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Abstract: In this study, we used fifty-six synthetic aperture radar (SAR) images acquired from
the Sentinel-1 C-band satellite with a regular period of 12 days (except for one image) to produce
sequential phase correlation (sequential coherence) maps for the town of Sarpole-Zahab in western
Iran, which experienced a magnitude 7.3 earthquake on 12 November 2017. The preseismic condition
of the buildings in the town was assessed based on a long sequential SAR coherence (LSSC) method,
in which we considered 55 of the 56 images to produce a coherence decay model with climatic and
temporal parameters. The coseismic condition of the buildings was assessed with 3 later images and
normalized RGB visualization using the short sequential SAR coherence (SSSC) method. Discriminant
analysis between the completely collapsed and uncollapsed buildings was also performed for
approximately 700 randomly selected buildings (for each category) by considering the heights
of the buildings and the SSSC results. Finally, the area and volume of debris were calculated based
on a fusion of a discriminant map and a 3D vector map of the town.

Keywords: synthetic aperture radar (SAR); sequential SAR coherence; earthquake damage;
discriminant analysis

1. Introduction

One of the necessities of disaster management before or during a natural or anthropogenic
event is the inexpensive monitoring of buildings in urban areas. Earthquakes are disastrous natural
events that must be constantly monitored to improve the damage response and to prevent numerous
deaths. Several spaceborne remote sensing datasets and methods have been proposed to achieve
these goals [1–11]. Because earthquakes are significant threats to cities, for successful post-disaster
management and rapid damage response, the remote sensing datasets and their derived products
(e.g., the extracted footprints of buildings, building heights and corresponding pixel values) should
interact with a geographic information system (GIS) that incorporates different characteristics of
the city and the remote sensing data. The two main remote sensing methods for monitoring
earthquake-induced building damage are based on optical and synthetic aperture radar (SAR)
data. One example is the application of optical imagery to building damage assessments after
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the Gujarat earthquake (2001) using pre-event and post-event spaceborne Landsat-panchromatic
images [2]. However, optical imagery is not always successful, especially when the weather is not
clear. SAR imagery has the advantage of all-weather imaging capability during both the day and
the night. The intensity information (e.g., difference and correlation of the backscattering coefficient)
of 5 pre-event and 4 post-event SAR images acquired by the ERS-1 satellite were used to assess
damaged and undamaged buildings after the 1995 Kobe earthquake [3]. This method was also used
with the ENIVSAT satellite’s SAR images and the Bam earthquake (2003) [4]. The methodology
has also been successfully applied in other case studies; however, due to the lack of sufficient
ground truth data from around the world, the model sometimes does not provide accurate damage
estimation, especially if the backscattering reflections from the rooftops of buildings are different.
To evaluate the building damage after the 2006 Mid Java earthquake, three images were used to
calculate preseismic and coseismic correlation maps of the study area using the ALOS-1 satellite’s
PALSAR-1 data [5]. In addition to intensity information, phase information plays an important role
in the detection of earthquake-induced building damage. The Kobe and Bam earthquakes were
evaluated based on the phase correlation (coherence) of SAR images from the JERS-1 satellite and
ENVISAT satellite, respectively [6,7]. Coherence is the spatial correlation of the interferometric
phases of two SAR images and is controlled by the position and stability of individual scatterers.
Thus, the method requires at least three images to create two coherence maps to assess the pre-event
and coseismic conditions of the affected areas. The coherence method has become popular and
is accurate because it minimizes seasonal surface changes and signal noise, especially if repeated
observations over a specific area are available. However, the retired SAR missions that were mentioned
previously (i.e., ERS, ENVISAT, JERS-1, ALOS-1) had longer revisit intervals over specific areas, which
made accurate and timely damage assessment difficult. In addition, their spatial resolution was not
sufficient for building-by-building damage assessments. New SAR missions such as the TerraSAR-X,
COSMO-SkyMed and Sentinel-1 missions, which have considerably shorter revisit intervals and better
spatial resolution, provide valuable information about the Earth’s surface. Sentinel-1′s coverage is
better than those of the other missions. It is the first satellite with an interferometric wide swath
(IW) mode that uses operationally the terrain observation with progressive scan (TOPS) technique.
The Sentinel-1A satellite, which is part of the Sentinel-1 mission, was launched on 3 April 2014 to
collect images of the Earth using a C-band SAR sensor with a 12-day revisit interval. The revisit
interval of the mission was reduced to 6 days after the launch of the Sentinel-1B satellite almost two
years after Sentinel-1A. From the start of the mission to the end of 2016, a total of 884,628 Copernicus
Sentinel-1 products were made available on the Copernicus Open Access portal, which have a total
data volume of 0.77 petabyte (PB) [12]. In the era of SAR dataset abundance, the monitoring of
stationary (e.g., seasonal effects) and nonstationary (e.g., earthquake-related) changes on the Earth is
now easier than it was in previous years.

Recently, the impacts of coherence changes during the Iran-Iraq earthquake (2017) on the town
of Sarpole-Zahab were evaluated using fifteen Sentinel-1 images with temporal baselines less than
100 days and perpendicular baselines less than 150 m [10]. The method used one image as the master
image and its coregistration to subsequent slaves. The pre-event SAR interferometry (InSAR) analysis
exhibited a coherence loss of 37.8% in the town, whereas the coherence loss for the coseismic analysis
was 70.3% and was related to the destruction of roads and buildings. In this study, we analyze
fifty-six SAR images acquired from Sentinel-1 in the dual-polarized mode (VV and VH) from January
2016 to November 2017 at a regular interval of 12 days to fill the gap between the previous studies
and show the approximately 2-year changes in the town of Sarpole-Zahab using InSAR before and
during the earthquake. The method used in this study is an urban monitoring technique that uses
the chain-like coherence of SAR images with respect to each previous image to reveal the preseismic
and coseismic conditions of the town. The chain-like coherence method is composed of two parts:
The long sequential SAR coherence (LSSC) monitors the pre-event conditions and reveals the seasonal
effects, and the short sequential SAR coherence (SSSC) monitors the coseismic changes. We model
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the coherence values with respect to the elapsed days for each pair and the amount of precipitation
in Sarpole-Zahab to constrain the decrease of the coherence. The proposed model addresses the
coherence decays related to precipitation and the earthquake. It also predicts the 1-year coherence
changes in the absence of human activities under the post-event conditions. The earthquake damage
assessment is also performed by (1) normalized RGB color composition of the two latter coherence
maps and (2) logistic discriminant analysis of uncollapsed and collapsed buildings considering both
the coherence values and the building heights. Finally, the volume of debris and the 3D perspective
of the town are calculated based on the discriminant cut-off values, the building footprints and their
corresponding y values.

2. Earthquake and Study Area

Iran is located in a seismically active region between two tectonic plates to the north (Eurasia)
and the south (Arabia). In recent decades, Iran has experienced several deadly earthquakes that
caused considerable casualties, which makes a rapid observation system necessary to increase disaster
response and improve emergency management in the aftermath of an earthquake. Recent major
earthquakes in different parts of Iran include the 2003 Bam earthquake (M 6.3) in central Iran, which
caused approximately 40,000 causalities, the twin earthquakes in Ahar-Varzaghan in NW Iran (M 6.4
and 6.4) in 2012, which caused more than 300 casualties, and the 2013 Makran earthquake (M 7.3) in
the SE subduction zone [13–15]. More recently, at 21:48 Iran Standard Time on 12 November 2017, a
magnitude 7.3 earthquake occurred in the Zagros seismotectonic zone in western Iran at a depth of
18 km and particularly affected Kermanshah Province [16,17]. This event was the deadliest earthquake
in 2017; it caused more than 600 casualties, injured 7000 people and left 15,000 people homeless,
and it was not only felt in the neighboring provinces of Iran but was also recorded by seismological
stations in neighboring countries, such as Iraq, Turkey and Azerbaijan [16]. According to the Iranian
seismic network, the earthquake occurred in Iranian territory in Kermanshah Province, near the Iraqi
border. The event was called the Kermanshah or Sarpole-Zahab earthquake in Iran; in Iraq, it was
called the Halabja earthquake. In the early hours after the earthquake, no structural damage was
reported in towns located north of the epicenter (e.g., Paveh and Nowsud). In contrast, the main
damage reported by visual inspections conducted by experts and local residents was located in towns
south of the epicenter, such as Salase-Babajani, Sarpole-Zahab and Qasre-Shirin [16,17]. As shown
in Figure 1, the epicenter was located 28, 51 and 56 km from Salase-Babajani, Sarpole-Zahab and
Qasre-Shirin, respectively. The highest peak ground acceleration (PGA) record of the Iranian Strong
Motion Network, which is operated by the Building and Housing Research Center (BHRC), was at
the Sarpole-Zahab station, where the longitudinal (L), traverse (T) and vertical (V) components were
681 cm/s2, 562 cm/s2 and 404 cm/s2, respectively. The event’s PGA records at the Nowsud station,
which is located 37 km NW of the epicenter, were 48 cm/s2, 45 cm/s2 and 44 cm/s2 for the L, T and V
components, respectively, which indicates that the seismic waves propagated from north to south [16].
Because the Sarpole-Zahab station is located in a forward direction, its high PGA record is reasonable
and implies that the shorter distance between the site and the epicenter cannot exclusively reflect the
nature of damage to buildings. If we assume that the quality and construction methods of the structures
in the towns north and south of the epicenter are similar, the geological/topographical conditions
and shear wave velocity of the upper 30 m (Vs30) are the most important factors that affected the
heavy damage in the towns south of the epicenter. A shaded relief map of the study area indicates
that Sarpole-Zahab and Qasre-Shirin are located in relatively flat regions, whereas the majority of
the towns to the north of the epicenter, such as Paveh, are located in topographically rugged regions,
which may reduce the impacts of local seismic amplification (Figure 1). The average Vs30 values for
Nowsud and Sarpole-Zahab are approximately 760 m/s and 290 m/s, respectively. These Vs30 values
were extracted from Iran’s national Vs30 map, which was developed from topographic and geological
data as a proxy for seismic amplification and indicates that sites with lower Vs30 values have greater
potential of being damaged during earthquakes [18].
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Figure 1. Shaded relief map of the study area showing the locations of the epicenter (star) and
aftershocks (~700 white circles) greater than magnitude 2 from 12 November 2017 to 1 December
2017 recorded by the Iranian Seismological Center. The triangles are the surrounding towns. The thin
lines show the Euclidean distances between each town and the epicenter. The inset map shows the
topography of Iran.

Although the purpose of this study is to demonstrate the feasibility of using SAR data for rapid
monitoring of urban regions, large-scale damage monitoring of the stricken area using SAR data is not
currently possible because auxiliary data about building heights from commercial sources, such as
digital surface models (DSMs), are not available. Thus, we selected an area of approximately 7 km2

around Sarpole-Zahab for a pilot study due to the heavy damage in some parts of the town and the
availability of test data for the collapsed buildings from other sources. The bright pixels in Figure 2 are
buildings in Sarpole-Zahab overlaid on a backscatter map (30 October 2017); 75% of the buildings in
the town are 1- or 2-story buildings, and the remaining buildings are 3- to 6-story buildings. The bright
pixels that are extended NW-SE are not associated with buildings; they correspond to a layover
distortion of sharp topographic features (e.g., mountains), in which the foreslope angle (α = 49◦) of the
features exceeds the incidence angle of the Sentinel-1 image (θ = 42◦). The layover distortion cannot
be removed from the image because the radar receivers receive the signals simultaneously, regardless
of how far apart the locations are. Therefore, they are not separated in the superimposed image [19].
The dark pixels in the western area with low intensity values are vegetated areas, cropland and filled
lands, which are classified as soft soil in most building construction codes.
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Figure 2. Heights of buildings with an accuracy of 0.5 m overlaid on the Sentinel-1 intensity image of
Sarpole-Zahab acquired from an ascending orbit. The dashed line indicates the boundary of soft soil.
Boxes A and B are the samples of new and old buildings, respectively, shown in Figure 4.

3. Sequential SAR Coherence Method

The information retrieved by SAR in terms of both the intensity (σ0) and coherence (γ) can be
used in surface or urban monitoring [1–11,20–24]. Here, the backscattering values were used not for
an urban analysis but rather for a simple interpretation of the features in and around Sarpole-Zahab.
The backscattering values in dB units were introduced in the previous section.

The sequential SAR coherence method used in this study is derived from the concept of repetitive
SAR data and the conventional InSAR method. The techniques used in InSAR rely on phase differences
of different epochs (i.e., ground displacements). Interferometric methods can provide information
such as the coherence, which is an index used to measure the degree of interferometric correlation
between two coregistered SAR images as follows:

γ =
M ∗ S√

M ∗M
√

S ∗ S
(1)

where M and S are the master and slave images, respectively; the brackets denote averaging over a
finite number of signal measurements, and M and S are the complex conjugates of the master and
slave images, respectively. There is a trade-off between the window size and parameters such as
the ground resolution and coherence. As the window size increases during phase processing, the
resolution of the results will decrease, whereas small windows will result in overestimated coherence
values. To decrease the level of speckle noise in SLC images and increase the reliability of the coherence
maps, we considered the multilook factor of range 4 and azimuth 1 to obtain square pixels in the
final product of the Sentinel-1 data. Once coherence values over an urban area are calculated for
at least one preseismic pair, the concept of damage can be developed by calculating the coseismic
coherence values of one post-event image and one of the pre-event images that were used for the
preseismic coherence analysis. A decorrelation between the pre-event and post-event data manifests
itself as a decreased coherence map. To understand the extent of the damage, simple differencing and
normalized differencing can be considered as follows:

∆γ = γpre − γco (2)
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∆̂γ =
γpre − γco

γpre + γco
(3)

For local urban studies, simple differencing, as calculated in Equation (2), results in satisfactory
accuracy; however, RGB visualizations are better applied in the normalized approach for potential
global approaches in future studies [9]. Although our study is local, we follow both simple and
normalized approaches; we use the former to evaluate the coherence values of the pairs with other
effective parameters and the latter for mere RGB visualization. Generally, the use of pre-event images
with shorter temporal gaps in coseismic InSAR analysis will increase the reliability and quality of the
coherence proxy maps [8]. In this study, we use this idea not only for the coseismic coherence but
also for all of the datasets acquired from Sentinel-1. As shown in Figure 3a, regardless of the relative
spatial baseline of the images, we focus only on sequential coherence analysis because the images are
regularly obtained over time. The long sequential SAR coherence (LSSC) and short sequential SAR
coherence (SSSC) can be defined as follows:

∆γLSSC(i−1) = γi(pre) − γi+1(pre) (4)

∆γSSSC(i−1) = γi(pre) − γi+1(co) (5)
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Figure 3. (a) Chain-like formation of coherence analysis for the long sequential SAR coherence (LSSC)
and short sequential SAR coherence (SSSC). The black circles and numbers are the Sentinel-1 images
and the corresponding numbers of the images. The colored lines and blue numbers are associated
with the mean coherence values and the corresponding numbers of the coherence map; (b) Daily
precipitation graph recorded at Kermanshah station (Lat: 34.26, Lon: 47.11). The coherence labels
are the blue numbers in Figure 3a; (c) Histogram of Sarpole-Zahab in each produced coherence map;
(d) Correlation between the heights of individual buildings and the corresponding coherence values
in Sarpole-Zahab.
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In Equations (4) and (5), i represents the label of the images, whereas the label of the
sequential coherence is i − 1. The spatiotemporal distribution of the baselines for a timespan of
two years (9 January 2016 to 17 November 2017) of Sentinel-1A and B (Figure 3a) shows that for a
pool of 57 interferometric wide swath (IW) images with a 5 × 20 m spatial resolution from an
ascending orbit (72), 56 coherence maps with VV polarization are produced. Depending on the
preseismic or coseismic conditions, 54 and 2 coherence maps are considered for the LSSC and
SSSC, respectively. All of the epochs have a regular 12-day latency except for one 24-day epoch
(between 13 June 2016 and 7 July 2016). Because this 24-day epoch occurred during the dry season in
the study area, its impact on the general trend of the mean coherence is negligible. Accordingly, the
mean coherence of the LSSC can be used as an indicator of stationary changes, such as seasonal effects
and precipitation. As shown in Figure 3a,b, the connection lines of the LSSC show that the mean
coherence values decrease in two epochs (February to May in both 2016 and 2017). The maximum
daily precipitations were 97 mm and 118 mm on 14 April 2016 and 28 March 2017, respectively.
Although the mean coherence value decreases during these winter-to-spring periods, histograms of the
coherence in Sarpole-Zahab show that the high coherence values are influenced less by seasonal effects
than by the earthquake (Figure 3c). Figure 3c shows that after the earthquake, the peak coherence
shifted considerably toward lower values, whereas the seasonal effects flattened the coherence peaks
without any considerable shift. Note that we did not exclude some small vegetated areas, such as
parks and promenades in Sarpole-Zahab, during the mean coherence calculation. The most important
characteristic of the decrease in coherence of the buildings in Sarpole-Zahab in the winter-to-spring
periods is its indirect relationship with the height of buildings. This relationship was extracted from
a comparison between the heights of all of the buildings in Sarpole-Zahab (9230 buildings) and
the corresponding centroid coherence values (Figure 3d). The correlation coefficient between the
coherence and the building height is 0.21, which implies that as the building height increases, the
InSAR results become more coherent, which might be related to the type of materials used in rooftops.
This correlation is not only found for the height of buildings; other height-derived parameters, such
as the volume of buildings, have positive correlations with the coherence. Most new buildings in
Sarpole-Zahab are relatively tall (between 3 and 6 stories), whereas the old buildings are usually 1
to 2 stories tall. During a field survey in December 2017, we observed that the materials used in
the rooftops of old buildings are more natural than the synthetic materials used in new buildings
(Figure 4). Natural building materials created from soil, water and fibrous products such as straw
are dominant in old buildings. Usually, these cob-made rooftops absorb water during rain, which
changes the volume of the roof; thus, the coherence in this type of building would be relatively low.
In contrast, as shown in Figure 4d, the walls and rooftops of new buildings are composed of bituminous
materials to protect the insides of the buildings from rain and moisture. Bituminous waterproofing
sheets do not change in size during rain and exhibit higher coherence values. Although a correlation
between the building height and coherence exists, it is not a high correlation. One local reason might
be the replacement of cob materials in the old buildings with bituminous materials in recent years
(Figure 4a). Old buildings were built in different locations with dark rooftops, whereas new buildings
have been constructed in the western part of the town and can be distinguished by silver rooftops
(Figures 2 and 4). Unfortunately, because of our incomplete building inventory, discrimination of all
of the repaired old buildings was not possible. Because we focus on LSSC and SSSC for the coherence
monitoring and building damage assessment in this study, we did not present the backscattering
coefficients of the buildings. The backscattering behavior is complex; during rainy periods, it would be
high in old buildings because of the electrical properties of air and water, whereas in the dry seasons,
it would be lower in old buildings because some of the radar energy will be absorbed by the dry soil.
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in the western part of the town have brighter roof colors, which are associated with bituminous
waterproofing materials with a thin silver color outer layer; (c,d) Samples of cob and bituminous
materials used in old and new buildings, respectively.

4. Coherence Modeling

The dynamic state of SAR data includes both stationary and nonstationary parts. In Sarpole-Zahab,
from the point of view of stochastic processes, the stationary elements, such as climatic and seasonal
conditions (i.e., LSSC), can be represented by coherence decay models, whereas nonstationary features,
such as the impacts of human activities after disasters, are more difficult to model. One reason why we
cannot focus on the coherence modeling of human changes (i.e., SSSC) is that these changes are highly
dependent on local parameters, which are more complex. For example, the post-earthquake modeling
of the coherence changes in Sarpole-Zahab requires extensive information about the post-earthquake
construction activities, debris removal tasks, and other activities. Here, we focus only on the phase
stability of Sarpole-Zahab according to stationary parameters in which the temporal decorrelation
is reduced with regular Sentinel-1 acquisitions. We use the mean coherence value of all of the
Sarpole-Zahab buildings for which the timespan of the results of 660 days contains two winter-to-spring
periods. The mean coherence shows that in a normal stationary condition, the minimum and maximum
mean coherence values are 0.86 and 0.75, respectively. A stationary process as a cause of coherence
changes can be represented by a polynomial temporal-climatic (TC) model that includes nonlinear
(precipitation) and linear (time difference) parts as follows:

γd(ti−1, ti) = 1− [(ap2 + bp + c)− (dt + e)] (6)

where γd(ti−1, ti) is the modeled coherence of the sequential method, p is precipitation, t is the time
differential between image i− 1 and image i, which is 12 days (or more) for Sentinel-1A products, and
a− e are coefficients estimated from least squares and iteration methods. We impose a constraint on
the nonlinear part of the TC model such that a should be nonzero. This constraint does not change
the outcomes significantly, but it forces the TC model to produce logical coherence values that are
not greater than one [25]. Thus, the TC model is useful for separating the seasonal effects from the
earthquake effects. Figure 5 shows that the TC model fits the calculated results well, and the overall
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RMSE is 0.02. The RMSE in the winter-to-spring period of 2016 (i.e., days 0–156) was 0.007, whereas
the RMSE in the winter-to-spring period of 2017 (i.e., days 348–492) was 0.03. The TC model in the
summer to autumn of 2016 (i.e., days 157–336) tends to overestimate the mean coherence values,
whereas during the 2017 summer-to-autumn period (i.e., days 494–660), the TC model underestimates
the mean coherence value until the sequential coherence chain is broken by the earthquake between
days 660 and 678. Table 1 shows the summary of the statistical parameters, the estimated coefficients
and the sensitivity of the TC model.
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Table 1. Summary of the TC model.

Description TC Model (Equation (6)) Reduced Gradient

Precipitation
a 0.0001 56,572.1
b 0 540.160
c 0.0302 0

Time
d 3.3 × 10−5 0
e 0.0445 0

RMSE 0.02

5. Damage Mapping and Discriminant Analysis of SSSC

A visual comparison of the collapsed buildings from UNITAR’s (United Nations Institute for
Training and Research) report with the results of the simple differential coherence (∆γ) method shows
that the method enables the detection of collapsed buildings. As shown in Figure 6a,b, most of the
collapsed buildings are located in the NW, SW and central parts of the town, but the range of ∆γ

cannot be quantified by simple inspections. The normalized RGB color composition map of the study
area provides a way to more realistically visualize the extent of the damage, in which the forward
value of ∆γ (C54–C55) in the red band shows collapsed buildings, the backward value of ∆γ (C55–C54)
in the green band shows human activities, such as debris removal that occurred immediately after
the event, and the mean values of the SSSC in the blue band show the urban pixels without distinct
changes (Figure 6c). The normalized RGB map of Sarpole-Zahab is a good example of a qualitative
damage map that presents both earthquake-related and human activities on the same map. However,
such mapping does not always produce acceptable results depending on the density of the vegetated
and built up areas and the wavelength of the microwave sensors used [9].
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Figure 6. Damage in Sarpole-Zahab from optical and radar imagery. (a) Locations of 683 collapsed
buildings (red circles) extracted by UNITAR from pre-event WorldView 3 satellite (30 m resolution) and
post-event optical data from the Pleiades satellite (50 m resolution). The blue circles are 683 randomly
selected uncollapsed buildings; (b) Damage map from the SSSC method; (c) RGB color composition
map; (d) Differential coherence (∆γ) values of two damage levels deduced from the SSSC method.

To further investigate the extent of damage, we apply discriminant analysis to create a damage
proxy map of Sarpole-Zahab. This method was used in previous studies with the SAR correlation
coefficient and the difference in backscattering values [3,4] and, more recently, with the difference in
coherence and the difference in backscattering [8,9]. Here, we apply discriminant analysis based on
∆γ estimated from the SSSC and the height of buildings (H). A 3D vector map of the buildings in
Sarpole-Zahab with an acceptable vertical and horizontal accuracy of ~0.5 m is created from seven
VHR optical images from the latest acquisitions of DigitalGlobe’s constellation between 2015 and
2017 [26–28]. The 3D vector map of the town over an area of ~15 km2 includes both the footprints and
heights of the buildings, which are used to compare the centroid coherence values of each individual
building with the corresponding heights in Figure 3d. The discriminant analysis considers two types
of buildings (two dependent variables) to be discriminated: (1) collapsed buildings, which are those in
which the walls or rooftop have been significantly deformed (e.g., Grades 4 and 5 in EMS-98); and
(2) uncollapsed buildings (e.g., Grades 1 to 3 in EMS-98), which are those that are either intact or
slightly deformed with damage not visible from satellite imagery [29]. These variables are assigned a
value of 1 if severe damage characteristics are present and 0 if severe damage characteristics are not
present. The locations of the collapsed buildings in Sarpole-Zahab from the high-resolution optical
imagery prepared by UNITAR are used as calibration data in our discriminant analysis; thus, the
aptitude tests of ∆γ (C54-C55) and the building heights are two representatives of the discriminant
function [30]. According to UNITAR’s report, 683 collapsed buildings were identified. To prevent
a violated discriminant analysis and to maintain a normal distribution between the collapsed and
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uncollapsed buildings, we also randomly select 683 uncollapsed buildings (Figure 6a). Figure 6a
shows the locations of 683 collapsed buildings (red circles) from UNITAR and 683 randomly selected
uncollapsed buildings (blue circles), and Figure 6d shows that the ∆γ value of the collapsed buildings
(0.24) is nearly twice that of the uncollapsed buildings (0.11). Because some of the collapsed buildings
in Sarpole-Zahab had areas smaller than 100 m2, the higher standard deviation of the collapsed
buildings is an indication of a limitation of the coarse resolution SAR imagery, in which certain small
buildings with severe damage are not identified by the SSSC method. In the discriminant analysis,
we try to predict the probability of the buildings falling into categories 1 or 0 using linear regression.
However, the interpretation of the outputs of this method is different from that applied for ordinary
least squares. In the ordinary least squares method, it is difficult to force the predicted value to remain
between 0 and 1. Thus, we apply the logistic regression method to account for the possibility of
being 0 and 1 and fix the violation of dummy values with constraints. In the ordinary method for the
two-category case, the dependent variables are defined as follows:

y = β0 + β1x1 + β2x2 + . . . + βixi (7)

where y is the categorical dependent variable and an indicator of the degree of building damage. If y is
1, the observation falls into category 1. If it does not fall into category 1, y equals 0, β0 is a constant,
and β1 through βi are regression coefficients. The parameters x1 through xi are independent variables
inferred from each individual building. For the logistic regression, Equation (7) can be rewritten
as follows:

y(p) = b0 + b1x1 + b2x2 + . . . + bixi = ln
[

p
1− p

]
(8)

p =
1

1 + e−y(p)
(9)

where p is the probability that a collapsed building is present. In the logistic method we defined,
the probability of the logarithmic value of the odds of the buildings is a linear combination of the
independent variables (H and ∆γ) as follows:

odds =
p

1− p
=

probability o f presence o f collapsed building
probability o f absence o f collapsed building

= eb0 × eb1x1 × eb2x2 × . . . ebixi (10)

when an x variable changes by 1 unit, and all the other factors remain unchanged, the odds will increase
by ebi . Once y(p) is calculated based on an interaction between the dependent and independent
variables, we define a constraint on the sum of all of the possibilities to calculate the intercept (β0) and
the coefficients of the independent variables (βi). Here, we solve a new function to maximize the sum
of the logarithmic likelihoods of the building damage type (i.e., uncollapsed and collapsed) and find
the related parameters as follows:

y = −0.9 + 6.22∆γ− 0.01 H (11)

To create a damage proxy map from the logistic equation (Equation (11)), we calculated the
threshold between the uncollapsed and collapsed groups as follows:

T =
n0y0 + n1y1

n0 + n1
(12)

where T is the threshold, n0 and n1 are the numbers of uncollapsed and collapsed buildings,
respectively, and y0 and y1 are the average values of the averaged discriminant scores for uncollapsed
and collapsed buildings, respectively. The calculated threshold value is 0.07, which means that
buildings with a discriminant score (y) lower than 0.07 are categorized in group 0 and that those
with a discriminant score (y) higher than 0.07 are categorized in group 1. To compare the results of
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the discriminant score with the calibration data from UNITAR, we randomly selected uncollapsed
buildings to calculate the overall accuracy of the logistic discriminant analysis. The overall accuracy of
the building classification in Sarpole-Zahab is 68%, in which 932 of the 1366 buildings from the training
data are correctly classified. This result indicated slightly higher accuracy than that achieved through
the simple discriminant analysis. The number of misclassified buildings in categories 0 and 1 were
144 and 290, respectively. Details of the building classification with respect to logistic regression are
given in Table 2. Figure 7 shows the damage proxy map of Sarpole-Zahab with scatter plots of ∆γ and
H, in which the majority of the collapsed buildings were two-story buildings. This finding does not
mean that the 3- to 6-story buildings were intact or slightly damaged. The scatterplot of the collapsed
(red circles) buildings in Figure 7 indicates that almost all of the buildings with heights more than
20 m in Sarpole-Zahab collapsed. The higher number of misclassifications among collapsed buildings
shown by the thick dashed line in Figure 7 can be interpreted as a weakness of the discriminant
analysis, mainly because of the lower accuracy of the calibration data, which were estimated from a
space-based method instead of a field investigation, the limitations of the low-resolution SAR data and
the heteroscedasticity between ∆γ and H.
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Table 2. Summary of the logistic discriminant analysis of the independent variables (∆γ and H) and
dependent variables (categories 0 and 1).

R square 0.15
Multiple R 0.39

β0 −0.9
β1 6.22
β2 −0.01

Threshold 0.07
ΣLn(p) −822.83

Correct classification 932
Misclassification 434

Correct classification in n0 539
Misclassification in n0 144

Correct classification in n1 393
Misclassification in n1 290
Overall accuracy (%) 68

6. Estimation of Debris

The definition of debris generally includes natural (e.g., trees) and man-made (e.g., cement blocks)
materials generated by a disaster. Several SAR-based methods are available for debris handling and
volume and height estimation. If airborne SAR data are available, very high-resolution stereo SAR
data with different polarizations can be used to define the base, which is a reference point on the
nondebris-covered ground surface [31]. If airborne SAR data are not available, very high-resolution
spaceborne data provide an effective means of estimating the building footprint and height, and
the modeling of backscattering patterns can contribute to estimating the extent of damage and the
debris volume [32]. In most cases, very high-resolution SAR images, either airborne or spaceborne,
are not available. Here, we focused only on debris consisting of man-made materials (i.e., buildings),
for which indirect relationships with the building heights and the discriminant threshold values are
considered. The volumes of buildings, construction materials and debris are defined by Hashemi and
Alesheikh [33] as follows:

Vbi = Abi × Hi (13)

Vcmi =
Vbi

5
(14)

Vd = Σi=9230
0 Vcmi × ri (15)

where Vbi and Abi are the volume and area of building i, respectively, which are extracted from 3D
vector data, Hi is the height of building i, Vcmi and Vd are the volume of the construction materials of
building i and the total debris volume, respectively, and ri is the percentage of damage to the building.
In this paper, ri is unknown. As discussed above, the SSSC method does not explain the degree of
damage because some buildings might be deformed but remain standing. However, we were able
to calculate the discriminant threshold value based on the logistic method to separate the range of
probability of collapsed buildings and force the buildings to be considered as either “collapsed” or
“uncollapsed.” This approach will not produce accurate debris estimations because assuming that
debris will only be produced from G4 and G5 buildings, we should consider that according to the
EMS-98 code, G5 buildings will have more debris and waste materials. Thus, we assume that the
percentage of damage in G4 buildings is 50% less than that in G5 buildings. We then divide the
buildings with values higher than 0.07 into two groups, which are likely to be similar to the G4 and
G5 classes, using the “natural breaks” optimization. The method seeks to classify the buildings by
minimizing the average deviation from the class mean while maximizing the deviation from the means
of the other class, which enables it to decrease the variance within classes and maximize the variance
between classes [34]. This is a reliable classification method when field survey results are incomplete
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or lacking. The break value in the “collapsed” class (range from 0.07 to 4.82) is 1.37. Values larger
than the break value are likely to be in group G5, whereas values between 0.07 and 1.37 are in group
G4 (Figure 8). The amount of debris is based on the initial results of the earthquake between two
latter coherence maps; therefore, post-earthquake activities and the effects of human activities, such
as the removal of debris related to shear walls of uncollapsed buildings, are not considered. Most of
the debris is produced from heavily damaged buildings (G4) that have significant failures of their
walls while their frames remain standing. Of the 799 suspicious buildings identified by the logistic
and natural breaks methods, 652 are in group G4, and 147 are in group G5. The amount of debris for
the G4 group is 95,454 m3, which is approximately three times larger than that of the G5 buildings.
This finding implies that the total failure of buildings is not the main cause of debris in the town.
The average heights of the G4 and G5 buildings are 6.2 m and 5.8 m, respectively, which indicates that
in both damage categories, 1- and 2-story buildings are the most vulnerable structures. Details of the
EMS-98 damage grades and the estimated volumes of debris in Sarpole-Zahab are given in Table 3.

Table 3. EMS-98 damage description of masonry buildings, damage scores and total volume of debris
in Sarpole-Zahab.

Damage Grade and Description Number of
Buildings

Discriminant
Score

Total Volume
of Debris (m3)

G1: Negligible to slight damage (no structural damage,
slight nonstructural damage). Thin cracks in very few walls.
G2: Moderate damage (slight structural damage, moderate
nonstructural damage). Cracks in many walls.
G3: Substantial to heavy damage (moderate structural
damage, heavy nonstructural damage). Large and extensive
cracks in most walls.

8431 y < 0.07 0

G4: Very heavy damage (heavy structural damage, very
heavy nonstructural damage). Significant failure of walls;
partial structural failure of roofs and floors.

652 0.07 ≤ y < 1.37 95,454

G5: Destruction (very heavy structural damage). Total or
near total collapse. 147 y ≥ 1.37 36,357
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7. Discussion

The mean coherence over the town with an area approximately 7 km2 decreases by up to 0.1 of
the coherence (~10% of the coherence) due to the rooftop deformations of old buildings after heavy
precipitation events. Washaya et al. also showed that a coherence loss of approximately 38% occurred
immediately before the earthquake [10]. Using LSSC, the physical condition of each individual building,
especially old and weak buildings, can be monitored if they are influenced by long-term stationary
changes such as heavy rain. Additionally, the mean coherence decay caused by the earthquake
was 0.24, which implies that stationary and nonstationary events can be easily distinguished with
continuous urban monitoring using this method. The TC model is used to estimate the sensitivity
of the mean coherence during the spring-to-winter and summer-to-autumn periods and to predict
the mean coherence values in the absence of an earthquake. The model fits the data well, but it is not
guaranteed to be reliable if the temporal parameter in Equation (6) is large. Accordingly, the impacts
of different temporal baselines must be quantified in future studies. Because the relationship between
the building height and the coherence is not sufficiently strong, the overall accuracy of the outputs
of the logistic discriminant analysis is low. In addition, the number of misclassified buildings in the
collapsed category was higher than that of the uncollapsed category. This was probably caused by two
reasons: (1) because of the coarse resolution of the Sentinel-1 dataset, the pixel size is larger than the
size of the buildings, so most buildings near collapsed buildings cannot be distinguished; and (2) for
large buildings that cover more than one coherence pixel, we used only the pixel value that covers the
centroid of the buildings, which increases the uncertainty of the building classification. Different pixel
averaging methodologies or different window sizes may reduce the number of misclassified buildings
and increase the overall accuracy.

Sarpole-Zahab was not sufficiently large to demonstrate all the capabilities of repeated SAR
observations, but the model applied in Sarpole-Zahab can be used in other cities around the world
with their relative coherence values (LSSC), relative urban footprints extracted by different methods
and additional information about the cities in an online GIS geodatabase. Because the availability of
digital surface models (DSMs) for the extraction of building heights is limited, the priority should be
given to seismically vulnerable cities with extensive geodatabases. Using the large amounts of SAR data
provided by Sentinel-1, new portals and tools with second-order SAR products (e.g., SAR coherence
maps) have already been established [35,36]. Thus, for further progress in Earth observations, the model
proposed in this paper can also be used to create new portals with third-order SAR products, such as
RGB coherence maps, and for monitoring industrial cities before and during natural or anthropogenic
disasters. Although vulnerability is a complex concept that consists of variable components, the
development of a mean coherence index for building damage in each city or area with a specified
boundary can provide a better and faster understanding of large changes, such as damage caused
by earthquakes.

8. Conclusions

This paper presented the application of a sequential interferometric pair for the assessment of
Sarpole-Zahab before and during the 2017 earthquake using nearly two years of Sentinel-1 data.
Typically, interferograms with larger temporal baselines generate lower coherence. This effect is
reduced by selecting regular 12-day intervals followed by the application of the sequential coherence
method for the constant screening of Sarpole-Zahab, whereas seasonal coherence changes are explored
during the rainy and snowy seasons.

The binomial logistic regression method was used to discriminate two types of buildings.
This approach provides a more realistic method when two groups of buildings (i.e., collapsed and
uncollapsed) are present. Because of the inherent limitations of SAR imagery for building damage
assessments, it was difficult to consider more sophisticated logistic regressions (i.e., multinomial logistic
regression), which apply to situations that can have three or more possible outcomes. In addition,
we combined the results of the logistic regression analysis and the natural breaks classification to
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estimate the amount of debris in G4 and G5 buildings, assuming that the amount of debris is based on
the immediate results of the SSSC method; therefore, the debris generated after the event cannot be
directly addressed with this method.
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