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Abstract: Detailed, accurate and frequent land cover mapping is a prerequisite for several important
geospatial applications and the fulfilment of current sustainable development goals. This paper
introduces a methodology for the classification of annual high-resolution satellite data into several
detailed land cover classes. In particular, a nomenclature with 27 different classes was introduced
based on CORINE Land Cover (CLC) Level-3 categories and further analysing various crop types.
Without employing cloud masks and/or interpolation procedures, we formed experimental datasets
of Landsat-8 (L8) images with gradually increased cloud cover in order to assess the influence of
cloud presence on the reference data and the resulting classification accuracy. The performance
of shallow kernel-based and deep patch-based machine learning classification frameworks was
evaluated. Quantitatively, the resulting overall accuracy rates differed within a range of less than
3%; however, maps produced based on Support Vector Machines (SVM) were more accurate across
class boundaries and the respective framework was less computationally expensive compared to the
applied patch-based deep Convolutional Neural Network (CNN). Further experimental results and
analysis indicated that employing all multitemporal images with up to 30% cloud cover delivered
relatively higher overall accuracy rates as well as the highest per-class accuracy rates. Moreover,
by selecting 70% of the top-ranked features after applying a feature selection strategy, slightly higher
accuracy rates were achieved. A detailed discussion of the quantitative and qualitative evaluation
outcomes further elaborates on the performance of all considered classes and highlights different
aspects of their spectral behaviour and separability.

Keywords: classification; crop-type mapping; support vector machines; deep learning; machine
learning; CORINE

1. Introduction

Land cover is one of the essential terrestrial climate variables [1] and therefore land cover
information in terms of regularly updated, detailed and accurate land cover maps arises as a
significant input for several scientific communities working on climate change studies, geomorphology,
sustainable development and social sciences, natural resources management and agricultural
monitoring. At the same time, open data policies in both the USA and EU are delivering an
unprecedented volume of satellite imagery data with an increasing level of spatial, spectral and
temporal resolution. Currently, the availability of Landsat-8 (L8) and Sentinel-2 data significantly
increases the capacity for high-resolution land cover mapping using dense time series while demanding
efficient and cost-effective classification methods. Recent research efforts have focused on the use of
finer resolution satellite imagery for land cover map production, offering products at a global scale
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such as the updated version of FROM-GLC [2], the FROM-GLC-agg [3] product with nine general land
cover classes at 30 m and an estimated accuracy of 65.51%, and the recent GlobeLand 30 product [4],
providing land cover information at 30 m with 10 land cover classes. Landsat archive data were also
employed for national-level product approaches such as the 30 m map of 16 classes from the USA
National Land Cover Database [5] as well as the recent land cover map of France with 17 classes and
an achieved accuracy of over 80% [6]. Additionally, focusing on agricultural landscapes, Xiong et al. [7]
produced a nominal 30-m cropland extent product of the entire African continent using Sentinel-2
and L8 time series for the year 2015, resulting in a weighted overall accuracy of 94.5% for binary
classification of cropland versus non-cropland areas.

Beyond the achieved and reported overall accuracy rates, a key aspect of the produced map,
in terms of usability and applicability, is the number of land cover classes considered. Most of the
aforementioned products do not incorporate a highly analytic classification system and nomenclature
in order to deliver detailed information regarding several different land cover classes. On the other
hand, mapping products that deliver a rich class nomenclature, like the CORINE Land Cover (CLC),
are not regularly updated since they are based mainly on laborious image interpretation and manual
digitization procedures. Furthermore, regarding the challenging case of agriculture, even in the
detailed CLC product, crop areas like arable land are mapped depicting the implied agricultural
practice and not the specific crop cultivated. Recent studies [8–11] have indicated that crop mapping is
quite a challenging problem requiring high spatial and temporal resolution data but also a significant
amount of crop-type reference data.

Regarding the production of annual land cover maps based on multitemporal datasets, a number
of approaches have employed data from two different seasons [12,13], while the general trend
is to employ frameworks that can exploit all the available annual data (below a given cloud
presence threshold). However, how and to what extent the presence of clouds affects the accuracy
and effectiveness of mapping and monitoring applications has not been studied adequately,
and further insights are required [14]. In particular, for discriminating between different crop types,
more multitemporal observations are required in order to note key periodic events in the life cycle of
different species (phenology), sufficiently capturing spatial, spectral and temporal features [9,10,15].
However, in most geographical regions and climate zones it is rare to find several absolutely clean,
cloud-free images [14,16]. The norm is that even the clearest images of a Landsat path/row or Sentinel
tile will contain a number of pixels that are affected by different type of clouds. Although, recent
efforts are employing cloud masks and interpolation procedures to tackle invalid values and produce
synthesized data [6,8,9], cloud detection approaches (e.g., f-mask) fail to detect all clouds/cloud
types in a scene (especially cirrus, warm or thin clouds) and therefore even with cloud masks
multitemporal datasets include noisy pixels (e.g., clouds, shadows). Moreover, all additional processes
(e.g., interpolation) require/cost a significant amount of CPU and/or GPU hours.

Another critical issue concerning land cover map production is the selection of the classification
method and algorithm. Supervised classification methods are considered superior to unsupervised
for this type of study [6,17,18], but they require the use of accurate and sufficient training data.
Additionally, the use of machine learning techniques like Support Vector Machines—SVM [19,20],
Random Forests—RF [21] and artificial Neural Networks—NN have gained rapid recognition for
classification studies. SVM have been widely used in recent land cover and crop type classification
literature [22–26], while in many cases they have been reported to outperform algorithms like RF and
NN [18,27,28]. SVM offers the ability to attain high classification accuracies even if using small training
sets [27,29,30], and has also proven robust for low noise levels in the presence of mislabelled training
data [22]. An important advantage of the SVM classifier is its ability to manage well a large feature
space, which is the case when classifying multi-temporal multispectral imagery [31]. RF classifiers have
been also reported to achieve high accuracy metrics in similar classification tasks [9,22,32], while studies
have indicated that RF may present lower sensitivity to mislabelled training data than SVM [22]. On the
other hand, deep learning is currently one of the fastest-growing trends in remote sensing data analysis,
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successfully tackling a variety of challenging problems and benchmark datasets in object recognition,
semantic segmentation and image classification [33–36]. In particular, Convolutional Neural Networks
(CNNs) are currently heavily used for classification and semantic segmentation tasks in a variety of
remote sensing datasets [28,37–39]. However, compared to more shallow architectures (e.g., SVM),
the operational and complexity aspects of CNN-based techniques are directly associated with the
considered data dimensionality, which is a key limitation when employing several spectral bands
and/or multitemporal datasets [25,40].

Towards addressing the aforementioned challenges, in this paper we introduce a framework for
systematic, detailed land cover mapping from annual L8 satellite data. In particular, we consider
27 classes based on CLC Level-3 nomenclature, focusing on the cover type and not the use type
classes, while analysing further the crop type classes. Without employing cloud masks or interpolation
procedures to recover cloudy pixels, we form different spatio–spectro–temporal datacubes composed
of images with gradually increasing levels of cloud cover. Two types of machine learning classifiers, i.e.,
one with a shallow (SVM) and one with a deep architecture (CNN) were applied and compared. An
assessment of the impact on classification accuracy and the robustness of the classifier was performed
by classifying the different datacubes. The influence of clouds on the reference data was also evaluated
by comparing cloud cover percentages and resulting per-class accuracy. Different sets of classification
features were tested by applying a standard feature selection strategy. A detailed analysis and
discussion of the validation results is also provided in the last section.

2. Materials and Methods

2.1. Study Area

The study area is located in northern Greece and includes the greatest part of Central Macedonia
Region, the east part of West Macedonia Region, the northern part of Thessaly Region and also a small
area belonging to the former Yugoslav Republic of Macedonia-FYROM (Figure 1, left). It covers an
area of about 22,000 km2 without including the marine region of the Aegean Sea in the southeast.
We selected this region as the study area since it presents highly heterogeneous landscapes, significant
land cover diversity including metropolitan centres, vast agricultural areas, high-altitude mountains
and water bodies as well as different climate zones, i.e., from sea level to almost 3000 m altitude.
Generally, the climate of the region is characterized by rainy winters and dry, warm to hot summers,
according to the Köppen climate classification [41,42]. Terrain relief in the whole scene varies greatly,
including plains but also several mountain masses scattered across the region such as Mount Olympus,
the highest in the country at 2917 m above sea level, the Voras Mountains at 2524 m and the Pierian
Mountains at 2190 m.
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Figure 1. The study area is located in northern Greece, as can be seen in a natural color Landsat-8 (L8)
composite from year 2016 (left) and covers an area of about 26,000 km2. The study area was partitioned
in order to form independent training and testing datasets: training blocks are pictured in yellow, while
testing ones with a cyan (right).
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The main land cover types are natural vegetation and agriculture. Uplands and mountainous
areas are covered mainly by broadleaved forests and to a smaller extent by coniferous forests. Lowlands
are occupied mostly by Mediterranean-type evergreen sclerophyllous vegetation of bushes, scrubs and
maquis. Agricultural land consists principally of permanent crops like vineyards, olive groves and
fruit trees (e.g., citrus, apricot, pear, quince, cherry, apple, nut trees). The latter are mainly cultivated in
plains around Edessa, Naoussa and Veria. Rice cultivation is also practiced around the Axios River
and Aliakmonas River deltas in Central Macedonia. Arable land includes mainly cereals (e.g., wheat,
barley, rye, triticale), maize and grass fodder (e.g., clover, alfalfa) fields. Artificial land is typically
comprised of cities and towns, including the metropolitan area of Thessaloniki, the second-largest
city in Greece. Smaller towns and villages are scattered across the region. In addition, major water
bodies of the country are situated in our study area such as Volvi and Koroneia Lakes and Haliacmon,
Axios and Strymonas Rivers in Central Macedonia and also Vegoritida and Polyfytos Lakes in West
Macedonia. Low-lying marches land, usually flooded, can be found near water bodies but also on
river estuaries to the Aegean Sea.

2.2. Landsat-8 Annual Datasets

All surface reflectance L8 products for the 182/34 path/row of the year 2016 were downloaded
from the USGS (United States Geological Survey) EarthExplorer platform. The L8 Surface Reflectance
product is generated at 30-m spatial resolution on a Universal Transverse Mercator (UTM) projection
including seven multispectral bands from the Ultra Blue to the Shortwave Infrared (SWIR) spectral
regions. Based on our previous research efforts [43,44], we selected all annual data with less than 60%
of cloud cover (over the land) for the experiments. In order to address our main goal for assessing
the impact of integrating images with gradually increased cloud cover, four different datasets were
formed including images with: #1. Less than 20% (11 dates); #2. Less than 30% (14 dates); #3. Less
than 40% (16 dates) and #4. Less than 60% (18 dates) land cloud cover. Moreover, a smaller dataset
formed with six images (Dataset #0) of approximately less than 10% land cloud cover was used for the
comparison between the two different classification architectures (see Section 3.1). It is important to
mention that all datasets include dates from all four seasons and not just summer or spring (Table 1).

Table 1. Land cloud cover (LCC), acquisition dates and the corresponding season are presented for
each image along with the LCC limit.

Image # LCC Date of Acquisition Season LCC Limit # of Dataset

1 1.19% 8/1/2016 * Winter

<20%

2 15.23% 24/1/2016 Winter
3 10.24% 13/4/2016 * Spring
4 0.05% 31/5/2016 * Spring
5 0.19% 16/6/2016 * Summer
6 10.86% 2/7/2016 * Summer 1
7 12.99% 18/7/2016 Summer 2
8 11.46% 19/8/2016 Summer 3
9 12.36% 4/9/2016 Autumn 4
10 12.03% 20/9/2016 Autumn
11 0.73% 9/12/2016 * Winter
12 27.11% 28/3/2016 Spring

<30%13 24.14% 3/8/2016 Summer
14 26.92% 6/10/2016 Autumn
15 37.06% 9/2/2016 Winter

<40%16 31.94% 15/5/2016 Spring
17 46.66% 7/11/2016 Autumn

<60%18 58.79% 25/12/2016 Winter
* Corresponds to images of Dataset #0 with ~10% LCC limit.
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In Figure 2, cumulative cloud maps are presented, indicating per pixel the frequency of cloud
cover per dataset in the study area. The cloud presence per-image was derived from the F-mask
algorithm [45] and the Quality Assessment (QA) L8 band. In particular, for the first dataset (Dataset #1),
a large continental part of the study area is cloud-free (white) across the corresponding 11 dates/images.
Moreover, pixels that are occasionally covered by clouds mainly have a cloud frequency of up to
three dates (beige). Regarding Dataset #2 (14 images in total), a large part of the study area is covered
in cloud for up to three out of 14 dates. However, there are parts that are reported with up to six
(and even up to nine) cloudy dates, mainly from northwest to south following the mountain massifs
formations of the study area. This is also the case and in a more intense frequency for Dataset #3 (16
dates), where generally the regions that had up to three dates frequency in Dataset #1 are reported in
#3 with a frequency of up to six cloudy dates. The most cloudy Dataset #4 (18 dates) is mostly covered
at three to six dates, while certain mainly mountainous regions are covered by cloud for up to 12 dates
(magenta) and up to 15 dates (purple) out of the 18 dates/images of the dataset.

1 

Figures 1 

Figure 2 

(a) (b) 

(c) (d) 

Figure 2. The cloud frequency per pixel i.e., the number of cloudy dates for datasets: (a) #1 of total
11 dates, (b) #2 of total 14 dates, (c) #3 of total 16 dates and (d) #4 of total 18 dates. Regions in white
represent clear pixels for all dates.

2.3. Land Cover Classes and Reference Data

One of the main contributions of this paper is that the proposed methodology has been designed,
developed and validated for a detailed land cover classification into more than 25 land cover classes.
In particular, the developed nomenclature was mainly derived from the CLC nomenclature [46] while
the main crop types were based on the available geospatial data of the Greek Payment Authority
of the Common Agricultural Policy (CAP). The introduced land cover class nomenclature for this
study was formed starting from the CLC2012 Level-3 subclasses and by either grouping, i.e., merging
classes (e.g., 4.1.1 Inland and 4.2.1 Salt marches) or splitting further classes (e.g., Dense and Sparse
3.2.3 Sclerophyllous vegetation) when needed.

Additionally, certain exclusions or modifications were applied mainly with the use type classes
(e.g., 1.4.2 Sport and leisure facilities), with classes that were not present in our study area (e.g., 3.3.5
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Glaciers and perpetual snow) and also with classes that are defined for the CLC-specific scale (e.g., 2.4.2
Complex cultivation patterns), since CLC uses a minimum mapping unit of 25 hectares. Agriculture
classes were further analysed based on available geospatial data. The introduced nomenclature,
including 27 different classes, is presented in Table 2.

Table 2. The detailed land cover nomenclature with 27 classes. The number of available polygons and
pixels used for training and testing are presented for every class.

Land Cover Nomenclature Code Description Pol. Tr. Pixels Test Pixels

1. Dense Urban Fabric DUF Land covered by structures in a
continuous dense fabric—big cities. 126 3452 1332

2. Sparse Urban Fabric SUF Land covered by structures in a
discontinuous sparse fabric 270 2608 1739

3. Industrial Commercial Units ICU Artificially surfaced industrial or
commercial units. 128 1046 697

4. Road/Asphalt Networks RAN Asphalt sealed areas and networks. 79 558 183

5. Mineral Extraction Sites MES Areas with open-pit-extraction of
construction material or minerals. 36 1898 1265

6. Broad-leaved Forest BLF Forest with broad-leaved
species predomination. 1359 15,000 10,000

7. Coniferous Forest CNF Forest with coniferous
species predomination. 938 5737 3825

8. Natural Grasslands NGR Areas of herbaceous vegetation. 265 445 297

9. Dense Sclerophyllous
Vegetation DSV Dense bushy sclerophyllous vegetation,

including maquis and garrigue. 502 4058 2075

10. Sparse Sclerophyllous
Vegetation SSV Sparse bushy sclerophyllous vegetation,

including maquis and garrigue. 396 5056 1233

11. Moss and Lichen MNL High altitude moors areas with moss
and lichen. 154 1046 295

12. Sparsely Vegetated Areas SVA Scattered vegetation areas on stones,
boulders, or rubble on steep slopes. 65 767 511

13. Vineyards VNY Areas of vine cultivation. 269 836 557

14. Olive Groves OLG Areas of olive trees plantations. 517 1048 262

15. Fruit Trees FRT
Areas of fruit trees plantations, including
citrus, apricot, pear, quince, cherry, apple

and nut trees.
579 973 649

16. Kiwi Plants KWP Areas of kiwi plants cultivation. 172 479 303

17. Cereals CRL Areas of cereal crops cultivation,
including wheat, barley, rye and triticale. 504 1268 851

18. Maize MAZ Areas of maize crop cultivation. 179 351 234

19. Rice Fields RCF Areas of rice
cultivation—periodically flooded. 999 11,775 6483

20. Potatoes PTT Areas of potato cultivation. 78 277 185

21. Grass Fodder GRF Areas of grass fodder cultivation,
including clover and alfalfa. 500 610 407

22. Greenhouses GRH Structures with glass or translucent
plastic roof where plants are grown. 96 114 76

23. Rocks and Sand RNS Bare land areas consisting of rock, cliffs,
beaches and sand. 295 2331 1554

24. Marshes MRS
Low-lying land usually flooded by

water/sea water and partially covered
with herbaceous vegetation.

52 7082 1833

25. Water Courses WCR Natural or artificial water courses—rivers
and canals. 67 776 277

26. Water Bodies WBD Natural or artificial stretches of
water—lakes. 17 15,000 6567

27. Coastal Water CWT Sea water of low depth on coastal areas. 30 3928 982

An intensive manual annotation procedure was carried out for the production of reference data.
Two image interpretation experts who are also familiar with the CLC product and the study area
manually digitized polygons for the different land cover classes. Since representative training samples
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are one of the most critical components in supervised classification, the experts studied the area
thoroughly and intensively and noted as many variations of each class as possible. The annotation of
each sample followed the principle of avoiding mixtures of the defined land cover classes [2]. Different
data sources and multitemporal images were employed for the photointerpretation and annotation
process, including Sentinel 2 and L8 images for the year of 2016, Google Earth Pro data for 2016 using
Historical Imagery, the CLC2012 product and available CAP geospatial data for the crop fields of 2016.
CAP geospatial data are collected by the agency through field surveys on a yearly basis. In Table 2 one
can observe the number of available polygons for each class and the number of pixels used for training
and testing for each category, as described in Section 2.4.2.

2.4. Land Cover Mapping Framework

2.4.1. Classification Features

Spectral features, in most cases referring to sensor multispectral bands but also spectral
indices, have been widely used as the main set of input features for land cover classification in
the recent literature [8,36,47–49]. Based on our previous research efforts [43,44] and on the related
bibliography, the seven atmospherically corrected L8 spectral bands were used, along with four selected
spectral indices generally addressing vegetation, water and man-made regions. More specifically,
we used surface reflectance features of bands: Ultra Blue (0.435–0.451 µm), Blue (0.452–0.512 µm),
Green (0.533–0.590 µm), Red (0.636–0.673 µm), Near Infrared—NIR (0.851–0.879 µm), Shortwave
Infrared—SWIR 1 (1.566–1.651 µm), Shortwave Infrared—SWIR 2 (2.107–2.294 µm), and the
Normalized Difference Vegetation Index (NDVI) [50], the Modified Soil-Adjusted Vegetation Index
(MSAVI) [51], the Normalized Difference Water Index (NDWI) [52] and the Normalized Difference
Built-up Index (NDBI) [53]. These 11 spectral features were stacked together for each date and then
four spectral cubes of multiple dates were formed based on different cloud cover levels, as described
in Section 2.2.

2.4.2. Training and Testing Areas

Reference data were created through an intensive manual annotation procedure and were divided
into two independent sets: one for the training and one for the validation procedure. To avoid any
spatial correlation between the training and validation datasets, the study area was partitioned in
nine different blocks. Six of them were used for the training procedure and the remaining three for
the testing one (Figure 1, right). Strips of 900 m around the borders of the blocks were excluded in
order to avoid correlation between the training and validation phases when applying the patch-based
deep CNN classification. Regarding the sample size, we applied as minimum reference dataset size
required for accuracy assessment, the rule of thumb proposed by [54], whereby 75–100 testing sample
units (pixels in our case), per thematic class should be regarded for large areas and complex maps of
more than 12 classes [25,55]. Moreover, mainly for computational reasons, the maximum number of
pixels per class was limited to 15,000 pixels for training and 10,000 for testing. The pixel’s number
limitation was performed with a random selection on the available reference data of each class that
exceeded these limits. In addition, another random selection was performed, in order to ensure that
the training set, per-class, included a 60% to 80% of all reference pixels and the testing set a 20% to
40%, respectively. This was due to the fact that the annotated polygons did not cover the study in a
uniform way.

2.4.3. Experimental Setup

Workflow: First, we ran two comparative experiments, for evaluating the performance of the
SVM and CNN frameworks. Due to the high computational power and memory that was required for
the CNN implementation, the initial experiments were performed on a spatiotemporal datacube with
six dates (Dataset #0) and also on Dataset #1 with 11 dates (Table 1), but using a smaller subset of the
reference data (i.e., approximately 30%). Based on the quantitative and qualitative evaluation, the SVM
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classifier was chosen to be applied for the main four classification experiments towards assessing
the impact of integrating images of gradually increased cloud cover in the datasets (Section 3.2).
Note, that for these experiments the computational requirements were gradually increased since for
the first dataset (Dataset #1, 11 dates), the datacube contained 121 layers/features, for Dataset #2
(14 dates) contained 154, for Dataset #3 (16 dates) 176 and for Dataset #4 (18 dates) contained 198
features. Furthermore, additional experiments were performed by employing a subset of the most
significant features for all datasets based on a feature selection strategy (Section 3.3). The pipeline of
the developed classification framework and performed experiments are illustrated in the flowchart in
Figure 3.

Figure 3. A flowchart of the proposed classification framework and performed SVM experiments with
Landsat-8 (L8) datasets of different cloud cover (CC) and additional feature selection (Feat. Sel.).

Classification Algorithms: We compared the performance of two classification frameworks that
have demonstrated high accuracy rates in the recent literature, i.e., one shallow kernel-based classifier
(SVM) and one patch-based deep learning approach (CNN). In particular, a SVM classifier [19,20] from
the LIBSVM library using the C-SVC type was employed [56]. For the SVM application different kernel
functions have been proposed in the literature [22,57]. In this study, we employ two kernel functions:
a linear one that has been proposed and tested as optimal when the number of features is large [58]
and has resulted in relatively high accuracy rates in our previous studies [43,44], and the Radial Basis
Function (RBF). The tuning of parameter C, referring to the cost of error penalty, is required for both
kernels, while the RBF kernel also needs the definition of a second parameter g > 0, which denotes
the width of the Gaussian kernel function. For our experiments, the classifiers parameters have
been optimized by a five-fold cross validation grid search process: C = {0.01, 0.1, 1, 10, 100, 1000},
g = {0.0001, 0.001, 0.01, 0.1, 1, 10}.

For the deeper architecture among those that have been employed recently for classification
tasks [33–35,37,59] we employed the relatively simple CNN architecture of the ConvNet Network.
The network consists of 10 layers: two convolutional, two max pooling, two batch normalization,
two activation functions (rectified linear unit—ReLU) and two fully connected (Figure 4). We used
a patch of 29 × 29 pixels centred in the pixel of interest. For the training, we randomly selected
patches centred on the training pixels allowing them to overlap. During the validation phase, for each
pixel we centred and extracted a patch. Then the predicted label was assigned to this specific pixel.
More specifically, the raw input patch for Dataset #1 of 11 dates with size 121 × 29 × 29 is given as
input to the first convolutional layer, which applied convolutional kernels of size 5 × 5. Next comes
a transfer function layer that applies a ReLU element-wise to the input tensor and is followed by a
batch normalization layer. Then a max-pooling layer follows, which downsamples with a size of 2 × 2
the input and lightens the computational burden. The next four layers follow the same pattern, with
exactly the same parameters, and result in two final, fully connected layers that produce the final
outputs classified in 27 different classes. For Dataset #0 of six dates the architecture remains the same,
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except for the size of the input patch, which changes to 66 × 29 × 29. The network had been trained
using the stochastic gradient descent (SDG) optimizer for 30 epochs and early stopping had been
used to prevent overfitting. We set the batch size to 100, the learning rate to 0.1 while every 3 epochs
had been reduced by 0.01, the momentum to 0.9 and the weight decay parameter to 5 × 10−5. For
the extraction of the training patches, the only selection criterion was the central pixel of the patch
to belong to the specific class. For testing, a patch was extracted in each pixel of the image and the
predicted value was assigned to the central pixel.

Figure 4. The architecture of the CNN model for the classification of Dataset #1.

Feature Selection: In order to further evaluate the contribution of the employed features,
a dimensionality reduction procedure was applied in all four datasets. Generally speaking, feature
selection methods can be categorized into three types: filter, wrapper, and embedded [60,61]. The filter
methods that rank the discriminative power of each feature are independent of the learning process.
The other two incorporate the supervised learning algorithm in their approaches for estimating the
contribution of each feature. Nonetheless, the last two are also computationally expensive, thereby
preventing their use in tasks where the dimensionality and the amount of the data are large [61].
To this end, for our experiments, where the volume of features is large, we selected a computationally
efficient filter-based method [62,63], independently of the classification algorithm to be applied.
In particular, we employed the Fisher score [60] selection strategy, which calculates the ratio of
interclass separation and intraclass variance for each feature and thus expresses the discriminative
power of each feature [61,64]. The Fisher score is one of the most widely used supervised feature
selection methods and has been combined with SVM classifications in many recent studies [62,65–68].
In detail, the Fisher score of the rth feature is computed by the formula

Fr =
∑c

w=1 nw(µr
w − µr)

2

∑c
w=1 nwσr

w
2 , (1)

where nw is the number of samples in class w, µr
w and σr

w are the mean and standard deviation of the
w-th class for the rth feature, µr the mean of the whole data set for the rth feature while the serial
number or classes goes from 1 to c. Based on the Fisher score, all features across the temporal cube
were ranked and two extra classification experiments for each of the four datasets were performed
using the 70% and the 50% of the top ranked features.

Validation Accuracy Metrics: All performed experiments were evaluated qualitatively through
a thorough visual inspection as well as quantitatively forming confusion matrices, i.e., double entry
tables where row entries are the actual classes corresponding to the testing data and column entries
are the predicted classes from the classifier. The standard accuracy metrics of Overall Accuracy
(OA), User’s (UA), Producer’s Accuracy (PA) and Kappa coefficient (Kappa) were calculated for
each case [69]. Additionally the combined metric of per class F-measure (F1) score is also provided,
calculated as the harmonic mean of UA and PA:

F1 = (2 × UA × PA)/(UA + PA). (2)

Additionally, to assess the statistical significance of the accuracy differences between pairs of
the different classification algorithms, we employed the McNemar test, since we have used identical
testing sets (related samples) for the accuracy assessment [25,70].
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3. Experimental Results and Discussion

In this section, experimental results are presented regarding the performance of the classification
algorithms (Section 3.1), the influence of the different cloud cover conditions (Section 3.2) on accuracy
metrics, the importance of the number and type of features (Sections 3.3 and 3.4 ), as well as the
per-class performance analysis and overall quantitative and qualitative evaluation of the mapping
(Section 3.5).

3.1. Comparing the Performance of the SVM and CNN Frameworks

The initial comparative experiments, for evaluating the performance of the SVM with linear and
RBF kernels and the CNN framework, were performed on Dataset #0 and Dataset #1 (Section 2.2).
Both training and testing datasets were kept exactly the same for both the SVM and the CNN
classification frameworks. Table 3 summarizes the resulting quantitative results for all classifiers
regarding the average PA, UA and F1 metrics as well as the OA and Kappa accuracy metrics. For all
experiments, the OA and Kappa differ with less than 2.3%. Regarding the per-class accuracy metrics,
the average PA, UA and calculated F1 metrics highlighted that the SVM classifier with both kernel
choices reported higher accuracy rates (up to 5.4%) when comparing with the CNN results. Overall,
the linear SVM scored the highest rates for the majority of validation metrics on both datasets.

Table 3. Quantitative results after the application of the SVM and CNN classifiers.

Dataset Classifier
Average

OA Kappa
PA UA F1

Dataset #0 (6 dates)
SVM-linear, C = 100 68.28% 68.74% 66.20% 68.71% 67.25%

SVM-RBF, C = 10, g = 1 67.63% 69.50% 66.29% 67.36% 65.83%
CNN 63.36% 64.55% 61.67% 67.23% 65.69%

Dataset #1 (11 dates)
SVM-linear, C = 10 69.01% 69.67% 67.04% 68.66% 67.21%

SVM-RBF, C = 1000, g = 0.01 67.71% 67.91% 65.18% 67.18% 65.67%
CNN 63.61% 66.09% 62.64% 69.35% 67.91%

In order to objectively assess the aforementioned differences, the McNemar test was employed [70].
In particular, the conventional threshold for declaring statistical significance of 5% was adopted, i.e.,
a p-value of less than 0.05 declares significance. Table 4 presents the recorded p-values of the McNemar
test for all combinations of the two experiments performed, along with the level of significance
stated for significant differences. Apart from the SVM-RBF with CNN pair on both datasets, all other
differences were found to be significant at the 5% level of significance, while differences between
different kernel SVM classifiers were also found to be statistically significant for the stricter 0.1% level
of significance.

Table 4. Statistical significance of the compared classification frameworks.

Dataset Fr. #1 Fr.#2 p-Value Statistical Significance

Dataset #0 (6 dates)
SVM-linear SVM-RBF 0.00002 Yes, 0.1%
SVM-linear CNN 0.00044 Yes, 0.1%
SVM-RBF CNN 0.56414 No, 5%

Dataset #1 (11 dates)
SVM-linear SVM-RBF 0.00001 × 10−6 Yes, 0.1%
SVM-linear CNN 0.01151 Yes, 5%
SVM-RBF CNN 0.46276 No, 5%

Furthermore, in Figure 5 (top) the resulting land cover maps for the CNN and linear SVM are
presented. Their disagreement (in black) can be also observed (Figure 5, bottom) as well as the reference
data for this particular region. After a closer look, one can observe that the resulting land cover map
from the CNN, due to its patch-based nature, tends to generalize the prediction, especially across the
class boundaries. Consequently, it resulted in a coarse generalized output including certain omission
cases especially for linear objects like roads and rivers as well as for regions with high heterogeneity
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(e.g., small parcels of different crop type). Regarding the spatial distribution of the differences (Figure 5,
bottom left), they are scattered in the entire region mainly across class boundaries, apparently due to the
generalized CNN output effect. In particular, these observations are obvious in areas of heterogeneous
texture like mixed agricultural areas and other natural areas with frequent cover variation. On the
other hand, large areas with continuous single-class coverage, e.g., sea, rice fields and urban regions,
present less disagreement between the two land cover products. In comparison with the reference data
(Figure 5, bottom right), both resulting maps present relatively high agreement in most cases.

 

2 
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Figure 5. Part of the resulting linear SVM (top left) and CNN (top right) land cover maps for Dataset
#1. Bottom: their difference (black) and the reference data for this particular region (approx. 2000 km2)
are presented.

In overall, SVM delivered higher reliability and accuracy for individual classes and more crisp
and accurate boundaries. Taking also into consideration the high computational cost of the CNN
framework, we chose to perform the main experiments for assessing the impact of different cloud
conditions and number of features based on the linear SVM classification framework.

3.2. Assessing the Influence of Different Cloud Cover Conditions

In order to assess the influence of cloud cover conditions in classification, we performed
several experiments on the four datasets (Table 1), which were formed by adding more images
with incrementally increasing cloud cover over the land. In all experiments the same training and
testing sets were employed. For the linear SVM, the C parameter value was set to 0.1. The main
question here was whether the addition of more dates/features would help the classifier by adding
more observations and potentially strengthening certain phenological characteristics, especially for
crop type discrimination, or impede performance by deteriorating class statistics due to the increased
presence of clouds.
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In Figure 6, the resulting accuracy scores after classifying the four different datasets are presented.
In all cases the OA and Kappa coefficient indicated a quite good performance, with rates of over 72%.
The highest score was achieved for Dataset #1 (with the lower amount of cloud cover, i.e., <20%)
with an OA at 80.5% and Kappa at 78.0%. For the second dataset, when adding three more images
with up to 30% clouds, the resulting OA and Kappa rates decreased slightly (~1%). By adding more
cloudy images (Datasets #3 and #4) the OA and Kappa rates decreased further by approximately 4.5%.
Regarding the average PA, UA and F1 scores, the second dataset resulted in slightly higher accuracy
rates than the first one, with rates of 69.1%, 67.6% and 66.4%, respectively. By adding more images
with higher than 30% cloud cover, the PA, UA and F1 scores dropped below 66%.

Figure 6. Accuracy metrics for the SVM experiments on the four different cloud cover datasets.

Additionally, in Figure 7 (bars) all the resulting per-class F1 scores for all four datasets are
presented. After a close look, one can observe that certain classes, e.g., BLF, KWP, CRL, RCF, WBD
and CWT, stand out as the most accurately classified, since they achieve F1 scores of over 80% for all
datasets. In 13 of 27 cases, the highest F1 rates were achieved for Dataset #2, while Dataset #1 follows,
holding the best rate for nine classes. More specifically, natural vegetation classes like CNF, NGR, SSV,
SVA and MRS present higher rates for Dataset #2, like most of the agriculture classes (OLG, RCF, PTT,
GRF, GRH). Dataset #4 (more images, more clouds) delivered the higher F1 scores for four classes
among those three agricultural varying cycle ones, i.e., FRT, KWP and MAZ.

Figure 7. The per-class F1 scores (%) are illustrated in the bar chart for every dataset. The average
per-class cloud cover (%) of the reference data are illustrated with dotted lines for every dataset.



Remote Sens. 2018, 10, 1214 13 of 25

Influence of clouds in the reference data: In order to evaluate the influence of cloud presence in
the reference data (training and testing sets) we estimated the cloud masks for all images based on the
F-mask algorithm [45] and the QA band. In Figure 7 (lines), the average per-class cloud presence in
the reference data for all datasets is presented. As expected, the cloudy pixels in the reference data are
increasing from Dataset #1 to #4. The reference data for the PTT class is an exception since Dataset
#2 presents a lower proportion of cloudy pixels than Dataset #1, indicating that the three additional
images offered a significant amount of non-cloudy observations. Generally, most classes do not exceed
the 20% of cloud cover in the reference data.

The highest rates of cloudy pixels in the reference data are recorded for the classes MNL
(48.1–55.5%) and SVA (18.7–33.3%), which are usually found in alpine areas of high altitudes. By
comparing both lines and bars of Figure 7, one can observe that for most classes that achieved higher
scores in Dataset #2 (like DUF, RAN, SSV, OLG, RCF, GRF, GRH, MRS and WCR), the cloud presence
in Dataset #2 did not exceed 10% but was slightly higher than in Dataset #1. This fact indicates that
the trade-off between more observations, in terms of more images and less reliable observations, i.e.,
more cloudy pixels, was favourable for these cases. Another interesting point is that most classes
(except for KWP) that, as analysed in the previous paragraph, achieved high rates of over 80% for all
datasets, were not the ones that reported the lowest presence of clouds in the reference data.

It should also be highlighted that a significant increase in the cloud presence (in the reference
data) between the less cloudy dataset and the cloudiest one does not result in an equivalent decrease
in the reported accuracy (F1) rates (Figure 7). For example, the land cover classes of ICU and RCF have
an almost 20% difference in cloud presence (comparing the 1st and 4th dataset), while the reported
F1 scores differ by less than 7%. This is also the case for the largest differences on the reported F1
scores. For example, classes MES and GRH resulted in a 53% (1st–4th datasets) and a 31% (2nd and
3rd datasets) difference in the F1 scores, respectively, while the corresponding differences of cloud
presence on the reference data were 13% and 0.1%, respectively.

These observations can be also justified from Table 5, which presents the highest F1 scores per
class, the corresponding dataset and the average cloud presence in the reference data of this dataset.
In particular, the highest F1 scores (except for KWP) were not achieved from classes with the lowest
rates of cloudy pixels (marked with green). Generally, cloud cover of more than 25% (e.g., MNL,
SVA) resulted in relatively low accuracy rates. Overall, the combined analysis did not find a direct
relationship between cloud presence and F1 scores achieved, indicating that the combination of
the spatial, spectral and temporal resolution of the data along with the intrinsic characteristic and
phenological behaviour of each class determines how successful the classification will be.

Table 5. Highest achieved F1 scores (%) per class, associated with the corresponding dataset and
average cloud presence (%) in the reference data.

Class DUF SUF ICU RAN MES BLF CNF NGR DSV SSV MNL SVA VNY OLG FRT KWP CRL MAZ RCF PTT GRF GRH RNS MRS WCR WBD CWT

# Dataset 2 1 1 2 1 1 2 2 4 2 1 2 1 2 4 4 3 4 2 2 2 2 1 2 2 1 1
F1(max.) 73.3 77.5 62.6 65.2 60.5 91.4 76.1 43.3 41.5 52.1 41.9 42.3 73.8 49.9 51.6 91.8 92.8 78.4 99.5 80.1 50.6 70.8 53.9 62.0 76.2 99.6 97.4
Cloudy
pixels 8.0 2.3 1.1 6.9 4.7 9.7 14.2 10.5 10.2 9.0 48.1 24.9 2.5 5.2 11.8 3.1 10.3 13.8 7.6 8.3 5.6 3.3 10.1 5.6 7.4 6.8 6.3

3.3. Assessing the Influence of Feature Selection

In order to assess the impact of dimensionality reduction on the classification accuracy, additional
experiments were performed based on the SVM classification framework (Section 2.4.3), applying
a feature selection strategy. In particular, classification results derived by employing all available
features were compared with the ones derived by using the 70% and the 50% of the top ranked features
based on the calculated Fisher score per dataset.

In Table 6, quantitative results regarding the classification accuracy of the total 12 experiments
are presented. After a close look, one can observe that for the first two less cloudy datasets, the 70%
selection leads to increased accuracy metric rates, while further removal of the 50% of the lower ranked
features gives slightly less accurate results. On the other hand, for the more cloudy datasets, #3 and #4,
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classifications on top 70% and 50% features present a significant improvement in all accuracy metrics,
in some cases up to approximately 10% (average F1 for #4 and Top 50%). In particular, the 50% selection
on those datasets in fact excluded all features of the cloudiest dates forming datacubes composed of 15
and 16 dates for Datasets #3 and #4, respectively.

Among all performed experiments, the highest OA and kappa rates (81.38% and 79.05%,
respectively) were achieved when the top 70% of the features were employed for Dataset #1 (in
bold in Table 6). On the contrary, the lowest rates (double underlined in Table 6) were reported for
Dataset #4 (with up to 60% of clouds) and all available features (75.25% and 72.28%, respectively).
Concerning the average PA, UA and F1 metrics, higher rates were achieved for top 70% feature
selection in Dataset #2 (71.70%, 69.94% and 69.96%). It is worth mentioning that classification on top
70% of Dataset #2 presents only four cases of low rates (<40%) for PA, UA and F1 while having the
highest achieved number (28) of high rates (>80%) for those metrics. Although in all experiments the
OA and kappa metrics differed by less than 7%, the per-class PA, UA and F1 metrics varied significantly
and up to 70% (e.g., F1 for MNL class).

More specifically, concerning the individual land cover classes’ performance on the different
experiments, certain classes i.e., BLF, KWP, CRL, RCF, WBD and CWT reported high (in most cases
>80%, marked bold) UA, PA and F1 rates. As can be observed in Table 6, some of these classes have
a large sampling size (BLF, RCF, WBD), while others have a smaller one (e.g., KWP, CRL). On the
other hand, other classes (e.g., NGR, DSV, SVA) resulted in overall lower accuracy rates (i.e., lower
than 40%, marked with red). Again in this case, those classes correspond to both larger and smaller
training sample sizes. The feature selection strategy for the first two datasets significantly improves
the performance of MNL, OLG and FRT classes, even up to 46%. On the contrary, for the same datasets
the exclusion of 50% of the lowest ranked features had a negative effect on the accuracy metrics,
mainly for certain man-made classes (e.g., DUF, SUF, ICU, RAN, GRH) and water classes (WCR, WBD).
For Datasets #3 and #4 with more dates and cloud cover, increases are observed after the feature
selection on the top 50% for agriculture classes VNY and PTT and significant rises (up to 59%) for high
brightness classes MES, MNL and GRH.
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Table 6. Validation metrics (%) for experiments performed: PA, UA and F1 rates are presented per class, while their average rates, the OA and the kappa metric are
displayed in the last three rows per experiment. Per-class accuracy rates below 40% are coloured red while those over 80% are marked with bold. The overall highest
Average (Aver.), OA and Kappa rates (last three rows) are marked bold, while the lowest ones are double underlined.

Dataset
Dataset 1 (11 Dates) < 20% CC Dataset 2 (14 Dates) < 30% CC Dataset 3 (16 Dates) < 40% CC Dataset 4 (18 Dates) < 60% CC

All
121 Features

Top 70%
85 Features

Top 50%
60 Features

All
154 Features

Top 70%
107 Features

Top 50%
77 Features

All
176 Features

Top 70%
123 Features

Top 50%
88 Features—15 Dates *

All
198 Features

Top 70%
138 Features

Top 50%
99 Features—16 Dates **

Class Train.
Pixels PA UA F1 PA UA F1 PA UA F1 PA UA F1 PA UA F1 PA UA F1 PA UA F1 PA UA F1 PA UA F1 PA UA F1 PA UA F1 PA UA F1

DUF 3452 63.0 78.6 69.9 63.1 78.2 69.8 49.3 65.1 56.1 63.4 86.9 73.3 65.8 81.1 72.6 63.0 74.8 68.4 66.8 75.8 71.0 64.0 78.5 70.5 67.5 78.3 72.5 61.9 70.8 66.1 57.7 80.4 67.2 64.1 83.4 72.5
SUF 2608 84.9 71.3 77.5 87.3 70.8 78.2 86.1 63.7 73.3 87.1 69.1 77.1 88.2 72.2 79.4 86.7 68.3 76.4 77.9 66.2 71.5 85.5 73.1 78.8 87.0 72.7 79.2 77.7 63.9 70.1 84.5 67.0 74.8 88.2 74.2 80.6
ICU 1046 71.3 55.8 62.6 64.0 55.5 59.5 56.1 48.9 52.3 65.7 48.4 55.7 69.6 48.9 57.4 58.5 47.7 52.6 70.7 41.8 52.6 69.9 41.7 52.3 65.0 62.1 63.5 88.1 41.3 56.3 90.0 38.6 54.0 68.6 52.8 59.6
RAN 558 54.6 66.2 59.9 53.0 62.6 57.4 42.1 72.0 53.1 57.4 75.5 65.2 57.4 73.4 64.4 51.9 72.0 60.3 57.9 66.7 62.0 57.4 65.6 61.2 52.5 69.1 59.6 57.9 44.5 50.4 56.8 62.3 59.4 57.4 67.3 61.9
MES 1898 50.8 74.8 60.5 49.5 69.5 57.8 50.0 68.7 57.9 51.2 66.5 57.9 49.2 73.2 58.8 50.1 73.1 59.5 34.3 67.6 45.5 34.3 64.7 44.8 60.8 73.8 66.7 4.0 38.1 7.3 4.5 40.1 8.1 44.7 67.9 53.9
BLF 15,000 90.8 91.9 91.4 92.0 92.8 92.4 91.6 92.9 92.2 85.0 88.9 86.9 86.2 89.0 87.6 88.2 89.1 88.7 79.2 86.0 82.5 84.6 84.6 84.6 86.5 89.7 88.1 79.9 89.2 84.3 80.9 87.8 84.2 87.0 88.9 87.9
CNF 5737 86.7 65.1 74.4 85.9 66.2 74.8 87.8 66.4 75.6 93.0 64.4 76.1 88.0 64.9 74.7 88.2 66.8 76.0 88.1 60.9 72.0 89.6 69.1 78.0 89.3 65.6 75.7 79.0 58.9 67.5 85.6 64.1 73.4 89.8 68.8 77.9
NGR 445 75.4 27.7 40.5 75.4 25.5 38.2 83.5 25.7 39.3 75.8 30.3 43.3 75.1 29.5 42.4 87.9 26.5 40.7 87.9 22.4 35.7 80.5 25.7 39.0 87.5 28.1 42.5 88.2 23.8 37.5 75.1 31.8 44.6 79.5 28.5 42.0
DSV 4058 27.3 56.4 36.8 28.6 50.9 36.6 28.2 53.4 36.9 21.9 46.1 29.7 24.6 45.3 31.9 25.8 46.6 33.3 20.9 37.9 26.9 21.3 43.9 28.7 26.5 46.9 33.9 39.1 44.2 41.5 30.9 44.9 36.6 27.2 46.6 34.4
SSV 5056 50.7 51.7 51.2 61.7 64.5 63.1 57.8 62.5 60.1 48.9 55.7 52.1 55.5 58.8 57.1 52.6 58.5 55.4 52.2 50.0 51.1 51.2 52.2 51.7 58.3 59.9 59.1 49.3 47.7 48.5 64.2 44.9 52.8 58.6 59.7 59.1
MNL 1046 40.7 43.2 41.9 65.8 65.8 65.8 71.5 89.0 79.3 36.6 45.6 40.6 63.1 55.7 59.1 74.6 90.2 81.6 8.1 80.0 14.8 56.9 53.3 55.1 65.4 74.2 69.5 14.9 57.1 23.7 50.2 53.4 51.7 73.2 57.0 64.1
SVA 767 55.0 31.0 39.7 52.1 30.6 38.5 38.4 33.5 35.8 70.5 30.2 42.3 68.3 32.6 44.1 48.5 33.5 39.6 58.1 26.6 36.5 65.2 31.6 42.6 55.6 31.1 39.9 57.9 25.6 35.6 62.4 26.2 36.9 55.8 30.2 39.2
VNY 836 66.1 83.6 73.8 69.3 85.2 76.4 65.9 83.6 73.7 51.5 74.9 61.1 57.6 82.7 67.9 54.0 82.7 65.4 50.4 55.8 53.0 63.6 69.4 66.4 54.9 82.3 65.9 36.1 59.3 44.9 56.4 71.2 62.9 63.4 82.3 71.6
OLG 1048 50.4 44.9 47.5 51.9 60.4 55.9 64.9 53.8 58.8 54.6 46.0 49.9 56.1 54.6 55.4 67.9 52.5 59.2 55.3 37.5 44.7 54.2 46.7 50.2 58.0 57.4 57.7 53.1 44.8 48.6 59.2 47.1 52.5 55.3 61.2 58.1
FRT 973 43.6 49.4 46.3 60.7 60.9 60.8 46.7 61.7 53.2 47.5 36.8 41.5 64.1 52.2 57.5 68.4 64.5 66.4 35.3 40.5 37.7 44.8 48.4 46.6 57.8 52.5 55.0 44.4 61.7 51.6 45.8 46.0 45.9 57.8 47.5 52.1
KWP 479 99.7 70.2 82.4 99.3 84.8 91.5 99.3 69.2 81.6 99.0 77.5 87.0 99.7 82.1 90.0 99.7 82.5 90.3 99.7 73.1 84.4 100.0 71.8 83.6 100.0 75.6 86.1 99.7 85.1 91.8 99.3 72.2 83.6 100.0 75.2 85.8
CRL 1268 90.5 89.8 90.2 92.4 89.4 90.9 90.8 91.2 91.0 93.7 91.6 92.6 92.9 92.7 92.8 91.8 93.0 92.4 92.8 92.8 92.8 92.6 92.2 92.4 91.8 92.0 91.9 89.7 93.3 91.4 91.0 92.9 91.9 91.8 91.9 91.8
MAZ 351 77.4 71.5 74.3 82.5 73.7 77.8 83.3 72.8 77.7 81.6 72.6 76.9 86.3 73.2 79.2 77.8 66.9 71.9 78.6 66.9 72.3 91.5 73.0 81.2 82.5 73.4 77.7 94.0 67.3 78.4 97.4 68.7 80.6 85.5 73.5 79.1
RCF 11,775 99.9 98.2 99.1 99.8 98.9 99.4 99.7 99.2 99.5 100.0 99.1 99.5 100.0 99.1 99.5 99.7 98.9 99.3 100.0 98.7 99.3 100.0 99.4 99.7 99.9 99.0 99.5 100.0 98.3 99.2 100.0 99.5 99.7 99.9 99.1 99.5
PTT 277 63.8 99.2 77.6 65.9 100.0 79.5 66.5 100.0 79.9 68.6 96.2 80.1 69.7 99.2 81.9 69.7 100.0 82.2 54.1 99.0 69.9 68.1 99.2 80.8 75.1 100.0 85.8 45.4 100.0 62.5 60.5 100.0 75.4 74.1 100.0 85.1
GRF 610 49.4 41.8 45.3 52.3 50.4 51.3 50.1 48.0 49.0 50.4 50.9 50.6 51.1 50.5 50.8 48.9 46.2 47.5 39.3 54.4 45.6 54.8 55.8 55.3 52.3 48.5 50.4 52.1 42.7 46.9 48.4 55.2 51.6 53.6 50.7 52.1
GRH 114 88.2 39.2 54.3 85.5 42.2 56.5 90.8 27.5 42.2 89.5 58.6 70.8 88.2 61.5 72.4 88.2 23.3 36.8 88.2 25.5 39.5 89.5 60.7 72.3 86.8 33.3 48.2 89.5 25.8 40.0 90.8 75.0 82.1 88.2 69.8 77.9
RNS 2331 49.2 59.6 53.9 47.1 59.3 52.5 61.3 72.5 66.4 40.0 64.0 49.2 45.8 63.4 53.2 45.5 63.1 52.9 35.8 63.6 45.8 47.6 63.5 54.4 47.6 60.9 53.4 44.0 58.5 50.2 38.0 56.2 45.3 48.3 56.3 52.0
MRS 7082 41.7 92.2 57.4 42.1 89.0 57.1 57.6 86.7 69.2 48.2 86.9 62.0 46.5 91.5 61.7 45.1 84.1 58.7 37.6 77.8 50.7 36.0 89.1 51.2 39.0 91.7 54.7 37.5 91.2 53.2 40.3 95.7 56.7 41.6 92.8 57.4
WCR 776 93.9 42.8 58.8 93.9 41.8 57.8 91.0 26.6 41.2 95.3 63.5 76.2 97.1 62.1 75.8 97.1 27.7 43.1 96.8 47.7 63.9 97.8 41.7 58.5 96.8 57.3 71.9 96.8 45.0 61.4 96.8 44.1 60.6 95.7 56.6 71.1
WBD 15,000 99.8 99.4 99.6 99.8 98.9 99.4 90.5 98.3 94.3 99.8 99.3 99.6 99.8 98.6 99.2 90.8 98.3 94.4 98.4 98.9 98.6 97.8 98.1 98.0 99.7 96.8 98.3 97.9 98.4 98.1 98.3 98.1 98.2 99.3 96.6 97.9
CWT 3928 94.9 100.0 97.4 92.9 100.0 96.3 92.9 100.0 96.3 89.3 100.0 94.4 90.2 100.0 94.9 92.5 100.0 96.1 86.9 94.8 90.6 83.7 100.0 91.1 81.7 100.0 89.9 81.9 90.3 85.9 81.6 100.0 89.8 80.0 100.0 88.9
Aver. 3278 68.87 66.51 65.33 70.88 69.18 67.97 70.14 67.89 66.14 69.09 67.62 66.35 71.70 69.94 68.96 70.86 67.81 66.26 64.86 63.29 59.67 69.72 66.41 65.51 71.33 69.34 68.01 65.18 61.73 58.99 68.39 65.31 63.73 71.42 69.58 68.66

OA 80.46 81.38 80.17 79.44 80.37 79.06 75.65 78.29 80.33 75.25 76.78 80.22

Kappa 78.01 79.05 77.73 76.89 77.93 76.48 72.69 75.58 77.88 72.28 73.97 77.75

* All features of date 9 February 2016 were excluded on Dataset #3 Top 50% selection. ** All features for dates 7 November 2016 and 25 December 2016 were excluded on Dataset #4 Top
50% selection (**).
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3.4. Assessing the Contribution of Spectral Features

The analysis of the selected, top-rank features in all experiments indicated that certain spectral
indices as well as the spectral bands after 600 nm were proven to be the most useful for the classification
procedure. In particular, in all dataset cases the overall ranking was the following: (1) NDWI; (2) NDVI;
(3) NDBI; (4) NIR; (5) SWIR 1 or 2; (6) SWIR 2 or 1; (7) Red; (8) MSAVI; (9) Green; (10) Blue; (11) Ultra
Blue. These observations are, in general, in accordance with the recent related literature, where
spectral indices are widely used and proven to contribute significantly in remote sensing classification
tasks [6,8,9,47,71,72] since their calculation reduces variability and enhances the separability of terrain
classes [18]. NIR and SWIR bands as well as the Red one follow in high ranking, as expected, since
they are specifically designed on these wavelength ranges to enhance the discrimination of different
vegetation types, highlighting moisture and water content while the SWIR bands also provide thin
cloud penetration capabilities [73]. All these attributes can be highly useful when separating, as in
our case, numerous classes (more than 25) of different land cover type that include many natural
vegetation and crop categories. On the other hand, Ultra Blue and Blue bands were the features found
to have less discriminative power in all cases.

3.5. Per-Class Analysis, Validation and Discussion

Following the comparative analysis between the different algorithms, datasets and features, in this
section per-class performance and separability aspects are discussed based on the SVM experiment
on the Dataset #2 with the top 70% of the employed features. This specific experiment presented the
minimum number of classes with low PA, UA and F1 per-class scores (see Section 3.3 and Table 6).
The resulting classification map is presented in Figure 8. Note that a water mask was computed based
on the L8 QA band. It was then applied for marine waters with a buffer of 5 km in order to exclude the
non-coastal marine waters from the prediction.

Figure 8. The classified map of the study area using 14 images/dates of cloud cover up to 30% after
feature selection on 70% of top-ranked features for the 27 land cover classes with an OA of 80.4%.
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One can observe in Figure 8 that urban areas like the metropolitan area of Thessaloniki, as well as
smaller towns like Katerini, Veria, Naoussa, Kozani and Ptolemaida have been accurately detected
by the proposed classification framework (i.e., classes DUF, SUF and ICU) with a small extent of
misclassification cases. Moreover, large inland water bodies such as Vegoritida, Polyfytos and Koroneia
lakes have been successfully detected as well. In a few cases, certain pixels have been wrongly labelled
as WCR (Pikrolimni Lake) or CWR (Volvi Lake). Regarding the performance over agricultural areas,
in the northern region of Central Macedonia, which is characterized by vast cereal crop cultivation,
the resulting detailed (in terms of number of classes) land cover map managed to correctly detected the
CRL class as well as the extended rice cultivation regions (RCF class) around Axios and Aliakmonas
River deltas.

In a similarly successful manner, the classification framework managed to detect and correctly
label fruit tree cultivation areas (FRT class) around Naoussa, Veria and Edessa regions. Forest classes
(BLF, CNF) were correctly reported on upland and mountainous areas, while Mediterranean-type
evergreen sclerophyllous vegetation classes (DSV, SSV) were mapped on lowlands. Mountain massifs
are also spotted with the presence of MNL, SVA and RNS classes. Certain classification errors are
observed around Olympus Mountain where parts of bareland rocks usually covered by snow are
classified as GRH. More detailed cases with classification errors are further discussed in Section 3.5.2.

3.5.1. Per-Class Quantitative Assessment

The aforementioned qualitative observations are in accordance with the reported quantitative
results from the corresponding confusion matrix (Table 7). Firstly, regarding the artificial terrain
classes (i.e., DUF, SUF, ICU and RAN) that consist of sealed man-made surfaces, they overall achieved
medium to high PA rates (57.38–88.15%) and in most cases they are confused between each other.
The artificial terrain class MES resulted, also, into a number of classification errors mainly with ICU
(23%) and RNS (21%). The spectral behaviour distinct characteristics among MES (open-pit extraction
of minerals/inert materials) and RNS (bare land areas, rock, cliffs and sand) were proven challenging
to separate.

Concerning natural areas, BLF was detected with relatively high accuracy (PA: 86.24%) and was
mainly confused with CNF, while the latter also achieved a high PA rate of approximately 88%, with a
few cases of confusion with DSV and BLF. NGR areas were successfully detected with a PA rate of
approximately 75%. The DSV class, corresponding to areas of dense bushy sclerophyllous vegetation,
reported a lower PA rate. Approximately 34% and 41% of its testing pixels were classified as BLF and
CNF, respectively. These classification errors involve three classes of dense woody vegetation that
possess spectral similarities across the spectral–temporal datacube at a 30-m spatial scale. SSV achieved
an average PA score (55.47%), presenting several mixing cases with DSV and SVA. High-altitude moor
areas with moss and lichen, represented by class MNL, reported a PA rate of 63.05% and were mainly
confused with areas of scattered vegetation (SVA). The latter hold a PA rate of 68.30% and in certain
cases the testing samples (17%) were confused with SSV, a class also representing sparse vegetation.

The agricultural classes of KWP, CRL, MAZ, RCF, GRH were accurately classified at rates over
85%. VNY and OLG reported a medium PA rate of approximately 57%, since the first one presented
mixings mainly with classes SUF and FRT and the second with SSV and FRT. Furthermore, FRT, which
represents a heterogeneous land cover class including a variety of fruit trees and therefore patterns,
texture, etc., was classified with a PA rate of 64.10%.
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Table 7. The confusion matrix for the SVM classification framework (Dataset #2 on the top 70% of features). Columns represent classification labels and rows represent
the testing data labels. Values are given in percentage (%) of testing pixels (normalised per row). Diagonal values express the PA for each class.

Confusion Matrix

DUF SUF ICU RAN MES BLF CNF NGR DSV SSV MNL SVA VNY OLG FRT KWP CRL MAZ RCF PTT GRF GRH RNS MRS WCR WBD CWT

DUF 65.77 23.12 4.88 0.15 5.11 0.00 0.00 0.00 0.00 0.00 0.00 0.08 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.90 0.00 0.00 0.00 0.00
SUF 6.33 88.15 0.00 0.12 0.06 0.00 0.00 0.35 0.00 0.29 0.00 0.23 0.06 0.00 3.22 0.00 0.17 0.00 0.00 0.00 0.69 0.00 0.29 0.06 0.00 0.00 0.00
ICU 10.33 2.01 69.58 0.29 14.35 0.00 0.00 0.00 0.00 0.00 0.00 0.29 0.00 0.00 0.14 0.00 0.14 0.00 0.00 0.00 0.00 1.29 1.15 0.43 0.00 0.00 0.00
RAN 0.00 4.92 27.32 57.38 1.64 0.00 0.00 0.00 0.00 0.00 0.00 1.64 0.55 0.00 1.09 0.00 0.00 0.00 0.00 0.00 0.00 0.00 4.92 0.55 0.00 0.00 0.00
MES 1.34 5.45 22.77 0.63 49.17 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 20.63 0.00 0.00 0.00 0.00
BLF 0.00 0.00 0.00 0.00 0.00 86.24 9.40 0.61 1.15 1.47 0.12 0.11 0.00 0.05 0.00 0.05 0.00 0.00 0.00 0.00 0.78 0.00 0.00 0.02 0.00 0.00 0.00
CNF 0.00 0.00 0.00 0.00 0.08 4.29 88.03 0.00 6.48 0.24 0.03 0.03 0.00 0.63 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.21 0.00 0.00 0.00
NGR 0.00 0.00 0.00 0.00 0.00 0.00 0.00 75.08 0.34 3.03 0.00 0.00 0.00 1.01 1.35 0.00 0.00 0.00 0.00 0.00 2.02 0.00 17.17 0.00 0.00 0.00 0.00
DSV 0.00 0.00 0.00 0.00 0.00 33.54 40.87 0.00 24.63 0.24 0.00 0.00 0.00 0.72 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
SSV 0.00 0.16 0.00 0.00 0.00 2.27 0.00 6.97 16.55 55.47 0.00 10.95 0.00 4.22 0.24 0.00 0.00 0.00 0.00 0.00 0.57 0.00 0.00 2.60 0.00 0.00 0.00
MNL 0.00 0.00 0.00 0.00 7.80 0.00 0.00 5.42 0.00 0.00 63.05 12.54 0.00 0.00 0.00 0.00 2.71 0.00 0.00 0.00 7.46 1.02 0.00 0.00 0.00 0.00 0.00
SVA 0.00 0.00 0.00 0.00 1.57 0.00 0.00 0.00 0.00 16.44 4.70 68.30 0.00 0.00 0.39 0.00 0.00 0.00 0.00 0.00 1.37 0.00 7.05 0.20 0.00 0.00 0.00
VNY 0.00 26.21 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.18 0.00 0.00 57.63 0.18 10.23 0.00 0.36 0.54 4.13 0.00 0.54 0.00 0.00 0.00 0.00 0.00 0.00
OLG 0.00 4.96 0.00 0.00 0.00 1.53 0.00 2.29 2.67 15.65 0.00 0.00 0.38 56.11 15.27 0.00 0.00 0.00 0.00 0.00 1.15 0.00 0.00 0.00 0.00 0.00 0.00
FRT 0.00 3.24 0.00 0.00 0.00 2.00 0.00 0.92 0.00 2.47 0.00 0.00 3.39 3.39 64.10 8.78 2.31 0.31 0.77 0.00 8.17 0.00 0.00 0.15 0.00 0.00 0.00
KWP 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.33 99.67 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
CRL 0.00 0.24 0.00 0.00 0.00 0.00 0.00 3.06 0.00 1.18 0.00 0.00 0.12 0.00 1.18 0.00 92.95 0.00 0.00 0.00 0.94 0.00 0.00 0.35 0.00 0.00 0.00
MAZ 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 86.32 13.25 0.43 0.00 0.00 0.00 0.00 0.00 0.00 0.00
RCF 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.05 99.95 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
PTT 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.16 0.00 26.49 0.00 69.73 1.62 0.00 0.00 0.00 0.00 0.00 0.00
GRF 0.00 0.25 0.00 0.00 0.49 0.00 0.00 9.34 0.00 0.49 0.00 0.00 8.85 0.00 19.16 0.00 8.11 2.21 0.00 0.00 51.11 0.00 0.00 0.00 0.00 0.00 0.00
GRH 0.00 3.95 1.32 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 5.26 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.32 88.16 0.00 0.00 0.00 0.00 0.00
RNS 0.32 0.06 6.63 0.06 1.29 0.00 0.00 0.06 0.00 1.93 7.14 33.53 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.93 45.75 1.29 0.00 0.00 0.00
MRS 0.00 0.00 0.00 1.25 0.00 8.67 1.75 15.60 2.24 6.55 0.00 0.38 0.05 0.00 6.93 0.00 0.00 0.44 0.00 0.00 0.05 0.00 1.53 46.54 6.44 1.58 0.00
WCR 0.00 0.00 0.00 0.00 0.00 0.00 0.36 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.53 97.11 0.00 0.00
WBD 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.17 99.83 0.00
CWT 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3.56 6.21 90.22

Number of testing pixels: 44,672

OA: 80.37%, Kappa: 77.93%
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In particular, FRT presented confusions with a number of classes like KWP, VNY, OLG, GRF
and SUF. The fact that permanent crop classes (i.e., VNY, OLG, FRT) presented misclassification
error mixings not only with crop classes but also with SUF and SSV, can be attributed to similar
spectral behaviour at this scale since those specific cultivation covers at a 30 m pixel include both
vegetated (plants and trees) and non-vegetated (mainly soil) parts, similar to classes SUF and SSV.
Another heterogeneous class, GRF, which includes grass fodder cultivations like clover and alfalfa,
also presented some confusion (PA: approx. 51%) with FRT, VNY, CRL and NGR. On the other
hand, PTT was detected with a relatively high PA rate (approx. 70%) and presented certain mixings
with MAZ.

Bare land class RNS was evaluated with a lower PA of 45.75% as it presented mixings with many
classes, especially with SVA and MNL, all mainly found in bare/semi-bare mountainous areas, but
also to a smaller extent with high brightness man-made land covers like ICU and GRH. The MRS
class, which includes low-lying land usually flooded by water and partially covered with herbaceous
vegetation, presented a relatively low PA rate (46.5%). MRS was mainly confused with certain
vegetation classes (e.g., NGR, BLF, SSV, FRT) but also with a few water classes, especially WCR. On the
contrary, all water classes (i.e., WCR, WBD and CWT) were detected with high classification accuracy
rates of over 90%.

3.5.2. Discussing Classification Errors in Challenging Cases

In this section, certain classification difficulties and misclassification cases are discussed in more
detail. In particular, Figure 9a illustrates the challenges in separating MES areas that present high
spatial, spectral and temporal heterogeneity and similar behaviour with a variety of terrain objects,
materials and mixed covers. In this case (Figure 9a), one of the largest lignite reserves in Greece,
the lignite mine of Ptolemais and the Ptolemais power plant area, are presented with a natural colour
composite (RGB) from a L8 and Google Earth imagery. As can be observed in the resulting land cover
map, apart from the MES class, the mining areas were also misclassified to other artificial terrain
classes like DUF, SUF, ICU, RAN and also RNS due to similar spectral characteristics.

Another example with extended classification errors is presented in Figure 9b in the region
of mountain Olympus. In particular, apart from MNL, SVA and RNS classes, all to be expected in
high-altitude terrains, we also observe mapping of man-made classes MES, ICU and GRH. In particular,
Mount Olympus, as the highest mountain of Greece and of our study area, presents snow and cloud
coverage for a long period of the year, and therefore the higher intensity values across the spectrum
for this area may have been confused with similar values of stable artificial surfaces classes. Moreover,
this particular region was one of the areas participating in testing after the partition and thus no
training data incorporating this seasonal information for alpine classes MNL, SVA and RNS were fed
to the classifier. The latter emerges as a possible drawback of the strict approach of spatial partition of
training and testing areas for the map production, especially for cases like this, i.e., semi-arid areas
where the influence of lithological differences on the spectral response of a land cover class is not
negligible. Nonetheless, partition was required for a direct quantitative comparison of the SVM with
the CNN approach. In general, if we assessed solely the SVM framework validation, although a
not-partitioned sampling procedure will not involve exactly the same samples in the learning and the
testing process, it would undoubtedly include neighbours, probably leading to an overestimation of
the calculated accuracy.

Another case of resulted classification errors is presented in Figure 9c. In particular, an agricultural
area near Lake Vegora is presented where a variety of crop types are cultivated including vineyards,
fruit trees, cereals, potatoes and maize. After a closer look, one can observe that several fruit parcels
(FRT, marked with blue in the RGB images) have been wrongly classified as VNY. At this particular
spatial scale (30 m), where linear against dot pattern characteristics cannot be effectively recorded,
the crop types of similar spectral and temporal (phenological) behaviour were not distinguished
successfully by the classifier in many cases and thus presented mixings between them.
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4. Conclusions

In this paper, we introduced a framework for the systematic, detailed land cover mapping from
annual high-resolution satellite data. The main contribution of our approach lies in the assessment
of the influence of cloud cover on the classification of multitemporal datasets, composed of images
with different cloud cover levels. Moreover, we performed detailed mapping in terms of targeting
to discriminate between more than 25 land cover classes. The developed nomenclature contained
27 classes, based mainly on CLC Level-3 classes and several additional crop types. The annual
satellite L8 data were formed into different spatio–spectro–temporal datacubes and a machine learning
classifier with either a shallow (SVM) or a deeper architecture (CNN) was applied for the classification
procedure. Quantitatively, the resulting overall accuracy rates differed by less than 3%. However,
the SVM classification framework was less computationally demanding and produced more accurate
results across class boundaries. The highest overall accuracy rates (above 80%) were derived for
multitemporal datasets with up to 20–30% cloud cover. The feature selection procedure was proven
beneficial for most cases. Regarding the influence of cloud presence on the training and testing data,
our experiments indicated that a cloud cover of over 25% per class resulted in lower F1 rates. However,
a direct correlation between cloud presence (in the reference data) and the resulting per-class accuracy
was not observed. This fact highlights that the combination of the employed features along with
the distinct spectral and/or phenological characteristics of each class determine how successful the
classification would be. These promising results indicate that operational classification frameworks
can be developed for detailed land cover mapping on an annual basis. Towards the latter, the optimal
integration of topographic, climate and microclimate information in the framework is an open matter
and can address the different phenological patterns of vegetation, which currently are modelled during
the training procedure as a variation among labelled features. The contribution of additional temporal
features (e.g., day of year with the max value of a vegetation index) that are not correlated with clouds
will be also assessed.
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