping accuracy and also gain understanding of the ground reality
during pre-processing. The second fieldwork which was done in 2017 used an UAV to assess the
accuracy and to refine/enhance irrigated fields that were derived from the remotely sensed agriculture
fields. Thus, the second fieldwork was mainly for post-classification correction (PCC) of irrigated areas.
The first fieldwork produced 137 pre-classification ground-truth points and the second produced
74 points (Figure 2). The 137 points produced an accuracy of 96% on the agricultural areas map, but the
accuracy reduced to 71% on the extracted irrigated areas map. This reduction in accuracy of irrigated
areas necessitated the PCC analysis.

Although the achieved 96% accuracy of agriculture fields is quite acceptable for this exercise, there
was need to refine the accuracy of the irrigated area map which was 71%. The sampling method used
during fieldwork was random, except instances when smallholder irrigation schemes were surveyed.
The surveys targeted smallholder farming plots which are generally difficult to map because of their
small size. The surveys focused on the former homelands of Venda and Gazankulu. Former homeland
areas are predominantly smallholder farming areas occupied by peasants who own very small fields
of about 2 ha in area [32]. The high density of irrigated areas in the former homelands of Venda
and Gazankulu motivated their selection for the study. Although the 2014, 2015, and 2016 fieldwork
used a more systematic sampling method, as smaller and more isolated cropped areas were visited,
the selection was still random. Thus, the PCC identified the misclassified land parcels, rectified them,
and improved the mapping accuracy. The ground survey points collected in the study area are shown
in Figure 2.
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2.5. Use of UAVs in Post-Classification Correction

The Phantom 4 Pro UAV (by DJI) (www.dji.com/phantom-4-pro) was used during irrigated areas
field survey. It is a low cost UAV that flies at a height of 500 m and travels a distance of 5 km from
take-off point. It has a maximum flight time of 30 min, therefore extra batteries need to be taken during
field surveys. Its built in camera has five-directions of obstacle sensing, which is made up of vision and
infrared sensors that enables it to intelligently avoid obstacles during flight. The use of UAV needs to
take into account local privacy laws and area restrictions. In this study, there were no local restrictions
on the use of UAVs for scientific study.

The UAV was indispensable in exploring small and isolated agricultural plots and verifying
whether they were actually irrigated. The UAV was used during the PCC as an addition and/or
alternative to manual field verification because of its flexibility to survey previously inaccessible and
remote fields. Thus, it was envisaged that an UAV could provide an alternative approach to ground
truthing, and that it could result in even greater accuracy. Through the UAV aerial photographs and
videos taken in 2017, we identified that most of the misclassified fields were abandoned fields and
smallholder gardens which are irrigated using simple irrigation tools like handheld jars and hosepipes.
The exercise was aided by interviews with local people and farmers. Time series Google Earth images
were also used to evaluate historical changes in the land use/cover of the targeted irrigated fields.
The exercise was carried out on 74 mapped irrigated fields, assessing their accuracy. Where farmers
and locals were available, they were interviewed to further verify whether the mapped fields were
irrigated in the winter of 2015. Where there were no people to interview, the following assumptions
were made:

1. At indicated irrigated fields where irrigation was taking place during the winter of 2017, it was
assumed that it was also irrigated in the winter of 2015, as was also verified on 2015 Google Earth.

www.dji.com/phantom-4-pro
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2. At indicated irrigated fields where there were agricultural activities but without any sign of
irrigation and with no people to interview, the field was deemed to be rainfed.

3. At indicated irrigated fields with no sign of agricultural activity nor irrigation infrastructure on
the UAV photograph or on time series Google Earth images, it was assumed that the field was
never irrigated.

With these knowledge based logic rules, 10 plots that had been mapped as irrigated were
removed, since there was not enough evidence to confirm that irrigation ever took place in the
winter of 2015. The PCC technique was, therefore, used on 74 randomly selected irrigated plots.
The UAV aerial photographs and videos were used to reclassify targeted mapped irrigated fields more
accurately, as plots without evidence of irrigation were removed and overestimated irrigated fields
rectified. The analysis was aided by interviews of local people who had knowledge of farming history.
Misclassifications were generally more evident on smallholder fields of about 2 ha in size.

2.6. Post-Classification Correction Process

The UAV was essential during post-classification correction and refinement of class assignment of
areas classified as irrigated but which showed some anomalies and were not accurately representing
the reality on the ground. The derived irrigated area map had noisy patches (areas that were being
classified as irrigated due to high NDVI values yet were not actually irrigated) due to spectral similarity
during the classification process. For example, some vegetated land parcels were misclassified as
agricultural land and therefore, during the NDVI analysis, were picked as irrigated due to high
vegetation richness. These misclassified irrigated fields included abandoned croplands that had
been replaced by invasive alien species which are green throughout the year. The challenge was
exacerbated by the fact that the study looked at all crops grown in the province, which gave various
spectral reflectance. Thus, the study looked into vegetation richness during the dry season to detect
irrigated fields.

Although the procedure used to classify irrigated areas and differentiate them from rainfed areas
is appropriate, it also picked some land parcels that were not actually irrigated. The PCC was, therefore,
applied to: (a) minimize the presence of misclassified fields through on-field verification with an UAV
to better comprehend current landuse; (b) cross-check the mapped fields on Google Earth; (c) minimize
the misclassification by removing the errant fields and improving the mapping accuracy. The UAV
was flown to mapped irrigated fields for a detailed assessment and verification of whether they were
actually irrigated areas. The advantage of a UAV is that it produces high resolution and detailed
aerial photographs of the area of interest. UAVs also enable accessing previously unreached remote
and isolated fields. As the aim of the study was to improve the accuracy of mapping irrigated areas,
the UAV is also the most convenient tool to explore an area for the source of water used for irrigation.

3. Results and Discussion

Of the 74 post-classification ground truth points, 71% were correctly mapped, but 29% were
wrongly classified as irrigated. Misclassified irrigated fields were mainly abandoned croplands that
had been infested with invasive alien species that where always green, or abandoned fruit plantations
that still had productive trees and thus showed high NDVI values. Also there were some vegetated
areas that were mapped as irrigated. The PCC analysis improved the mapping accuracy of irrigated
areas as 10 fields that had no evidence of irrigation were removed.

Figure 3a is an UAV aerial photograph of a field that was identified as irrigated yet not actually
irrigated as it is an abandoned fruit plantation. However, a closer look at the mango orchard
gave evidence of an irrigation footprint through the presence of unused micro drip irrigation pipes
(Figure 3b). However, the field had clearly been abandoned a long time ago. After interviewing
locals in the area it was found that the orchard was abandoned in 2004. The UAV aerial photograph
(Figure 3b) shows that part of the orchard had not survived the years of abandonment. There is
however a large area that has survived and is still producing fruits. Thus, the orchard was classified
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as irrigated in the winter of 2015 due to its high NDVI values. Such scenarios present challenges
during the NDVI classification of irrigated areas. These anomalies can only be detected and rectified
through a PCC exercise. Observing time series images from Google Earth, it was noted that in 2003 the
orchard was indeed healthy and productive. The 2015 Google Earth image shows a decrease in plant
density, but it appeared as if it were still irrigated, a scenario that misled the supervised classification
of landuse.
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The other challenge that was observed was the over estimation of some irrigated fields. This was
evident mainly on irrigated fields that were mapped as large contiguous fields. However, a further
examination of UAV photographs of such fields identified some patches that were either abandoned
or were fallow. As shown on Figure 4a, the area has green patches, but also abandoned fields and a
settlement. During the supervised classification, the whole area was classified as irrigated (Figure 4b),
yet some patches had been abandoned. This clearly increased the area of the field that was actually
irrigated. Further studies are therefore needed to differentiate areas that are actually irrigated from
those equipped for irrigation.
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3.1. Pre- and Post-Classification Accuracy Comparative Analysis

Table 2 gives a comparative analysis of the accuracy assessments done during pre- and
post-classification of the developed irrigated area map within the Venda-Gazankulu former homeland.
The kappa coefficient of agreement [33] was used to summarize the results of the accuracy assessment
of remotely sensed agriculture and irrigated areas. The accuracy of the irrigated area map was 71%
using 74 ground truth points. After the PCC using a UAV, accuracy improved to 95%. The UAV played
an important role in improving the accuracy of the final irrigated area map by 24% as it enabled a
detailed analysis of irrigated fields. Thus, the PCC was necessary in that it improved the accuracy of
the final product.

Table 2. Pre- and post-classification correction accuracy comparison.

Mapping Type No. of Ground Truth Points Accuracy Achieved (%) Error Margin (%)

Agriculture fields 137 96 4
Irrigated fields 74 71 29

PCC (irrigated fields) 74 95 5

3.2. Importance of UAVs in Post-Classification Enhancement of Irrigated Areas

The importance of remote sensing and vegetation indices such as NDVI in mapping irrigated
areas was evident during fieldwork. Most agriculture fields that were identified as irrigated were
actually irrigated. The accuracy of the initial agriculture fields map produced using the maximum
likelihood classifier was 96% after the ground truthing of 137 field points. However, the accuracy
of the classification for irrigated areas was only 71%, but improved in this study by using an UAV.
The UAV enabled reaching isolated and inaccessible areas, taking high resolution images of targeted
fields. The accuracy of agriculture areas map (combining both rainfed and irrigated areas) was higher
than the accuracy of the extracted irrigated area map because the agriculture fields map considered all
fields including those in fallow or abandoned as long as they had agriculture footprint. The irrigated
area map targeted areas that were actually irrigated in 2015, which is more difficult to distinguish.
The UAV allowed removing fields that had high NDVI but were not actually irrigated. The UAV aerial
photographs allowed to fully comprehend the dynamics of each field and capture information that even
manual fieldwork had not. The manual fieldwork recorded a field as irrigated if it had winter crops
or showed signs of irrigation but without considering the surrounding fields. The pre-classification
fieldwork was the reason why some abandoned fields were classified as irrigated. Although the PCC
process was useful in concluding that most mapped areas were actually irrigated, there were still some
anomalies on 5% of the fields.

The UAV has shown its importance in fieldwork as it can access previously unreachable and
remote areas and returns high resolution aerial photographs and videos in real-time to give a snapshot
of what is happening on the target field. UAVs are not only important during PCC, but are also
essential during pre-classification fieldwork. If the UAV had been used during the pre-classification
process more ground truth points would have been collected and improved accuracy assessment
process at pre-processing stage. UAVs give a bird’s eye perspective and wide overview that cannot be
achieved by a human eye during manual fieldwork. Thus, the use of UAVs in fieldwork is cost and
time effective as they cover large areas within a short space of time and reduces the time spend in
the field as illustrated in Table 3 which compares manual fieldwork and the use of UAVs in ground
truthing. On average, more points were collected using UAV by a single person than manual fieldwork
which was done by two people. Although the cost of buying an UAV doubles the cost of buying two
handheld Android GPS that were used in the manual fieldwork, the UAV can survey areas that are
not easily accessible and returns high resolution aerial images and videos of the area of interest. Also,
the cost of two personnel for the manual fieldwork that was done to cover many points makes manual
fieldwork more costly.
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Table 3. Comparison between manual fieldwork and use of UAVs in ground truthing.

Fieldwork
Type

Days Spent
in the Field

No. of
Points

Frequency
(Points/Day)

No. of
Equipment

Equipment
Cost (US$)

No. of
Personnel

Manual 25 137 5.5 2 885 2
UAV 7 74 10.6 1 1900 1

4. Conclusions

Remote sensing is a useful and efficient technique to map irrigated areas and other landuse/cover
categories at various scales. Although it is a cost-effective way of mapping irrigated areas, there is need
for pre- and post-verification through fieldwork and expert knowledge to enhance accuracy of the
irrigated area map. The mapping accuracy was enhanced by post-classification correction (PCC) using
an UAV flown on a sample of targeted irrigated fields that were mapped in the winter of 2015, aiming to
identify anomalies in the mapped irrigated fields and improve accuracy. The PCC resulted in 10 plots
that had been mapped as irrigated being removed completely as they had no evidence of having been
irrigated in the winter of 2015. The use of UAV in post-classification correction improved the accuracy
of irrigated areas from 71% to 95%. The study has demonstrated the usefulness of integrating UAV
technology, ancillary data, and knowledge-based rules into a land cover/use classification process for
improving accuracy of irrigated area map. Although remote sensing mapping remains an important
tool for mapping land uses, it is never 100% accurate. Accuracy is enhanced through post-classification
correction using recent technologies such as UAV. High resolution aerial photographs from the UAV
give a clear picture of what is actually happening on the ground. Thus, the accuracy of remotely
sensed landuses can only get better with post-classification correction. The combination of remote
sensing and UAV, enabled production of a useful policy product, essential in decision-making for
better understanding and monitoring irrigated areas and improves water resources management.
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