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Abstract: The shadow-mapping and ray-tracing algorithms are the two popular approaches used in
visibility handling for multi-view based texture reconstruction. Visibility testing based on the two
algorithms needs a user-defined bias to reduce computation error. However, a constant bias does not
work for every part of a geometry. Therefore, the accuracy of the two algorithms is limited. In this
paper, we propose a high-precision graphics pipeline-based visibility classification (GPVC) method
without introducing a bias. The method consists of two stages. In the first stage, a shader-based
rendering is designed in the fixed graphics pipeline to generate initial visibility maps (IVMs). In the
second stage, two algorithms, namely, lazy-projection coverage correction (LPCC) and hierarchical
iterative vertex-edge-region sampling (HIVERS), are proposed to classify visible primitives into
fully visible or partially visible primitives. The proposed method can be easily implemented in the
graphics pipeline to achieve parallel acceleration. With respect to efficiency, the proposed method
outperforms the bias-based methods. With respect to accuracy, the proposed method can theoretically
reach a value of 100%. Compared with available libraries and software, the textured model based on
our method is smoother with less distortion and dislocation.

Keywords: Visibility checking; occlusion detection; multiview-based texture reconstruction; oblique
photogrammetry; computer graphics pipeline

1. Introduction

Occlusion or visibility testing is nonnegligible in the fields of computer vision (CV), virtual reality
(VR), computer graphics (CG), etc., in both 2D and 3D space. In 2D space, occlusion can be ascribed to
static intersection or contact between polygons [1,2]. Tracking a deformable or moving object in an
intricate and crowded surrounding [3–5] requires consideration of occlusion. In 3D space, occlusion
issues become more complicated and diversified. Situations in which 3D visibility occurs include
stereo matching [6], object reconstruction [7,8] and motion trajectory optimization [9–11]. With the
development of multiview-based reconstruction [12], there has been an increasing focus on texture
generation of 3D surfaces [13–17]. Visibility checking is highly important for the smoothness and
verisimilitude of textured models. However, it appears that the visibility issue in this field has not
attracted as much attention as texture generation.

Frueh et al. [18] ignored the disturbance of occluded pixels in textured models and did not
consider the occlusion problem during texture reconstruction. This approach is acceptable only when
the occluded area is sufficiently small; if the occluded area is large, then texture dislocations and seams
occur (as shown in Figure 1a).
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Figure 1. The importance of visibility tests in texture reconstruction. (a) The textured model without 
visibility tests. (b) The textured model based on GPVC. 

Xu et al. [19] introduced the hidden point removal (HPR) algorithm [20] to determine a face’s 
visibility. If the inversion of a face’s center lies on the convex hull of a mesh’s vertices and a given 
viewpoint, then the face is fully visible from that viewpoint. However, HPR was initially proposed 
to compute a point’s visibility in a point cloud; applying the algorithm to determine a face’s 
visibility in a 3D mesh is insufficient. Even if the center ܥ of a face is visible, the face can still be 
occluded (as shown in Figure 2a). 
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Figure 2. Visibility issues that available methods fail to handle. The visible faces are drawn with solid 
lines, and the occluded faces are drawn with dotted lines and filled with shadow. Occlusion 
detection based on HPR is unable to identify the occluded face in (a). The projection-based approach 
incorrectly marks the occluded face in (b) as visible. Without dense tracing, the ray-tracing method 
cannot identify the occluded faces in (a,c,d). In addition, ray tracing will incorrectly determine the 
visible faces in (e–g) as occluded. Without an appropriate bias, it is difficult to compute the correct 
visibility between two close faces in (h) through ray-tracing and shadow-mapping approaches. 

Pages et al. [13] used a projection-based approach to handle the occlusion problem. If one 
vertex ܸ of face ܣ is projected inside the projection area of face ܤ and ܤ lies between ܸ and a 
given viewpoint, then ܣ is occluded by ܤ. However, this technique only works in the occlusion 
condition, as depicted in Figure 3. If none of ܣ’s vertices are projected inside ܤ (as shown in Figure 2b), 
then ܣ will be incorrectly determined as visible. 

Figure 1. The importance of visibility tests in texture reconstruction. (a) The textured model without
visibility tests. (b) The textured model based on GPVC.

Xu et al. [19] introduced the hidden point removal (HPR) algorithm [20] to determine a face’s
visibility. If the inversion of a face’s center lies on the convex hull of a mesh’s vertices and a given
viewpoint, then the face is fully visible from that viewpoint. However, HPR was initially proposed to
compute a point’s visibility in a point cloud; applying the algorithm to determine a face’s visibility in a
3D mesh is insufficient. Even if the center C of a face is visible, the face can still be occluded (as shown
in Figure 2a).
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cannot identify the occluded faces in (a,c,d). In addition, ray tracing will incorrectly determine the 
visible faces in (e–g) as occluded. Without an appropriate bias, it is difficult to compute the correct 
visibility between two close faces in (h) through ray-tracing and shadow-mapping approaches. 

Pages et al. [13] used a projection-based approach to handle the occlusion problem. If one 
vertex ܸ of face ܣ is projected inside the projection area of face ܤ and ܤ lies between ܸ and a 
given viewpoint, then ܣ is occluded by ܤ. However, this technique only works in the occlusion 
condition, as depicted in Figure 3. If none of ܣ’s vertices are projected inside ܤ (as shown in Figure 2b), 
then ܣ will be incorrectly determined as visible. 

Figure 2. Visibility issues that available methods fail to handle. The visible faces are drawn with solid
lines, and the occluded faces are drawn with dotted lines and filled with shadow. Occlusion detection
based on HPR is unable to identify the occluded face in (a). The projection-based approach incorrectly
marks the occluded face in (b) as visible. Without dense tracing, the ray-tracing method cannot identify
the occluded faces in (a,c,d). In addition, ray tracing will incorrectly determine the visible faces in
(e–g) as occluded. Without an appropriate bias, it is difficult to compute the correct visibility between
two close faces in (h) through ray-tracing and shadow-mapping approaches.

Pages et al. [13] used a projection-based approach to handle the occlusion problem. If one vertex
V of face A is projected inside the projection area of face B and B lies between V and a given viewpoint,
then A is occluded by B. However, this technique only works in the occlusion condition, as depicted
in Figure 3. If none of A’s vertices are projected inside B (as shown in Figure 2b), then A will be
incorrectly determined as visible.
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Figure 3. Occlusion conditions in which the projection-based approach can work. (a) Face ܣ is entirely 
occluded by face ܤ. (b) Face ܣ is partially occluded by face ܤ. 

According to the coherence of perspective transformation between 3D rendering and pinhole 
camera imagery, visibility checking in texture reconstruction can be regarded as a point-based visibility 
test [21,22]. Therefore, many related studies have applied ray-tracing [23–26] and distance-based 
comparison [14,16,27–33] of CG to solve the visibility issue in texture reconstruction. 

The standard ray-tracing algorithm traces a virtual ray from a viewpoint to a point  on a 3D 
surface; if an intersection between the viewpoint and the surface is found before reaching , then  
is occluded [34]. This algorithm was adopted in previous studies [15,35] to check visibility. In the 
implementation reported in Reference [14], the authors designed sparse tracing (three rays are cast 
to a face’s vertices) based on an open-source library [36]. Clearly, the occluded faces in Figure 2a,c,d 
will be inappropriately identified as visible by this type of implementation. In addition, when 
intersections occur on edges, as shown in Figure 2e,f, the visible faces will be identified as occluded. 
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In practice, a uniform grid data [23] or a hierarchical tree structure [24–26] is built to avoid needless 
intersection checking. However, when axis-aligned primitives exist, a greater number of intersection 
tests must be conducted [37]. 

In the distance-based comparison, given a viewpoint or a projection plane, among all points on 
a 3D surface that can be projected into the same pixel, the closest point to the viewpoint or the 
projection plane is visible. However, projecting all faces of a complex mesh and comparing the 
distance at each pixel [28] is a brute-force choice that requires hundreds of samplings. In previous 
studies [14,27–29], the projection plane of each view was tessellated with large grid cells to reduce 
samplings. Clearly, the visibility results based on this method are sensitive to the size of a grid cell. 
In previous studies [14,16,31–33], the authors applied the shadow-mapping algorithm [38–40] with 
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the shadow acne artifact, which refers to erroneous self-shadowing [39]. Sampling the Z-buffer 
through the standard depth bias approach yields insufficient precision [41] because a constant 
depth bias does not work for every part of a geometry [40]. A small bias produces self-occlusion, 
and a large bias means missing occlusion. Thus, this Z-buffer-based approach is still limited by an 
uncontrollable bias. Without an appropriate bias, the correct visibility in Figure 2h is also in danger. 
  

Figure 3. Occlusion conditions in which the projection-based approach can work. (a) Face A is entirely
occluded by face B. (b) Face A is partially occluded by face B.

According to the coherence of perspective transformation between 3D rendering and pinhole
camera imagery, visibility checking in texture reconstruction can be regarded as a point-based visibility
test [21,22]. Therefore, many related studies have applied ray-tracing [23–26] and distance-based
comparison [14,16,27–33] of CG to solve the visibility issue in texture reconstruction.

The standard ray-tracing algorithm traces a virtual ray from a viewpoint to a point p on a
3D surface; if an intersection between the viewpoint and the surface is found before reaching p,
then p is occluded [34]. This algorithm was adopted in previous studies [15,35] to check visibility.
In the implementation reported in Reference [14], the authors designed sparse tracing (three rays
are cast to a face’s vertices) based on an open-source library [36]. Clearly, the occluded faces in
Figure 2a,c,d will be inappropriately identified as visible by this type of implementation. In addition,
when intersections occur on edges, as shown in Figure 2e,f, the visible faces will be identified
as occluded. More importantly, all calculations involving ray tracing will introduce a bias [37],
which requires an epsilon to reduce computation error. If the epsilon is small, then self-intersections
may occur, resulting in visible regions becoming occluded; if the epsilon is large, then missed
intersections may occur, resulting in occluded regions becoming visible. Thus, without an appropriate
epsilon, it is very difficult to compute the correct visibility between two close faces, as shown in
Figure 2h. In practice, a uniform grid data [23] or a hierarchical tree structure [24–26] is built to avoid
needless intersection checking. However, when axis-aligned primitives exist, a greater number of
intersection tests must be conducted [37].

In the distance-based comparison, given a viewpoint or a projection plane, among all points
on a 3D surface that can be projected into the same pixel, the closest point to the viewpoint or the
projection plane is visible. However, projecting all faces of a complex mesh and comparing the
distance at each pixel [28] is a brute-force choice that requires hundreds of samplings. In previous
studies [14,27–29], the projection plane of each view was tessellated with large grid cells to reduce
samplings. Clearly, the visibility results based on this method are sensitive to the size of a grid cell.
In previous studies [14,16,31–33], the authors applied the shadow-mapping algorithm [38–40] with the
aid of the well-known Z-buffer. The distance of a given test point to the viewpoint is computed first,
and then a comparison is made between the computed distance and the corresponding distance stored
in the shadow map; if the computed distance is smaller, then the point is visible; otherwise, the point is
occluded in shadow. In Reference [32], an empirical epsilon was added to the shadow map to reduce
numerical error. However, the regular shadow mapping [38] suffers from the shadow acne artifact,
which refers to erroneous self-shadowing [39]. Sampling the Z-buffer through the standard depth bias
approach yields insufficient precision [41] because a constant depth bias does not work for every part
of a geometry [40]. A small bias produces self-occlusion, and a large bias means missing occlusion.
Thus, this Z-buffer-based approach is still limited by an uncontrollable bias. Without an appropriate
bias, the correct visibility in Figure 2h is also in danger.

In this study, we propose a high-precision graphics pipeline-based visibility classification (GPVC)
method to solve the visibility problem in texture reconstruction. The best advantage offered by GPVC
is that visibility can be computed without introducing an improper bias. Our method consists of two
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stages. First, we design a shader-based rendering to generate each view’s initial visibility map (IVM)
and record visible primitives in a shader storage buffer object. Three spatial properties of IVMs are
excavated to form our visibility classification mechanism. Second, we propose two algorithms, namely,
lazy-projection coverage correction (LPCC) and hierarchical iterative vertex-edge-region sampling
(HIVERS), to classify the visible primitives into fully visible or partially visible primitives. Compared
with per-primitive checking, the advantage of LPCC is that LPCC only handles the visible primitives
that are stored. Another breakthrough provided by LPCC is that we take the polygon rasterization
principle and rasterization error into account, which has not been considered in other fragment-based
visibility tests. HIVERS is proposed to identify a primitive’s visibility on an arbitrary surface (manifold
or nonmanifold) with fewer samplings.

The remainder of this paper is organized as follows. Section 2 describes the proposed method.
Section 3 presents the implementation details in the graphics pipeline. Experimental results are
presented in Section 4. Improvement of the proposed method is discussed with related studies in
Section 5. Finally, Section 6 presents conclusions.

2. Graphics Pipeline-Based Visibility Classification

In this section, we provide the details of GPVC. First, IVMs are generated in the fixed graphics
pipeline. Second, visibility classification is executed in the parallel computation stage. The framework
of GPVC is depicted in Figure 4.
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2.1. IVM Generation

Unlike the Z-buffer-based methods used in [14,16,31–33], in which the shadow maps store the
closest depth values, IVMs of GPVC store visible faces’ indexes as pixels. GPVC draws inspiration from
digital camera photography, and we use two techniques to ensure that IVMs record the visible pixels
coincident with digital images. First, in the XY plane, we design a shader-based rendering to achieve
the locational coherence of corresponding pixels. The implementation mechanism of the shader-based
rendering is described in Section 3. Second, in the Z-direction, we use the reversed projection [41] to
avoid Z-fighting [42,43] and improve the precision of the Z-buffer. We explain the generation of IVMs
according to the rasterization principle and present three spatial properties of IVMs.

2.1.1. Z-Buffer Precision Improvement

The default perspective projection matrix P in OpenGL is symmetric, which is defined as

P =


px 0 0 0
0 py 0 0
0 0 − F+N

F−N − 2NF
F−N

0 0 −1 0

 (1)
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Thus, the nonlinear mapping relationship between the z-component of the eye coordinate ze and
the depth stored in the Z-buffer can be expressed as{

zn = F+N
F−N −

2FN
(F−N)(−ze)

depth = s ∗ zn + b
(2)

In Formula (2), s =
d f−dn

2 and b =
d f +dn

2 when zn is within [−1, 1], or s = d f − dn and b = dn

when zn is within [0, 1], where d f is the depth value of the far plane F and dn is the depth value of the
near plane N.

According to Formula (2), the z-component of the normalized device coordinate zn will be
distributed in the symmetrical interval [−1, 1]; thus, depth has decreasing precision as points move
away from a viewpoint (as shown in Figure 5a). To avoid this drawback, we use the asymmetric
projection matrix Pr in DirectX instead of the default configuration in OpenGL.

Pr =


px 0 0 0
0 py 0 0
0 0 − F

N−F − 1 − NF
N−F

0 0 −1 0

 (3)

Therefore, we obtain

zn =
N

N − F
+

FN
(F− N)(−eyez)

(4)

In this manner, zn is distributed over the asymmetric interval [0, 1], in which the near plane N is
mapped to 1, and the far plane F is mapped to 0. To distribute the effective depths in the range with
higher precision, i.e., close to 0 (as shown in Figure 5b), we design a “zero near plane” configuration;
we compute N and F according to a 3D surface’s bounding box and a view’s projection parameter
(as shown in Figure 6) and then pull N as close to the viewpoint as possible. Formula (5) describes the
mapping relationship of our implemented Z-buffer.

lim
N→0

zn =
N
−eyez

(5)
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2.1.2. IVM Generation and Spatial Properties

Rasterization in CG converts vectorial geometries to discrete fragments. An efficient and simple
algorithm used in rasterization is the linear edge function (LEF) [44]. Given a triangle t whose vertices
are in the counterclockwise orientation and a fragment f to be tested, LEF is defined as

le f(vi ,vj)
( f ) = ( fx − vix)×

(
vjy − viy

)
−
(

fy − viy
)
×
(
vjx − vix

)
(6)

• le f(vi ,vj)
( f ) < 0 if the center of f is to the left of one edge;

• le f(vi ,vj)
( f ) = 0 if the center of f is on one edge;

• le f(vi ,vj)
( f ) > 0 if the center of f is to the right of one edge.

where
(
vi, vj

)
denotes the edge formed by vertices vi, vj,

(
fx, fy

)
is the center of f . Thus, if le f(vi ,vj)

( f ) <
0, (i, j) ε { (0, 1), (1, 2), (2, 0) }, then f is an inner fragment of t (as shown in Figure 7). The fragment
value v f of f is computed as 

λ0 =
1
2 le f(v1,v2)

( f )
a

λ1 =
1
2 le f(v2,v0)

( f )
a

λ2 =
1
2 le f(v0,v1)

( f )
a

λ0 + λ1 + λ2 = 1

(7)

v f =

λ0 f0
w0

+ λ1 f1
w1

+ λ2 f2
w2

λ0
w0

+ λ1
w1

+ λ2
w2

(8)

In Formulas (7) and (8), a represents the signed area of t; λ0, λ1, λ2 are the barycentric coordinates
of f ; f0, f1, f2 are the attribute values associated with the three vertices of t; and w0, w1, w2 are the
clip coordinates.
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Figure 7. LEF-based triangle rasterization.

After rasterization, visible fragments are written to target buffers if early fragment tests are
enabled [45]. In other words, visible parts of 3D surfaces are projected as those visible fragments.
We use an item buffer to store the visible primitives’ indexes as pixels. In this manner, the continuous
visibility issue in 3D space is converted to a discrete visibility issue in 2D space [22,34]. IVMs
formed by the visible fragments have three spatial properties, which is the foundation of our
visibility classification.

Handiness: Only visible primitives are recorded, and fully occluded primitives are discarded.
Coherence: Visibility property of a face in 3D space remains unchanged in IVMs.
Continuity: Fragments’ values within a fully visible primitive are uniform; otherwise, this primitive is
partially visible (as shown in Figure 8).

Remote Sens. 2018, 10, x FOR PEER REVIEW  7 of 30 

 

 
Figure 7. LEF-based triangle rasterization. 

After rasterization, visible fragments are written to target buffers if early fragment tests are 
enabled [45]. In other words, visible parts of 3D surfaces are projected as those visible fragments. 
We use an item buffer to store the visible primitives’ indexes as pixels. In this manner, the 
continuous visibility issue in 3D space is converted to a discrete visibility issue in 2D space [22,34]. 
IVMs formed by the visible fragments have three spatial properties, which is the foundation of our 
visibility classification. 

Handiness: Only visible primitives are recorded, and fully occluded primitives are discarded. 
Coherence: Visibility property of a face in 3D space remains unchanged in IVMs. 
Continuity: Fragments’ values within a fully visible primitive are uniform; otherwise, this primitive 
is partially visible (as shown in Figure 8). 

 
Figure 8. The continuity of IVMs. The fully visible primitives are drawn with solid lines and filled 
with green pixels; the partially visible ones are drawn with dotted lines and filled with red pixels. 

2.2. Visibility Classification 

Visibility classification based on IVMs marks a primitive with a fully visible or partially visible 
label, which represents the visibility issue in 2D space. The 2D visibility computation has been treated 
as hundreds of polygon-polygon intersection tests in [9,10]. Instead, based on the spatial properties 
of IVMs, lazy-projection coverage correction (LPCC), and hierarchical iterative vertex-edge-region 
sampling (HIVERS) are proposed to improve visibility computation. 

2.2.1. Lazy-Projection Coverage Correction 

(1) Lazy Projection 

The backface culling and frustum culling are the two classical strategies that are widely used to 
reduce needless visibility tests. After the processing of these methods, remaining faces of a 3D 
surface in the viewshed consist of fully visible faces ܨ, partially visible faces ܲ and fully occluded 
faces ܱ. The related methods used in texturing need to handle each face’s visibility in ܨ ∪ ܲ ∪ ܱ. 
Instead, lazy projection is proposed to avoid addressing the faces’ visibilities in ܱ. Based on the fact 

Figure 8. The continuity of IVMs. The fully visible primitives are drawn with solid lines and filled
with green pixels; the partially visible ones are drawn with dotted lines and filled with red pixels.

2.2. Visibility Classification

Visibility classification based on IVMs marks a primitive with a fully visible or partially visible
label, which represents the visibility issue in 2D space. The 2D visibility computation has been treated
as hundreds of polygon-polygon intersection tests in [9,10]. Instead, based on the spatial properties
of IVMs, lazy-projection coverage correction (LPCC), and hierarchical iterative vertex-edge-region
sampling (HIVERS) are proposed to improve visibility computation.

2.2.1. Lazy-Projection Coverage Correction

(1) Lazy Projection

The backface culling and frustum culling are the two classical strategies that are widely used
to reduce needless visibility tests. After the processing of these methods, remaining faces of a 3D
surface in the viewshed consist of fully visible faces F, partially visible faces P and fully occluded faces
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O. The related methods used in texturing need to handle each face’s visibility in F ∪ P ∪O. Instead,
lazy projection is proposed to avoid addressing the faces’ visibilities in O. Based on the fact that fully
occluded faces are automatically discarded by the depth test, we use a shader storage buffer object,
which is a continuous array, to record visible faces’ indexes at corresponding subscripts (as shown in
Figure 9). Given a visible face stored in the array, we project the face onto IVMs to obtain its initial
projection coverage (IPC). In this manner, we only process the faces in F ∪ P.
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Figure 9. Recording visible faces’ indexes in a shader storage buffer object.

(2) Projection Coverage Correction

After lazy projection, visibility judgment for a face only needs to apply the IVMs’ continuity.
However, due to the following two concerns, we should provide some correction to a face’s IPC during
visibility classification. First, the fragments whose centers lie on an edge do not always belong to a face
(as shown in Figure 10). Second, the rasterization of an edge contains errors (see Figure 11). These two
details interfering with visibility computation are overlooked by the fragment-based visibility tests
in References [14,16,31–33]. Without considering these details, the continuity of a primitive will
be destroyed.
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(a) 

Figure 10. The top-left rule used to rasterize edges that cross fragments’ centers. The edges in red
are the ones that cross fragments’ centers. The gray brightness of a fragment denotes the triangles to
which the fragment belongs. The red fragments whose centers lie on the edges do not belong to the
corresponding triangles because the edges are not left edges.

In CG, rendering adjacent primitives’ shared edges twice is avoided by using rules to maintain
consistency. The top-left rule (TLR) [46] is the criterion used in Direct3D to address this situation.
Given a triangle whose vertices are in the counterclockwise orientation, if an edge (s, e) (s is start, and e
is end) is perfectly horizontal, and the x-coordinate of e is smaller than the x-coordinate of s, then (s, e)
is a top edge; if the y-coordinate of e is smaller than the y-coordinate of s, then (s, e) is a left edge. If a
fragment’s center lies on a top edge, then the fragment belongs to the triangle that is below the top
edge; if the center lies on a left edge, then the fragment belongs to the triangle that is to the right of the
left edge (see Figure 10).
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triangles. (b) Rasterization error correction between two overlapped triangles.

The rasterization error of edges often has little impact on the visual effect, but is nonnegligible
in fragment-based visibility tests. As depicted in Figure 11, the rasterization error of edges indicates
that a fragment f within triangle A is rasterized incorrectly as one of triangle B. In our study, we find
that the pixel offset caused by the rasterization error remains within (0,

√
2

2 ). Thus, we propose the
following Algorithm 1. LPCC to recover the correct continuity of a visible primitive.

Algorithm 1. LPCC

Definition: Given a visible triangle ti (i represents the index value of ti), IPCi represents the initial projection
coverage of ti, f is one fragment crossed by each edge of triangle ti, vf is the fragment value of fragment f,
and di is the distance from the viewpoint to f ’s center in the plane of triangle ti.
Function LPCC(ti):
project ti and get IPCi
foreach f crossed by each edge of ti do

if f belongs to ti and vf 6= i then
j← vf
project tj and get IPCj
if f does not belong to tj then

modify the value v f of fragment f as i
else if di < dj then

modify the value v f of fragment f as i
end if

end if
end foreach
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Algorithm 1 consists of the following steps:

1. Use LEF and TLR to judge whether a given fragment f belongs to ti. If not, judge next fragment;
otherwise, go to step 2

2. Determine whether the value v f of fragment f equals ti’s index value i. If yes, go to step 1;
otherwise, go to step 3.

3. Determine whether f is an inner fragment of triangle tj. If not, f is an exceptional fragment of
triangle ti, then modify the value v f of fragment f as i (as shown in Figure 11a); otherwise, go to
step 4.

4. Determine whether triangle ti is in front of triangle tj at f ’s center. If yes, f is an exceptional
fragment of triangle ti, then modify the value v f of fragment f as i (as shown in Figure 11b);
otherwise, go to step 1.

2.2.2. Hierarchical Iterative Vertex-Edge-Region Sampling

HIVERS aims to identify a primitive’s visibility with fewer samplings. Based on the continuity of
IVMs, if a primitive p is considered to be fully visible, then p must satisfy the following conditions.

Vertex visibility condition (VVC): the inner fragments corresponding to p’s vertices maintain a
consistent value (see Figure 12a).
Edge visibility condition (EVC): the inner fragments corresponding to p’s edges maintain a consistent
value (see Figure 12b).
Region visibility condition (RVC): the inner fragments within p’s subregions maintain a consistent
value (see Figure 12c).

The three conditions are necessary to define a fully visible primitive. In addition, according to the
continuity of IVMs and the spatial structure of a manifold surface, we can make the following inference.

Inference 1: If a given primitive p of a manifold surface satisfies VVC and EVC, then this primitive
is fully visible; otherwise, the primitive is partially visible. In other words, we only need to sample
the inner fragments corresponding to f ’s vertices and edges in a manifold surface. We denote this
inference as VES.
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EVC and RVC to form HIVERS. As depicted in Figure 13, at each level of HIVERS, the three 
conditions are checked in order; we call this process one iteration at one level. The detailed 
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Figure 12. The description of VVC, EVC and RVC. (a) VVC: the fully visible primitives satisfy VVC,
while the partially visible primitives do not. (b) EVC: the fully visible primitives satisfy EVC, while the
partially visible primitives do not. (c) RVC: the fully visible primitives satisfy RVC, while the partially
visible primitives do not.

To be compatible with the occlusion situations in nonmanifold surfaces, we integrate VVC, EVC
and RVC to form HIVERS. As depicted in Figure 13, at each level of HIVERS, the three conditions are
checked in order; we call this process one iteration at one level. The detailed procedure of Algorithm 2.
HIVERS is as follows.
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Algorithm 2. HIVERS

Definition: Given a visible triangle t, B is the barycenter of t, fv represents t is fully visible and pv represents t
is partially visible.
Function HIVERS(t):
t← f v
if t does not satisfy VVC or EVC then

t← pv
return

end if
if all fragments within t have been sampled then

return
else do

subdivide t into subregions {t0, t1, t2} acorrding to B
use HIVERS(ti) to address {t0, t1, t2} recursively

end if

Algorithm 2 consists of the following steps:

1. Determine whether triangle t satisfies VVC. If not, then t is partially visible; otherwise, go to
step 2.

2. Determine whether t satisfies EVC. If not, then t is partially visible; otherwise, go to step 3.
3. Check whether all fragments within t have been sampled. If yes, t is fully visible; otherwise, go to

step 4.
4. Subdivide t into subregions {t0, t1, t2} according to t’s barycenter B, and address each subregion

from step 1 to step 3. If any of the subregions is partially visible, then t is partially visible; if all of
the subregions are fully visible, then t is fully visible.Remote Sens. 2018, 10, x FOR PEER REVIEW  11 of 30 
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3. Implementation in Graphics Pipeline

The proposed framework is implemented in the graphics pipeline based on OpenGL.
The implementation consists of IVM generation in the fixed graphics pipeline and visibility
classification in the parallel computation stage.

3.1. IVM Generation in Fixed Graphics Pipeline

Zhang et al. [47] simulated digital photography by passing the projection parameter to the default
graphics pipeline, which may produce the off-center projection dislocation. Instead, we present
a shader-based rendering to generate IVMs. Given a 3D object and an undistorted digital image,
the transformation from 3D to 2D in CV can be expressed as
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s

 u
v
1

 = P3×4 ×


X
Y
Z
1

 (9)

Formula (9) is equivalent to 

 x
y
z

 = R


 X

Y
Z

− S


x′ = x/z
y′ = y/z
u = fx × x′ + cx

v = fy × y′ + cy

(10)

In Formula (10), R is the rotation matrix, S is the viewpoint, fx and fy are the camera’s focal length
expressed in the pixel unit, and

(
cx, cy

)
is the principal point.

The transformation from 3D to 2D in CG can be expressed as

(xe, ye, ze, we)
T = M× (X, Y, Z, 1)T

(xc, yc, zc, wc)
T = P× (xe, ye, ze, we)

T

(xn, yn, zn)
T =

(
xc
wc

, f×yc
wc

, zc
wc

)T

(xw, yw, zw)
T =

 (xn + 1)ViewportWidht
2 + Ox

(yn + 1)ViewportHeight
2 + Oy

s× zn + b


(11)

In Formula (11), M is the matrix that transforms the object coordinate (X, Y, Z, 1)T into the eye
coordinate (xe, ye, ze, we)

T ; P is the matrix that transforms the eye coordinate into the clip coordinate
(xc, yc, zc, wc)

T ; (xn, yn, zn)
T is the normalized device coordinate, where f = 1 when the viewport’s

origin is lower-left and f = −1 when the viewport’s origin is upper-left; (xw, yw, zw)
T is the window

coordinate;
(
Ox, Oy

)
represents the viewport’s lower-left corner.

To relate Formula (10) with Formula (11), our shader-based rendering is designed as follows. First,

according to Formula (10), we compute one vertex’s projection

[
u
v

]
in the vertex shader. Second,

we let z and

[
u
v

]
in Formula (10) be wc and

[
xw

yw

]
in Formula (11), respectively; we then substitute

z and

[
u
v

]
into Formula (11) to compute (xc, yc, zc, wc)

T as



xc = 2× u−Ox
ImageWidth − 1

yc = 2× v−Oy
ImageHeight − 1

zc =
N

N−F + FN
(F−N)×z

wc = 1.0

(12)

In Formula (12), wc is normalized to improve rendering efficiency, zc is computed according
to Formula (4) to improve the Z-buffer’s precision, and viewport size is replaced with image size.
Finally, in the fragment shader, we use an off-screen texture to store visible fragments and a shader
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storage buffer object VisiblePrimitiveArray to record visible primitives’ indexes at the corresponding
subscripts (as shown in Figure 9).

3.2. Visibility Classification in Parallel Computation Stage

The parallel computation stage in OpenGL exists as the compute shader. Compared with OpenCL,
the compute shader is a lightweight framework with less complexity and interoperability with shared
resources. This stage is completely independent of any predefined graphics-oriented semantics.
The compute shader can read and modify OpenGL buffers and images. The tool is, therefore, able to
modify data that are the input or output of the fixed graphics pipeline. Due to the independence
between the compute shader and the fixed graphics pipeline, we must consider synchronization.
We disable the compute shader after completing visibility classification in the current frame and
recover it after IVM generation in the next frame.

The following data are passed into our compute shader. (1) Multiview’s IVMs. One view’s IVM is
passed as an “image2D” object. (2) VisiblePrimitiveArray and projection parameter. The projection
parameter is stored as a uniform matrix. (3) 3D model data. Vertices and faces are stored in two shader
storage buffer objects. (4) Face and vertex number. To classify visibility between multiple models,
the face and vertex numbers of each model are stored in a uniform buffer object, which act as search
indexes (as shown in Figure 14).

In the compute shader, our visibility classification proceeds as follows. Each visible primitive
stored in VisiblePrimitiveArray is visited by an independently parallel thread. In each thread,
our visibility classification is executed.
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Figure 14. Visiting a specific face in multiple models. FN∗ represents one model’s face number, VN∗
represents one model’s vertex number, VI∗ represents one face’s vertices’ indexes, V∗ represents one
vertex’s coordinate, SSBO f is the shader storage buffer object storing faces and SSBOv is the shader
storage buffer object storing vertices.

4. Experiments

The following tests are conducted in our experiments. With respect to accuracy, we use
related methods to detect visibility for three synthetic models. The visibility of the three synthetic
models is known from a predefined viewpoint. With respect to efficiency, we compare the related
methods’ number of processed faces, sampling count, and time consumption. With respect to texture
reconstruction, comparisons between GPVC and other available libraries and software are made.
The key steps of GPVC are also presented in our experiments. The experimental platform is Win8.1
x64 OS, with 16 GB computer memory, I7 CPU (2.5 GHz, 4 cores, and 8 threads) and a GTX 860 M
video card.
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4.1. IVM Generation

4.1.1. Z-Buffer Precision Improvement

Figure 15 shows the visual effect when rendering very close faces based on different Z-buffer
configurations. The default Z-buffer with the symmetric projection results in the Z-fighting problem
due to the infinite precision. The reversed Z-buffer with the asymmetric projection used in GPVC
exhibits good performance to avoid the problem, which ensures the continuity of IVMs. The format of
the Z-buffer used in this paper is set to a 32-bit floating point.
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Figure 15. Comparison of the visual effect between the default Z-buffer and the reversed Z-buffer.
(a) Rendering effect of the default Z-buffer. (b) Rendering effect of the reversed Z-buffer used in GPVC.

4.1.2. Shader-Based Rendering

In this section, we demonstrate the significance of our shader-based rendering in the simulation
of digital photography. To present the feature boundaries clearly, we fuse the five views, rendering
images with the corresponding digital images, as shown in Figure 16. To prove the validity of our
approach, we compare our shader-based rendering with the default rendering in detail. As shown
in Figure 17, the default rendering cannot accurately simulate the off-center perspective projection,
resulting in distinct object dislocations relative to the digital images. Compared with the default
approach, the shader-based rendering can maintain the corresponding objects spatially aligned.
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Figure 17. Detailed contrasts between the shader-based rendering and the default rendering.
(a) Detailed features in the default rendering images. (b) Detailed features in the shader-based
rendering images.

4.2. Visibility Classification

4.2.1. Visibility Accuracy Statistics

We design three synthetic models A, B, C to examine the accuracy of related methods. As shown
in Figure 18a, each model consists of two uneven terrain layers (upper layer U and lower layer L);
each layer is a triangulation network containing 4082 faces. For A, the vertical distance between U
and L is 0.01 m; for B, the vertical distance is 1 m; and for C, the vertical distance is 100 m. Given a
predefined top view (the viewpoint is 6100 m from the center of a synthetic model), the triangles of U
are fully visible, and the triangles of L are partially occluded (as shown in Figure 18b). Based on these
features, we present related methods’ performances.

Remote Sens. 2018, 10, x FOR PEER REVIEW  15 of 30 

 

4.2. Visibility Classification 

4.2.1. Visibility Accuracy Statistics 

We design three synthetic models ܣ, ,ܤ  to examine the accuracy of related methods. As ܥ
shown in Figure 18a, each model consists of two uneven terrain layers (upper layer ܷ and lower 
layer ܮ); each layer is a triangulation network containing 4082 faces. For ܣ, the vertical distance 
between ܷ and ܮ is 0.01 m; for ܤ, the vertical distance is 1 m; and for ܥ, the vertical distance is 
100 m. Given a predefined top view (the viewpoint is 6100 m from the center of a synthetic model), 
the triangles of ܷ are fully visible, and the triangles of ܮ are partially occluded (as shown in 
Figure 18b). Based on these features, we present related methods’ performances. 

 
(a) 

 
(b) 

Figure 18. Synthetic models. (a) Global view. (b) Top view in detail. 

(1) Shadow-Mapping Algorithm 

The nonlinear depth distribution in the Z-buffer is highly sensitive to the projection matrix, 
particularly to the near and far planes. Without the loss of generality, we use two projection 
configurations to present the performance of the shadow-mapping algorithm. Symmetric projection 
configuration (SPC): the symmetric projection matrix with a pair of adaptive planes. The adaptive 
planes are computed according to Figure 6. Asymmetric projection configuration (APC): the 
asymmetric projection matrix with a “zero near plane” and an adaptive far plane; this mechanism is 
recommended by our GPVC. In this design, given the predefined top viewpoint, the two projection 
configurations are both sufficient to avoid Z-fighting when rendering the synthetic models. Tables 1 
and 2 show the accuracy statistics. The epsilon	is used to determine whether a pixel within a face is 
visible: if |݄ܿݐ݁ܦ݀݁ݐݑ݉ − |݄ݐ݁ܦ݀݁ݎݐݏ   then the pixel is visible; otherwise, the face is ,݈݊݅ݏ݁
occluded. We attempt to enumerate the ݈݁݊݅ݏ from 0.1 to 1 × 10−13 to prove the difficulty of 
choosing an appropriate bias. In each enumeration, the new epsilon is reduced to half of the 
original value. For simplicity, in the following tables, V represents the visible face number, O 
represents the occluded face number, and Ac represents the detection accuracy. 

Table 1. Accuracy statistics of the shadow-mapping algorithm with SPC. 

Synthetic Model  Synthetic Model  Synthetic Model  

Epsilon V O Ac (%) Epsilon V O 
Ac 
(%) 

Epsilon V O 
Ac 
(%) 

0.00156~0.1 9603 1 50.01 0.003~0.1 9603 1 50.01 
7.81 × 

10−4~0.1 
4735 4869 99.30 

7.81 × 10−4 9592 12 50.00 0.00156 4718 4886 99.13 3.91 × 10-4 4324 5280 95.02 
3.91 × 10−4 8331 1273 50.26 7.81 × 10−4 4711 4893 99.05 1.95 × 10−4 3585 6019 87.33 
1.95 × 10−4 7051 2553 49.86 3.91 × 10−4 4140 5464 93.11 9.77 × 10−5 3175 6429 83.06 
9.77 × 10−5 6272 3332 49.98 1.95 × 10−4 3512 6092 86.57 4.88 × 10−5 2934 6670 80.55 
4.88 × 10−5 5915 3689 50.11 9.77 × 10−5 3136 6468 82.65 2.44 × 10−5 2812 6792 79.28 
2.44 × 10−5 5750 3854 50.10 4.88 × 10−5 2916 6688 80.36 1.22 × 10−5 2747 6857 78.60 
1.22 × 10−5 2789 6815 79.04 2.44 × 10−5 2813 6791 79.29 6.10 × 10−6 2713 6891 78.25 
6.10 × 10−6 2765 6839 78.79 1.22 × 10−5 2768 6836 78.82 3.05 × 10−6 2682 6922 77.93 
3.05 × 10−6 2712 6892 78.24 6.10 × 10−6 2746 6858 78.59 1.53 × 10−6 1382 8222 64.39 
1.53 × 10−6 1374 8230 64.31 3.05 × 10−6 2695 6909 78.06 7.63 × 10−7 278 9326 52.89 
7.63 × 10−7 304 9300 53.17 1.53 × 10−6 1285 8319 63.38 3.81 × 10−7 37 9567 50.39 

Figure 18. Synthetic models. (a) Global view. (b) Top view in detail.

(1) Shadow-Mapping Algorithm

The nonlinear depth distribution in the Z-buffer is highly sensitive to the projection matrix,
particularly to the near and far planes. Without the loss of generality, we use two projection
configurations to present the performance of the shadow-mapping algorithm. Symmetric
projection configuration (SPC): the symmetric projection matrix with a pair of adaptive planes.
The adaptive planes are computed according to Figure 6. Asymmetric projection configuration (APC):
the asymmetric projection matrix with a “zero near plane” and an adaptive far plane; this mechanism
is recommended by our GPVC. In this design, given the predefined top viewpoint, the two projection
configurations are both sufficient to avoid Z-fighting when rendering the synthetic models. Tables 1
and 2 show the accuracy statistics. The epsilon is used to determine whether a pixel within a face is
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visible: if |computedDepth− storedDepth| ≤ epsilon, then the pixel is visible; otherwise, the face is
occluded. We attempt to enumerate the epsilon from 0.1 to 1× 10−13 to prove the difficulty of choosing
an appropriate bias. In each enumeration, the new epsilon is reduced to half of the original value.
For simplicity, in the following tables, V represents the visible face number, O represents the occluded
face number, and Ac represents the detection accuracy.

Table 1. Accuracy statistics of the shadow-mapping algorithm with SPC.

Synthetic Model A Synthetic Model B Synthetic Model C

Epsilon V O Ac (%) Epsilon V O Ac (%) Epsilon V O Ac (%)

0.00156~0.1 9603 1 50.01 0.003~0.1 9603 1 50.01 7.81 ×
10−4~0.1 4735 4869 99.30

7.81 × 10−4 9592 12 50.00 0.00156 4718 4886 99.13 3.91 × 10-4 4324 5280 95.02
3.91 × 10−4 8331 1273 50.26 7.81 × 10−4 4711 4893 99.05 1.95 × 10−4 3585 6019 87.33
1.95 × 10−4 7051 2553 49.86 3.91 × 10−4 4140 5464 93.11 9.77 × 10−5 3175 6429 83.06
9.77 × 10−5 6272 3332 49.98 1.95 × 10−4 3512 6092 86.57 4.88 × 10−5 2934 6670 80.55
4.88 × 10−5 5915 3689 50.11 9.77 × 10−5 3136 6468 82.65 2.44 × 10−5 2812 6792 79.28
2.44 × 10−5 5750 3854 50.10 4.88 × 10−5 2916 6688 80.36 1.22 × 10−5 2747 6857 78.60
1.22 × 10−5 2789 6815 79.04 2.44 × 10−5 2813 6791 79.29 6.10 × 10−6 2713 6891 78.25
6.10 × 10−6 2765 6839 78.79 1.22 × 10−5 2768 6836 78.82 3.05 × 10−6 2682 6922 77.93
3.05 × 10−6 2712 6892 78.24 6.10 × 10−6 2746 6858 78.59 1.53 × 10−6 1382 8222 64.39
1.53 × 10−6 1374 8230 64.31 3.05 × 10−6 2695 6909 78.06 7.63 × 10−7 278 9326 52.89
7.63 × 10−7 304 9300 53.17 1.53 × 10−6 1285 8319 63.38 3.81 × 10−7 37 9567 50.39
3.81 × 10−7 45 9559 50.47 7.63 × 10−7 287 9317 52.99 1.91 × 10−7 7 9597 50.07
1.91 × 10−7 10 9594 50.10 3.81 × 10−7 49 9555 50.51 9.54 × 10−8 2 9602 50.02

1 × 10−13~9.54
× 10−8 0 9604 50.00

1.91 × 10−7 8 9596 50.08 1 × 10−13~4.77
× 10−8 0 9604 50.001×10−13~9.54

× 10−8 0 9604 50.00

Table 2. Accuracy statistics of the shadow-mapping algorithm with APC.

Synthetic Model A Synthetic Model B Synthetic Model C

Epsilon V O Ac (%) Epsilon V O Ac (%) Epsilon V O Ac (%)

1.16 × 10−11~0.1 9604 0 50.00 1.16 × 10−11~0.1 9604 0 50.00 1.16 × 10−11~0.1 9604 0 50.00

1.82 × 10−13~5.82
× 10−12 9603 1 50.01 1.82× 10−13~5.82

× 10−12 9603 1 50.01
5.82 × 10−12 9603 1 50.01
2.91 × 10−12 9602 2 50.02

1.82 × 10−13~1.46
× 10−12 4735 4869 99.30

(2) Ray-Tracing Algorithm

The ray-tracing algorithm used here is an open-source library [36], which is employed by
Waechter et al. [15] with a sparse sampling implementation. Under the sparse sampling mode,
only the three vertices of a triangle are checked; if one vertex is occluded, then the triangle is invisible.
The sparse sampling does not work well for our synthetic models; thus, based on the library, we design
a dynamic dense sampling (as shown in Figure 19). The dynamic dense sampling indicates that the
sampling points within a triangle remain at the centers of the inner fragments of a triangle. Because all
calculations involving ray tracing will introduce a bias, we need an epsilon to determine a checking
point’s visibility: If the distance between the checking point and the first intersection point is smaller
than the epsilon, then the checking point is visible. We also enumerate the epsilon from 0.1 to 1× 10−13

to present the detection accuracy with different biases. Tables 3 and 4 show the accuracy statistics.
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Table 3. Accuracy statistics of ray tracing with the sparse sampling.

Synthetic Model A Synthetic Model B Synthetic Model C

Epsilon V O Ac (%) Epsilon V O Ac (%) Epsilon V O Ac (%)

9.77 × 10−5~0.1 9604 0 50.00 1.95 × 10−4~0.1 9604 0 50.00 1.95 × 10−4~0.1 7514 2090 71.76
4.88 × 10−5 9352 252 51.90 9.77 × 10−5 9603 1 49.99 9.77 × 10−5 7512 2092 71.74
2.44 × 10−5 8261 1343 59.34 4.88 × 10−5 9343 261 51.80 4.88 × 10−5 7393 2211 72.14
1.22 × 10−5 6813 2791 68.04 2.44 × 10−5 8264 1340 59.37 2.44 × 10−5 6742 2862 75.57
6.10 × 10−6 5142 4462 76.36 1.22 × 10−5 6816 2788 68.08 1.22 × 10−5 5724 3880 79.97
3.05 × 10−6 3971 5633 79.08 6.10 × 10−6 5122 4482 76.16 6.10 × 10−6 4379 5225 82.26
1.53 × 10−6 3583 6021 79.79 3.05 × 10−6 3981 5623 79.19 3.05 × 10−6 3636 5968 82.03
7.63 × 10−7 3439 6165 79.81 1.53 × 10−6 3578 6026 79.74 1.53 × 10−6 3413 6191 82.04
3.81 × 10−7 3381 6223 79.56 7.63 × 10−7 3428 6176 79.70 7.63 × 10−7 3344 6260 82.15
1.91 × 10−7 3363 6241 79.46 3.81 × 10−7 3379 6225 79.54 3.81 × 10−7 3328 6276 82.13

9.54 × 10−8 3355 6249 79.46 1.91 × 10−7 3358 6246 79.40 2.38 × 10−8~1.91
× 10−7 3326 6278 82.13

4.77 × 10−8 3353 6251 79.48 9.54 × 10−8 3349 6255 79.39
1.82 × 10−13~1.19

× 10−8 3325 6279 82.12
1.82 × 10−13~2.38

× 10−8
3352 6252 79.49

4.77 × 10−8 3346 6258 79.40
2.38 × 10−8 3345 6259 79.41

1.82 × 10−13~1.19
× 10−8 3344 6260 79.40

Table 4. Accuracy statistics of ray tracing with the dynamic dense sampling.

Synthetic Model A Synthetic Model B Synthetic Model C

Epsilon V O Ac (%) Epsilon V O Ac (%) Epsilon V O Ac (%)

0.0125~0.1 9604 0 50.00 1.95 × 10−4~0.1 4802 4802 100.00 1.95 × 10−4~0.1 4802 4802 100.00
1.95 × 10−4~0.006 4802 4802 100.00 9.77 × 10−5 4763 4841 99.59 9.77 × 10−5 4753 4851 99.49

9.77 × 10−5 4774 4830 99.70 4.88 × 10−5 4233 5371 94.08 4.88 × 10−5 4168 5436 93.40
4.88 × 10−5 4342 5262 95.21 2.44 × 10−5 3077 6527 82.04 2.44 × 10−5 3190 6414 83.22
2.44 × 10−5 3327 6277 84.64 1.22 × 10−5 2080 7524 71.66 1.22 × 10−5 2147 7457 72.36
1.22 × 10−5 2346 7258 74.43 6.10 × 10−6 1275 8329 63.28 6.10 × 10−6 1151 8453 61.98
6.10 × 10−6 1532 8072 65.95 3.05 × 10−6 821 8783 58.55 3.05 × 10−6 759 8845 57.90
3.05 × 10−6 1052 8552 60.95 1.53 × 10−6 655 8949 56.82 1.53 × 10−6 669 8935 56.97
1.53 × 10−6 873 8731 59.09 7.63 × 10−7 592 9012 56.16 7.63 × 10−7 653 8951 56.80
7.63 × 10−7 807 8797 58.40 3.81 × 10−7 562 9042 55.85 3.81 × 10−7 649 8955 56.76
3.81 × 10−7 772 8832 58.04 1.91 × 10−7 549 9055 55.72

1.82 × 10−13~1.91
× 10−7 648 8956 56.75

1.91 × 10−7 759 8845 57.90
1.82 × 10−13~9.54

× 10−8 547 9057 55.709.54 × 10−8 753 8851 57.84
1.82 × 10−13~4.77

× 10−8 752 8852 57.83

(3) GPVC

Visibility computation based on GPVC can be achieved without choosing an improper bias.
The accuracy of GPVC reaches 100% after projection coverage correction. Tables 5 and 6 show the
accuracy statistics.

Table 5. Accuracy statistics of GPVC before projection coverage correction.

Synthetic Model A Synthetic Model B Synthetic Model C

Projection
Configuration V O Ac (%) Projection

Configuration V O Ac (%) Projection
Configuration V O Ac (%)

SPC 4736 4868 99.31 SPC 4717 4887 99.11 SPC 4734 4870 99.29
APC 4736 4868 99.31 APC 4717 4887 99.11 APC 4734 4870 99.29

Table 6. Accuracy statistics of GPVC after projection coverage correction.

Synthetic Model A Synthetic Model B Synthetic Model C

Projection
Configuration V O Ac (%) Projection

Configuration V O Ac (%) Projection
Configuration V O Ac (%)

SPC 4802 4802 100.00 SPC 4802 4802 100.00 SPC 4802 4802 100.00
APC 4802 4802 100.00 APC 4802 4802 100.00 APC 4802 4802 100.00
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4.2.2. Visibility Efficiency Statistics

We use a manifold mesh (611,055 faces) reconstructed from 43 views to present the efficiency of
related methods. Tables 7–9 are the statistics pertaining to the number of processed faces, sampling
count and time consumption. The number of processed faces represents the total number of faces after
backface culling and frustum culling in 43 views. The sampling count represents the total sampling
number during computing visibility for the processed faces.

Table 7. Efficiency statistics of the shadow-mapping algorithm.

Projection
Configuration Epsilon Processed Face

Number Sampling Count Time
Consumption (s)

SPC 0.00001 14514510 186659322 20.54
SPC 0.0001 14514510 269039318 26.90
SPC 0.001 14514510 295725638 29.28
SPC 0.01 14514510 303479553 29.52
APC 0.00001 14514510 425847450 39.29
APC 0.0001 14514510 425847450 39.25
APC 0.001 14514510 425847450 39.96
APC 0.01 14514510 425847450 40.79

Table 8. Efficiency statistics of the ray-tracing algorithm.

Sampling Type Epsilon Processed Face
Number Sampling Count Time

Consumption (s)

Sparse Sampling 0.00001 14514510 34716374 261.43
Sparse Sampling 0.0001 14514510 34722053 255.46
Sparse Sampling 0.001 14514510 34928523 202.51
Sparse Sampling 0.01 14514510 37680002 110.45
Dense Sampling 0.00001 14514510 263249353 1666.48
Dense Sampling 0.0001 14514510 263421883 1622.45
Dense Sampling 0.001 14514510 265066824 1248.05
Dense Sampling 0.01 14514510 295846279 706.68

Table 9. Efficiency statistics of GPVC.

Sampling Type Processed Face Number Sampling Count
Time Consumption (s)

CPU GPU

Dense Sampling 10230279 272005618 30.14 0.16
HIVERS 10230279 246995434 28.47 0.14

VES 10230279 194294149 24.73 0.11

4.3. Texturing Contrast

In this section, we apply related methods to multiview-based texture reconstruction and compare
the textured models generated by available libraries and software. We use two datasets to prove our
method’s superiority. The first dataset pertains to the campus of Wuhan University (as shown in
Figure 20a), and the second is provided by ISPRS and EuroSDR (as shown in Figure 20b). First, we use
the famous business software ContextCapture to reconstruct the triangular meshes of the two datasets.
Next, we use related methods to compute the visibility of each view. Finally, we use graph cuts to
select the optimal fully visible textures.
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5. Discussion

In this study, a graphics pipeline-based visibility classification (GPVC) method is proposed to
improve the visibility handling involving multiview-based texture reconstruction. Experimental
results demonstrate that our method outperforms related methods and available tools.

During IVM generation, we use the reversed Z-buffer and the shader-based rendering to
ensure the accuracy of IVMs. The reversed Z-buffer designed in this paper can avoid Z-fighting
when rendering very close faces (as shown in Figure 15), which guarantees the continuity of IVMs.
Our shader-based rendering is proposed to achieve the locational coherence of corresponding objects
between rendering images and digital images (as shown in Figure 17). The default rendering
used in [47] fails to maintain the corresponding objects spatially aligned (as shown in Figure 17a).
In our study, given an 8176 × 6132 UAV image whose principal point is at (4035.1894, 2975.0360),
the off-center projection dislocation can reach more than 50 pixels in the x-axis direction and 90 pixels
in the y-axis direction. The dislocation causes some visible primitives to exit the viewshed or that some
invisible ones enter the viewshed.

Compared with the shadow-mapping [14,16,31–33] and ray-tracing [15,35] methods used in
texturing, the main contribution of GPVC is that visibility computation is performed without a bias.
To demonstrate the shortcomings of the bias-based methods, we design three models with known
visibility from a predefined viewpoint. As shown in Table 1, the shadow-mapping algorithm with the
symmetric projection configuration only works well when the epsilon remains in the ranges specified
by enumeration (3.05 × 10−6~1.22 × 10−5 for synthetic model A, 3.91 × 10−4~0.00156 for synthetic
model B, 3.91 × 10−4~0.1 for synthetic model C). As the two layers of the synthetic models move
closer, the optimal epsilon becomes increasingly difficult to specify. The reason is that the computed
depths and the depths stored in the Z-buffer tend to be approximate, requiring a smaller epsilon to
distinguish the correct visibility. If the selected epsilon increases, certain occluded faces are identified
as visible; if the selected epsilon decreases, certain visible faces are identified as occluded. This problem
becomes more serious when using the shadow-mapping algorithm with the asymmetric projection
configuration, as shown in Table 2, only when the epsilon is in the range (1 × 10−13~4.77 × 10−8)
is the performance satisfactory for synthetic model C; using other epsilons misses many occlusions.
The reason is that the computed and stored depths are distributed over the range with more precision
(very close to 0.0). Only a very small epsilon can work, even if the two layers of synthetic model C are
distant. In this respect, the shadow-mapping algorithm with the asymmetric projection configuration
is unfit to compute visibility in texture reconstruction. As shown in Tables 3 and 4, the dense ray
tracing outperforms the sparse ray tracing for our synthetic models. The reason is that our three
synthetic models are not manifold, and the sparse ray tracing fails to identify certain occluded faces.
Within certain biases (1.95 × 10−4~0.006 for synthetic model A, 1.95 × 10−4~0.1 for synthetic models B
and C), the accuracy of the dense ray tracing can reach 100%. However, in the dense ray-tracing mode,
increasingly more faces are labeled as occluded if the epsilon decreases outside of the abovementioned
ranges. This effect results from the ability of an increased number of tracings to generate more
self-intersections. Compared with that of the two methods mentioned above, our GPVC’s performance
is robust for the three models due to the use of the continuity of IVMs. After projection coverage
correction, the accuracy of GPVC can reach 100% (as shown in Tables 5 and 6). We also apply our



Remote Sens. 2018, 10, 1725 20 of 31

projection coverage correction to the shadow-mapping algorithm and obtain the following results.
With the aid of our projection coverage correction, the accuracy of the shadow-mapping algorithm
with the symmetric projection configuration (epsilon = 0.00156 for synthetic model B, epsilon remains
in 7.81 × 10−4~0.1 for synthetic model C) can reach 100%; the accuracy of the shadow-mapping
algorithm with the asymmetric projection configuration (epsilon remains in 1.82 × 10−13~1.46 × 10−12

for synthetic model C) can also reach 100%.
To demonstrate the improvement of GPVC in texturing, we present many comparisons pertaining

to textured models generated by related methods, open-source libraries (MVS-Texturing) and business
software (ContextCapture). As shown in Figures 21–25, the detailed areas are the three parts of one
textured model reconstructed from the ISPRS and EuroSDR datasets. Unlike our synthetic models
(in one synthetic model, the distance between two layers is fixed), the urban models reconstructed
from multiview images have dense faces and complex geometry structures. In the case of the
shadow-mapping algorithm and ray-tracing methods, some areas’ visibility can be computed correctly,
and textures are mapped well by using a given bias. However, this bias is not robust for every part of
the complex model. Thus, many areas are mapped with inaccurate textures (as depicted in the red boxes
in Figures 21–24). The textured results based on the shadow-mapping algorithm with the symmetric
projection configuration are highly sensitive to the selected bias because the depths are distributed in
[0, 1] dispersedly; thus, a small change in the bias can generate different visibility, producing different
textures. As shown in Figure 21, the texturing gets better as the used bias increases because more
visible textures are correctly detected. While the textured results based on the shadow-mapping
algorithm with the asymmetric projection configuration appear to be insensitive to the bias because
the depths are distributed at approximately 0.0 densely; thus, a large change in the epsilon has little
effect on the visibility results, producing nearly unchanged textures. As shown in Figure 22, because
the four used biases are not sufficiently small to identify the occluded faces, the occluded textures
are mapped to the corresponding areas. The left screenshot in Figure 22 is textured with the correct
color because the corresponding area is a nearly flat structure without complex occluders, thus the
identified visible textures are mapped to the correct locations. When comparing the texturing in
Figure 22 with the one in Figure 25a, it can be seen that the texturing based on the shadow-mapping
algorithm with the asymmetric projection configuration is nearly as same as the one without visibility
tests. The reason is that almost all of the faces are detected as visible by the shadow-mapping algorithm
with the asymmetric projection configuration, which is nearly equivalent to skipping visibility tests.
Compared with that afforded by the sparse ray tracing, the improvement of the dense ray tracing is not
as obvious. The reason is that for a manifold surface, most faces’ correct visibility can be determined
by checking three vertices with an appropriate bias. In some cases, the dense ray tracing is worse than
the sparse ray tracing (as shown in Figures 23c and 24c). The reason is that a face’s visibility tends to be
incorrect as sampling time grows without an appropriate bias. If the bias is small, then self-occlusions
occur, and visible faces become invisible, leaving holes in the textured models (as shown in Figures
23a–c and 24e–g); if the bias is large, then occluded faces become visible, leaving incorrect textures
on the textured models. Figure 25 shows the performance of our method. Without visibility tests,
there are serious deviations contained in the right two screenshots (see Figure 25a) due to the error
mapping of occluded textures. Before projection coverage correction, the textured results contain
some artifacts because the optimal textures are not identified as visible, and some other inadequate
visible textures have a chance to be mapped (as shown in Figure 25b). One concern is that given a
manifold mesh, without projection coverage correction, the textured areas generated by HIVERS and
VES are the same. The reason is that the rasterization error only occurs near the edges of polygons; if a
visible triangle face contains exceptional fragments, it will be detected as invisible by HIVERS and
VES. After projection coverage correction, the artifacts disappear. The only difference of the texture
areas within the green boxes in Figure 25c,d results from the corresponding area of the reconstructed
mesh containing nonmanifold structures (as shown in Figure 26, the nonmanifold parts are trees that
are not reconstructed completely). Thus, after projection coverage correction, the target faces’ visibility



Remote Sens. 2018, 10, 1725 21 of 31

computed by HIVERS and VES is not the same. While the other two textured areas in Figure 25
are strictly manifold, the textured results of HIVERS and VES are the same. This finding proves the
validity of Inference 1.
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Figure 21. Textured areas based on the shadow-mapping algorithm with SPC. (a) Textured areas 
when epsilon = 0.00001. (b) Textured areas when epsilon = 0.0001. (c) Textured areas when epsilon = 0.001. 
(d) Textured areas when epsilon = 0.01. 
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Figure 21. Textured areas based on the shadow-mapping algorithm with SPC. (a) Textured areas when
epsilon = 0.00001. (b) Textured areas when epsilon = 0.0001. (c) Textured areas when epsilon = 0.001.
(d) Textured areas when epsilon = 0.01.
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Figure 22. Textured areas based on the shadow-mapping algorithm with APC. (a) Textured areas 
when epsilon = 0.00001. (b) Textured areas when epsilon = 0.0001. (c) Textured areas when epsilon = 0.001. 
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Figure 22. Textured areas based on the shadow-mapping algorithm with APC. (a) Textured areas when
epsilon = 0.00001. (b) Textured areas when epsilon = 0.0001. (c) Textured areas when epsilon = 0.001.
(d) Textured areas when epsilon = 0.01.
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Figure 23. Textured areas based on the sparse ray-tracing. (a) Textured areas when epsilon = 0.00001. 
(b) Textured areas when epsilon = 0.0001. (c) Textured areas when epsilon = 0.001. (d) Textured areas 
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Figure 23. Textured areas based on the sparse ray-tracing. (a) Textured areas when epsilon = 0.00001.
(b) Textured areas when epsilon = 0.0001. (c) Textured areas when epsilon = 0.001. (d) Textured areas
when epsilon = 0.01.
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Figure 23. Textured areas based on the sparse ray-tracing. (a) Textured areas when epsilon = 0.00001. 
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Figure 24. Textured areas based on the dense ray-tracing. (a) Textured areas when epsilon = 0.00001. 
(b) Textured areas when epsilon = 0.0001. (c) Textured areas when epsilon = 0.001. (d) Textured 
areas when epsilon = 0.01. 
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Figure 24. Textured areas based on the dense ray-tracing. (a) Textured areas when epsilon = 0.00001.
(b) Textured areas when epsilon = 0.0001. (c) Textured areas when epsilon = 0.001. (d) Textured areas
when epsilon = 0.01.
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Figures 27–29 presents texturing comparisons between GPVC and other software. It can be seen 
that the distortions, dislocations, and holes contained in the textured models generated by 
ContextCapture and MVS-Texturing result from the inaccurate selection of textures. In the textured 
models based on GPVC, these noises disappear, which proves the superiority of GPVC. GPVC 
attempts to compute the true visibility of each face on a surface. In other words, the accuracy of 
GPVC will not be affected by the artifacts of a reconstructed geometry. As shown in Figure 30a (to 
show the artifacts obviously, we enable each face’s normal during rendering), the reconstructed 
geometry contains many artifacts such as the distortions, uneven areas and fragments. And these 
artifacts still occur in the textured model. Some of the serious artifacts have an effect on their 
neighbors’ visibilities, resulting in the optimal textures being excluded, but the selected textures are 
still reasonable. Compared with the reconstructed geometry, no artifacts occur in the relatively 
accurate geometry in Figure 30b (the accurate geometry is extracted from the reconstructed geometry 
by using the method proposed in Reference [48]). Thus, fewer artifacts occur in the textured model. 
But there are still dislocations in the red boxes of Figure 30b. The reason is that the extracted 
geometry misses some occluders such as trees and roofs, and these occluders’ textures are mapped 

Figure 25. Textured areas of our method. (a) Textured areas without visibility tests. (b) Textured areas
based on GPVC but without projection coverage correction. (c) Textured areas based on GPVC with
projection coverage correction (HIVERS). (d) Textured areas based on GPVC with projection coverage
correction (VES).
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Figure 26. The nonmanifold structures of the reconstructed mesh.

Figures 27–29 presents texturing comparisons between GPVC and other software. It can be
seen that the distortions, dislocations, and holes contained in the textured models generated by
ContextCapture and MVS-Texturing result from the inaccurate selection of textures. In the textured
models based on GPVC, these noises disappear, which proves the superiority of GPVC. GPVC attempts
to compute the true visibility of each face on a surface. In other words, the accuracy of GPVC will
not be affected by the artifacts of a reconstructed geometry. As shown in Figure 30a (to show the
artifacts obviously, we enable each face’s normal during rendering), the reconstructed geometry
contains many artifacts such as the distortions, uneven areas and fragments. And these artifacts
still occur in the textured model. Some of the serious artifacts have an effect on their neighbors’
visibilities, resulting in the optimal textures being excluded, but the selected textures are still reasonable.
Compared with the reconstructed geometry, no artifacts occur in the relatively accurate geometry in
Figure 30b (the accurate geometry is extracted from the reconstructed geometry by using the method
proposed by Verdie et al. [48]). Thus, fewer artifacts occur in the textured model. But there are still
dislocations in the red boxes of Figure 30b. The reason is that the extracted geometry misses some
occluders such as trees and roofs, and these occluders’ textures are mapped to the corresponding areas.
From the above analysis, visibility tests based on GPVC and texturing are sensitive to the structures of
reconstructed geometries.
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An inaccurate reconstructed geometry; right: the reconstructed geometry’s texturing. (b) Left:
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In terms of efficiency, we present the statistics regarding the number of processed faces, sampling
count and time consumption of related methods. As shown in Tables 7–9, the number of processed
faces in GPVC decreases to nearly 1/3 of those in the shadow-mapping and ray-tracing methods.
The reason is that our GPVC only handles the visible faces that are stored in the shader storage buffer
object (as shown in Figure 9), while the other two methods must handle the visible and invisible
faces. With respect to the sampling count, the sparse ray tracing has the lowest value because it
only processes the three vertices of a triangle. The shadow-mapping algorithm with the symmetric
projection configuration (epsilon = 0.00001) is second. The reason is that the epsilon in use is too
small for the experimental mesh, and many faces are labeled as occluded after sampling a few
inner fragments. As discussed above, the performance of the shadow-mapping algorithm with the
asymmetric projection configuration is not insensitive to the selected epsilon; thus, this approach’s
efficiency remains nearly unchanged. Compared with other methods, the improvement of GPVC with
dense sampling is not as obvious. The reason is that many visible faces are identified as occluded by
other bias-based methods without sampling all inner fragments. GPVC with dense sampling must
sample all inner fragments of visible faces to ensure correct visibility. This situation can be improved
by using HIVERS. Compared with dense sampling, the main function of HIVERS is that HIVERS
can identify occluded faces with fewer samplings (as shown in Figure 31). Unlike the hierarchical
structures used in References [24–26,49], in which hierarchy trees are built for a global scene as look-up
indexes, the hierarchical structure of HIVERS decomposes a single triangle face into vertices, edges
and subregions iteratively (see Figure 13). HIVERS samples the inner fragments corresponding to
vertices and edges in each subregion to identify each face’s visibility. According to our Inference 1,
HIVERS can be replaced by VES when addressing a manifold scene. VES not only performs well
for a partially visible primitive but also avoids sampling all of the inner fragments within a fully
visible primitive; thus, the improvement on the sampling count increases by nearly 1/3 (as shown in
Table 9). In terms of time consumption, the shadow-mapping algorithm with the symmetric projection
configuration requires more time as epsilon increases. The reason is that a larger epsilon produces
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more visible fragments, requiring more samplings to inspect a visible primitive. In contrast, although
the sampling count increases as epsilon increases, the time cost of the ray tracing decreases. The reason
is that a larger epsilon used in Reference [36] can reduce the traversal of hierarchy tree nodes and
reach leaves with less time. However, the ray-tracing still exhibits the worst performance due to its
limitation in finding intersections on a complex surface. Compared with the bias-based methods,
GPVC exhibits good performance with respect to efficiency as well as accuracy. When deploying our
visibility classification in the compute shader, the task can be performed within 0.2 s.
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surface. Thus, in this paper, we propose GPVC which does not depend on an uncontrollable bias, to
make an improvement. According to our experimental results, GPVC outperforms the bias-based
methods and other related libraries and software. Based on GPVC’s framework, certain applications,
such as shadow generation, visibility picking, and visibility query, can also be derived.

Author Contributions: X.H. proposed the idea and wrote the manuscript; Q.Z. provided the experimental data;
W.J. conceived and designed the experiments; and X.H. performed the experiments and analyzed the data.

Funding: This work was supported by the Key Technology program of China South Power Grid under
Grant GDKJQQ20161187.

Acknowledgments: The authors would like to acknowledge the provision of the datasets by ISPRS and EuroSDR,
released in conjunction with the ISPRS scientific initiative 2014 and 2015, led by ISPRS ICWG I/Vb.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Jimenezdelgado, J.J.; Segura, R.J.; Feito, F.R. Efficient collision detection between 2d polygons. J. WSCG 2004,
12, 191–198.

2. Feng, Y.T.; Owen, D.R.J. A 2d polygon/polygon contact model: Algorithmic aspects. Eng. Comput. 2004, 21,
265–277. [CrossRef]

3. Greminger, M.A.; Nelson, B.J. A deformable object tracking algorithm based on the boundary element
method that is robust to occlusions and spurious edges. Int. J. Comput. Vision 2007, 78, 29–45. [CrossRef]

4. Huang, Y.; Essa, I.A. Tracking multiple objects through occlusions. In Proceedings of the IEEE Computer
Society Conference on Computer Vision and Pattern Recognition, San Diego, CA, USA, 20–25 June 2005;
pp. 1051–1058.

5. Han, B.; Paulson, C.; Lu, T.; Wu, D.; Li, J. Tracking of multiple objects under partial occlusion. In Proceedings
of the SPIE Defense, Security, and Sensing, Orlando, FL, USA, 5 May 2009.

http://dx.doi.org/10.1108/02644400410519785
http://dx.doi.org/10.1007/s11263-007-0076-6


Remote Sens. 2018, 10, 1725 30 of 31

6. Yang, Q.; Wang, L.; Yang, R.; Stewenius, H.; Nister, D. Stereo matching with color-weighted correlation,
hierarchical belief propagation, and occlusion handling. IEEE Trans. Pattern Anal. Mach. Intell. 2009, 31,
492–504. [CrossRef] [PubMed]

7. Eisert, P.; Steinbach, E.G.; Girod, B. Multi-hypothesis, volumetric reconstruction of 3-d objects from multiple
calibrated camera views. In Proceedings of the IEEE International Conference on Acoustics Apeech and
Signal Processing, Phoenix, AZ, USA, 15–19 March 1999; pp. 3509–3512.

8. Lee, Y.J.; Lee, S.J.; Park, K.R.; Jo, J.; Kim, J. Single view-based 3d face reconstruction robust to self-occlusion.
EURASIP J. Adv. Signal Process. 2012, 2012, 176. [CrossRef]

9. Kuffner, J.J.; Nishiwaki, K.; Kagami, S.; Inaba, M.; Inoue, H. Footstep planning among obstacles for biped
robots. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Maui,
HI, USA, 29 October–3 November 2001; pp. 500–505.

10. Ahuja, N.; Chien, R.T.; Yen, R.; Bridwell, N. Interference detection and collision avoidance among three
dimensional objects. In Proceedings of the First Annual National Conference on Artificial Intelligence,
Stanford, CA, USA, 18–21 August 1980; pp. 44–48.

11. Nakamura, T.; Asada, M. Stereo sketch: Stereo vision-based target reaching behavior acquisition with
occlusion detection and avoidance. In Proceedings of the IEEE International Conference on Robotics and
Automation, Minneapolis, MN, USA, 22–28 April 1996; pp. 1314–1319.

12. Jiang, S.; Jiang, W. Efficient sfm for oblique uav images: From match pair selection to geometrical verification.
Remote Sens. 2018, 10, 1246. [CrossRef]

13. Pages, R.; Berjon, D.; Moran, F.; Garcia, N.N. Seamless, static multi-texturing of 3d meshes. Comput. Graph. Forum
2015, 34, 228–238. [CrossRef]

14. Zhang, W.; Li, M.; Guo, B.; Li, D.; Guo, G. Rapid texture optimization of three-dimensional urban model
based on oblique images. Sensors 2017, 17, 911. [CrossRef] [PubMed]

15. Waechter, M.; Moehrle, N.; Goesele, M. Let there be color! Large-scale texturing of 3d reconstructions.
In Proceedings of the 13th European Conference on Computer Vision, Zurich, Switzerland, 6–12 September 2014;
pp. 836–850.

16. Pintus, R.; Gobbetti, E.; Callieri, M.; Dellepiane, M. Techniques for seamless color registration and mapping
on dense 3d models. In Sensing the Past; Springer: Berlin, Germany, 2017; pp. 355–376.

17. Symeonidis, A.; Koutsoudis, A.; Ioannakis, G.; Chamzas, C. Inheriting texture maps between different
complexity 3d meshes. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2014, II-5, 355–361. [CrossRef]

18. Frueh, C.; Sammon, R.; Zakhor, A. Automated texture mapping of 3d city models with oblique aerial imagery.
In Proceedings of the 2nd International Symposium on 3D Data Processing, Visualization and Transmission,
Thessaloniki, Greece, 6–9 September 2004; pp. 396–403.

19. Xu, L.; Li, E.; Li, J.; Chen, Y.; Zhang, Y. A general texture mapping framework for image-based 3d
modeling. In Proceedings of the 17th IEEE International Conference on Image Processing, Hong Kong,
China, 26–29 September 2010; pp. 2713–2716.

20. Katz, S.; Tal, A.; Basri, R. Direct visibility of point sets. ACM Trans. Graph. 2007, 26, 343–352. [CrossRef]
21. Cohenor, D.; Chrysanthou, Y.; Silva, C.T.; Durand, F. A survey of visibility for walkthrough applications.

IEEE Trans. Vis. Comput. Graph. 2003, 9, 412–431. [CrossRef]
22. Bittner, J.; Wonka, P. Visibility in computer graphics. Environ. Plan. B Plan. Des. 2003, 30, 729–755. [CrossRef]
23. Franklin, W.R.; Chandrasekhar, N.; Kankanhalli, M.; Seshan, M.; Akman, V. Efficiency of uniform grids for

intersection detection on serial and parallel machines. In New Trends in Computer Graphics-CGI’88; Springer:
Geneva, Switzerland, 1988; pp. 288–297.

24. Yu, B.T.; Yu, W.W. Image space subdivision for fast ray tracing. In Proceedings of the SPIE’s International
Symposium on Optical Science, Engineering, and Instrumentation, Denver, CO, USA, 23 September 1999;
pp. 149–156.

25. Weghorst, H.; Hooper, G.; Greenberg, D.P. Improved computational methods for ray tracing. ACM Trans. Graph.
1984, 3, 52–69. [CrossRef]

26. Glassner, A.S. Space subdivision for fast ray tracing. IEEE Comput. Graph. Appl. 1984, 4, 15–24. [CrossRef]
27. Grammatikopoulos, L.; Kalisperakis, I.; Karras, G.; Petsa, E. Data fusion from multiple sources for the

production of orthographic and perspective views with automatic visibility checking. In Proceedings of the
CIPA 2005 XX International Symposium, Torino, Italy, 26 September–1 October 2005.

http://dx.doi.org/10.1109/TPAMI.2008.99
http://www.ncbi.nlm.nih.gov/pubmed/19147877
http://dx.doi.org/10.1186/1687-6180-2012-176
http://dx.doi.org/10.3390/rs10081246
http://dx.doi.org/10.1111/cgf.12508
http://dx.doi.org/10.3390/s17040911
http://www.ncbi.nlm.nih.gov/pubmed/28425961
http://dx.doi.org/10.5194/isprsannals-II-5-355-2014
http://dx.doi.org/10.1145/1276377.1276407
http://dx.doi.org/10.1109/TVCG.2003.1207447
http://dx.doi.org/10.1068/b2957
http://dx.doi.org/10.1145/357332.357335
http://dx.doi.org/10.1109/MCG.1984.6429331


Remote Sens. 2018, 10, 1725 31 of 31

28. Grammatikopoulos, L.; Kalisperakis, I.; Karras, G.; Petsa, E. Automatic multi-view texture mapping of
3d surface projections. In Proceedings of the 2nd ISPRS International Workshop 3D-ARCH, ETH Zurich,
Switzerland, 12–13 July 2007; pp. 1–6.

29. Karras, G.; Grammatikopoulos, L.; Kalisperakis, I.; Petsa, E. Generation of orthoimages and perspective
views with automatic visibility checking and texture blending. Photogramm. Eng. Remote Sens. 2007, 73,
403–411. [CrossRef]

30. Chen, Z.; Zhou, J.; Chen, Y.; Wang, G. 3d texture mapping in multi-view reconstruction. In Proceedings of
the International Symposium on Visual Computing, Rethymnon, Crete, Greece, 16–18 July 2012; pp. 359–371.

31. Baumberg, A. Blending images for texturing 3d models. In Proceedings of the British Machine Vision
Conference, Cardiff, UK, 2–5 September 2002; pp. 404–413.

32. Bernardini, F.; Martin, I.M.; Rushmeier, H.E. High-quality texture reconstruction from multiple scans.
IEEE Trans. Vis. Comput. Graph. 2001, 7, 318–332. [CrossRef]

33. Callieri, M.; Cignoni, P.; Corsini, M.; Scopigno, R. Masked photo blending: Mapping dense photographic
data set on high-resolution sampled 3d models. Comput. Graph. 2008, 32, 464–473. [CrossRef]

34. Floriani, L.D.; Magillo, P. Algorithms for visibility computation on terrains: A survey. Environ. Plan. B Plan. Des.
2003, 30, 709–728. [CrossRef]

35. Rocchini, C.; Cignoni, P.; Montani, C.; Scopigno, R. Multiple textures stitching and blending on 3d objects.
In Proceedings of the Eurographics Symposium on Rendering techniques, Granada, Spain, 21–23 June 1999;
pp. 119–130.

36. Geva, A. Coldet 3d Collision Detection. Available online: sourceforge.net/projects/coldet/ (accessed on
19 April 2018).

37. Waechter, C.; Keller, A. Quasi-Monte Carlo Light Transport Simulation by Efficient Ray Tracing. Patents
US7952583B2, 31 April 2011.

38. Williams, L. Casting curved shadows on curved surfaces. ACM Siggraph Comput. Graph. 1978, 12, 270–274.
[CrossRef]

39. Annen, T.; Mertens, T.; Seidel, H.P.; Flerackers, E.; Kautz, J. Exponential shadow maps. In Proceedings of the
Graphics Interface 2008, Windsor, ON, Canada, 28–30 May 2008; pp. 155–161.

40. Dou, H.; Kerzner, E.; Kerzner, E.; Wyman, C.; Wyman, C. Adaptive depth bias for shadow maps.
In Proceedings of the ACM SIGGRAPH Symposium on Interactive 3d Graphics and Games, San Francisco,
CA, USA, 14–16 March 2014; pp. 97–102.

41. Persson, E.; Studios, A. Creating vast game worlds: Experiences from avalanche studios. In Proceedings of
the ACM SIGGRAPH 2012 Talks, Los Angeles, CA, USA, 5–9 August 2012; p. 32.

42. Vasilakis, A.; Fudos, I. Depth-fighting aware methods for multi-fragment rendering. IEEE Trans. Vis.
Comput. Graph. 2013, 19, 967–977. [CrossRef] [PubMed]

43. Vasilakis, A.A.; Fudos, I. Z-fighting aware depth peeling. In Proceedings of the ACM SIGGRAPH, Vancouver,
BC, Canada, 7–11 August 2011.

44. Pineda, J. A parallel algorithm for polygon rasterization. In Proceedings of the 15th Annual Conference on
Computer Graphics and Interactive Techniques, Atlanta, GA, USA, 1–5 August 1988; pp. 17–20.

45. Segal, M.; Akeley, K. The Opengl Graphics System: A Specication (Version 4.5); Technical Report; Khronos
Group Inc.: Beaverton, OR, USA, 2016.

46. Davidovic, T.; Engelhardt, T.; Georgiev, I.; Slusallek, P.; Dachsbacher, C. 3d rasterization: A bridge between
rasterization and ray casting, graphics interface. In Proceedings of the Graphics Interface 2012, Toronto, ON,
Canada, 28–30 May 2012; pp. 201–208.

47. Zhang, Z.; Su, G.; Zhen, S.; Zhang, J. Relation opengl imaging process with exterior and interior parameters
of photogrammetry. Geomat. Inf. Sci. Wuhan Univ. 2004, 29, 570–574.

48. Verdie, Y.; Lafarge, F.; Alliez, P. Lod generation for urban scenes. ACM Trans. Graph. 2015, 34, 1–14. [CrossRef]
49. Greene, N.; Kass, M.; Miller, G.S.P. Hierarchical z-buffer visibility. In Proceedings of the 20th Annual

Conference on Computer Graphics and Interactive Techniques, Anaheim, CA, USA, 2–6 August 1993;
pp. 231–238.

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.14358/PERS.73.4.403
http://dx.doi.org/10.1109/2945.965346
http://dx.doi.org/10.1016/j.cag.2008.05.004
http://dx.doi.org/10.1068/b12979
sourceforge.net/projects/coldet/
http://dx.doi.org/10.1145/965139.807402
http://dx.doi.org/10.1109/TVCG.2012.300
http://www.ncbi.nlm.nih.gov/pubmed/23559510
http://dx.doi.org/10.1145/2732527
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Graphics Pipeline-Based Visibility Classification 
	IVM Generation 
	Z-Buffer Precision Improvement 
	IVM Generation and Spatial Properties 

	Visibility Classification 
	Lazy-Projection Coverage Correction 
	Hierarchical Iterative Vertex-Edge-Region Sampling 


	Implementation in Graphics Pipeline 
	IVM Generation in Fixed Graphics Pipeline 
	Visibility Classification in Parallel Computation Stage 

	Experiments 
	IVM Generation 
	Z-Buffer Precision Improvement 
	Shader-Based Rendering 

	Visibility Classification 
	Visibility Accuracy Statistics 
	Visibility Efficiency Statistics 

	Texturing Contrast 

	Discussion 
	Conclusions 
	References

