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Abstract: Land subsidence has been a significant problem in land reclaimed from the sea, and it is 

usually characterized by a differential settlement pattern due to locally unconsolidated marine 

sediments and fill materials. Time series Synthetic Aperture Radar Interferometry (InSAR) 

techniques based on distributed scatterers (DS), which can identify sufficient measurement points 

(MPs) when point-wise radar targets are lacking, have great potential to measure such differential 

reclamation settlement. However, the computational time cost has been the main drawback of 

current distributed scatterer interferometry(DSI) for its applications compared to the standard PSI 

analysis. In this paper, we adopted an improved DSI processing strategy for a fast and robust 

analysis of land subsidence in reclaimed regions, which is characterized by an integration of fast 

statistically homogeneous pixel selection based (FaSHPS-based) DS detection and 

eigendecomposition phase optimization. We demonstrate the advantages of the proposed DSI 

strategy in computational efficiency and deformation estimation reliability by applying it to two 

TerraSAR-X image data stacks from 2008 to 2009 to retrieve land subsidence over two typical 

reclaimed regions of Hong Kong International Airport (HKIA) and Hong Kong Science Park 

(HKSP). Compared with the state-of-the-art DSI methods, the proposed strategy significantly 

improves the computational efficiency, which is enhanced approximately 30 times in DS 

identification and 20 times in phase optimization. On average, the DSI strategy results in 7.8 and 3.7 

times the detected number of MPs for HKIA and HKSP with respect to persistent scatter 

interferometry (PSI), which enables a very detailed characterization of locally differential 

settlement patterns. Moreover, the DSI-derived results agree well with the levelling survey 

measurements at HKIA, with a mean difference of 1.87 mm/yr and a standard deviation of 2.08 

mm/yr. The results demonstrate that the proposed DSI strategy is effective at improving target 

density, accuracy and efficiency in monitoring ground deformation, particularly over reclaimed 

coastal areas.  

Keywords: Synthetic Aperture Radar Interferometry (InSAR); persistent scatterers; distributed 

scatterers; efficiency; reclamation subsidence; Hong Kong 
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1. Introduction 

Reclamation of land from the shallow sea to create new land has been a common practice to 

meet the increasing demand for urbanization and population growth in coastal regions worldwide 

[1,2]. The reclaimed areas are typically used for infrastructure constructions, such as skyscrapers, 

ports, airports and other municipal utilities. However, land subsidence has been a significant 

problem in reclaimed areas, because reclamation is usually carried out by dumping uncompacted fill 

materials onto a seabed of unconsolidated marine sediment [2,3]. In particular, reclamation 

settlement is generally characterized by a variable and localized settlement pattern, which can lead 

to damage to ground constructions (e.g., buildings, bridges, runways and highways), as well as 

underground facilities [3,4]. Therefore, accurate and detailed measurements of land subsidence are 

crucial for reducing geological hazards and economic losses in reclaimed regions [5]. 

Over the past two decades, a number of Synthetic Aperture Radar Interferometry (InSAR) 

techniques based on persistent scatterers (PS) [6–9], which are referred to as persistent scatter 

interferometry (PSI), have proven to be powerful remote sensing techniques for measuring and 

monitoring subtle displacements in the Earth’s surface over time, particularly in urban areas, with 

an unprecedented accuracy of up to mm/yr. Some of these PSI techniques have been exploited to 

investigate ground deformation related to land reclamation around the world [2,3,10–12]. Jiang et al. 

[3] retrieved the settlement rates and deformation history for Hong Kong International Airport 

(HKIA) using SAR Interferometric Point Target Analysis (IPTA) [8], and they revealed alluvium 

consolidation mechanisms of the residual reclamation settlement with an integrated analysis of SAR 

interferometric, geological and geotechnical multidisciplinary data. Jiang et al. [12] applied the IPTA 

technique using a total of 22 Envisat ASAR images acquired between 2006 and 2009 to analyse the 

spatial and temporal behaviour of reclamation settlements in the Macao region. Ng et al. [13] 

mapped the land subsidence in Jakarta, Indonesia with 17 ALOS PALSAR images acquired between 

2007 and 2010 using GEOS-PSI analysis. However, PSI techniques only focus on point-wise radar 

targets with high reflectivity and stable phase characteristics over time, most of which belong to 

angular, man-made objects such as building facades and corners. Consequently, this PSI technique 

limitation usually leads to a low spatial density of PSs in coastal reclamation land characterized with 

natural targets or low reflectivity regions, especially for newly developed reclamation or some 

reclaimed civil infrastructures (e.g., highways, ports and airfields) [3,14–16].  

In contrast to PSI techniques, another class of time series InSAR techniques (referred to as DS 

methods) extract information from radar targets known as distributed scatterers, which normally 

involve a coherent sum of many independent small scatterers without one being dominant [17,18]. 

The DS pixels are usually identified in correspondence to bare soil, sparsely vegetated land or 

highways. Several conventional DS-based InSAR techniques such as Small Baseline Subset (SBAS) 

[14,19,20], Poly-Interferogram Rate And Time-series Estimator (π-RATE) [21], and the Temporally 

Coherent Point InSAR (TCPInSAR) [22] were applied to monitor land deformation in reclaimed 

areas. Xu et al. [23] proposed an elaborated SBAS strategy to process an Envisat ASAR dataset 

acquired between 2007 and 2010 and analysed the evolution of land reclamation in Shenzhen. Wang 

et al. [24] utilized an advanced SBAS method to investigate the subsidence time series of reclaimed 

lands in Hong Kong with TerraSAR-X images acquired between October 2008 and December 2009. 

Wang et al. [25] combined multi-track interferograms from different viewing geometries to estimate 

a linear rate map for the Pearl River Delta based on the π-RATE method. While these DS techniques 

could improve the density of MPs to a certain degree, it is still a challenge to monitor differential 

reclamation settlement due to the degradation of image resolution in the multi-looking process, as 

well as the possible errors that occur during phase unwrapping [26,27]. 

Ferretti et al. [28] proposed a new generation distributed scatterer interferometry(DSI) 

approach named SqueeSAR™, which increases the density of MPs and extracts deformation from 

both PSs and DSs by considering the different statistical behaviour properties and processing them 

together. In this approach, an amplitude-based statistical test (Kolmogorov–Smirnov test) is 

exploited to adaptively select homogeneous pixels and accurately estimate the covariance matrix; a 

phase triangulation algorithm, which is based on a maximum likelihood (ML) estimator, is applied 
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to each DS to retrieve the optimized phase estimates of the N−1 phase based on N(N−1)/2 

interferograms generated from N SAR images. As demonstrated in [28–32], the SqueeSAR™ 

approach and its variants can significantly improve the density and quality of InSAR MPs over 

non-urban areas. However, this DSI techniques also have their drawbacks. First, the accuracy of 

selected homogeneous pixels is usually unsatisfactory for small stack sizes, since the low test power 

increases the false positive ratio, and the empirical distribution function (EDF) test is more 

susceptible to the data distribution shape variability [33]. Second, the ML estimator needs to 

iteratively solve the nonlinear optimal phase and ignores the different scattering components 

corresponding to the different scattering mechanisms [34,35]. Finally, from a computational 

standpoint, both the selection of statistically homogeneous pixels (SHPs) and phase triangulation 

algorithm are very time consuming [33,35]. Recently, some improved algorithms have tried to solve 

the above stated problems. A phase-decomposition-based persistent scatterer InSAR (PD-PSInSAR) 

was developed to perform the eigendecomposition phase optimization on a coherence matrix to 

estimate the phases corresponding to the different scattering mechanisms, as well as reduce the 

computational requirements [35]. Dong et al. [36] adopted the generalized likelihood ratio (GLR) test 

as an alternative to the KS test to robustly discern SHP pixels from small SAR data stacks, which was 

utilized to map landslide surface displacements.  

In this paper, we aim to monitor reclamation subsidence in two well-known coastal reclaimed 

regions (Hong Kong International Airport and Hong Kong Science Park) with an improved DSI 

processing strategy, by joint use of both algorithms from fast statistically homogeneous pixel 

selection (FaSHPS) [33] and eigendecomposition [35]. The practical implementation involves the 

efficient and reliable identification of SHPs based on the FaSHPS algorithm and estimation of the 

optimal phase based on eigendecomposition. Further, the detected DSs and PSs are jointly 

processed in the conventional time series InSAR analysis within the IPTA framework [8] to retrieve 

and characterize spatiotemporal variations of ground deformation in reclaimed coastal areas of 

Hong Kong. Moreover, a comparison between DSI-derived results and levelling survey 

measurements is carried out in HKIA to validate the InSAR observations. Finally, the performance 

and computational efficiency of the proposed DSI strategy are discussed to demonstrate the 

effectiveness in monitoring ground deformation, particularly over reclaimed coastal areas. 

2. Study Area and Data Used 

2.1. Study Area 

Land reclamation from the sea has long been used in mountainous Hong Kong to expand the 

limited supply of usable land, with a total of approximately 70.19 square kilometres of land 

reclaimed since 1887 [37]. In this study, two of the largest reclaimed areas in Hong Kong were 

selected for the investigation of reclamation subsidence using our proposed DSI strategy. 

The first site is the Hong Kong International Airport (HKIA), which is located in the eastern 

part of the Pearl River estuary off the northern coast of Hong Kong's largest island, Lantau Island. 

HKIA lies between 22°17’25″N and 22°19’28″N latitude and 113°53’35″E and 113°56’42″E longitude 

with a ground extent of 3.9 km × 4.9 km. The airport was reclaimed for 10 years and started 

operation on 06 July 1998. Three-quarters (9.38 km2) of the airport platform of 12.48 km2 was 

reclaimed from the sea, whereas the remaining quarter was formed by excavating two existing 

islands: Chek Lap Kok Island (3.02 km2) and its smaller neighbour, Lam Chau Island (0.08 km2) [38]. 

A zoomed-in view of the airport is shown in Figure 1. The bedrock geology and the geological 

cross-section along a portion of the southern runway of the airport is shown in Figure 2. It was 

dominated by a granitic geology in the two original islands, and there is a compressible alluvial 

stratum comprising soft to firm grey silts and clays occasionally with organic remains located in the 

cross-section of southern runway. Due to soil consolidation of the underlying unconsolidated 

marine sediments, the Airport's platform has been experiencing ground subsidence in relation to 

various geotechnical characteristics since reclamation began in late 1992 [3,38,39]. 
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The second site is Hong Kong Science Park (HKSP), which is situated in Pak Shek Kok, New 

Territories on the boundary of Sha Tin District and Tai Po District; this area is also next to the 

Chinese University of Hong Kong in Ma Liu Shui (see Figure 1). As a research base of 

approximately 9 square kilometres with superior and applied technology in Hong Kong, HKSP was 

reclaimed at the end of the last century, and the first phase of the project was completed in October 

2004; therefore, this area still experiences land settlement even though more than twenty years have 

passed since the reclamation occurred [24]. As newly developed reclamation land, man-made 

structures are relatively scarce in this area, which were only distributed in the southeast corner of 

the area during the study period. Moreover, the northern area of HKSP is a rural region, which is 

mostly covered by short vegetation and bare soil; thus, this is an ideal area for testing our 

algorithm. 

 

Figure 1. The geographic location of HKIA and HKSP in Hong Kong. 

 

(a) 
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(b) 

Figure 2. The geological setting and cross sections of HKIA. (a) The bedrock geology of HIAK, (b) 

the geological cross-section of the southern runway of the airport, the location of which is labeled as 

white dotted line A-B in Figure 2a (after Figure 1 and 3 in [3]). 

2.2. Dataset Used 

Two datasets of time series TerraSAR-X images are exploited to investigate coastal reclamation 

subsidence with our proposed DSI strategy: 29 TerraSAR-X High Resolution Spotlight images over 

HKIA, which were acquired between October 2008 and December 2009; and 22 TerraSAR-X 

Stripmap images over HKSP, which were acquired between May 2008 and December 2009. The 

former images were acquired in descending orbit (Track 43) at VV polarization with a mean 

incidence angle of 38.7°, and the latter images were captured in ascending orbit (Track 51) at VV 

polarization with an average incidence angle of 37.3°. The SAR images acquired on May 10, 2009 in 

Spotlight mode and February 23, 2009 in Stripmap mode were selected as the master images. 

Temporal/perpendicular baseline plots of two SAR datasets are shown in Figure 3. Moreover, the 

three arc-second DEM acquired from the Shuttle Radar Topography Mission (SRTM) was used to 

derive the topographic phase and remove it from differential interferograms. 

 

(a) 

 

(b) 

Figure 3. Temporal/perpendicular baseline plots. (a) TerraSAR-X Spotlight images for HKIA and (b) 

TerraSAR-X Stripmap images for HKSP. 
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3. Methodology 

The workflow of the improved DSI processing strategy developed for data processing is 

graphically represented in Figure 4. In the following sections, the key steps will be explained in 

detail. 

 

Figure 4. Workflow of the improved DSI processing strategy. 

3.1. Selection of PS Points 

Two methods are utilized in IPTA to select PS candidate points and then merged to a single 

point list [8]. The first method considers the spectral characteristics of the coregistered SLC to 

identify point targets based on low spectral phase diversity. The spectral characteristics are averaged 

over the stack of SLC and then the average spectral behavior is used to determine the candidate 

points. The second method is based on point targets that remain unchanged over time and therefore 

have low temporal intensity variability. The mean to standard deviation ratio (MSR) is used as the 

measure of the temporal variability of the backscattering. In this study, we consider only the pixels 

exhibiting average of the time series spectral diversity values greater than 0.4 and having MSR 

values greater than 1.5 as PS candidate points. 
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3.2 Selection of DS Targets 

3.2.1. Identification of SHP 

Various statistical techniques have been proposed in recent years to identify SHP such as the 

Kolmogorov–Smirnov test [28], Kullback–Leibler divergence test [26], Anderson–Darling test [20] 

and likelihood ratio test [35]. All these hypothesis methods are built based on the amplitude 

information to evaluate the similarity between two pixels, and these methods were used to 

determine if the two pixels belonged to the same distribution. However, these methods are very time 

consuming and have lower test power to reject a false null hypothesis (no significant difference in 

population from different groups), particularly for small stack samples [33].  

We introduced the FaSHPS algorithm into the proposed DSI processing strategy to solve these 

above stated problems. It is a method that converts a hypothesis test problem into a confidence 

interval estimate under the Gaussian hypothesis. Assuming that Z is a single-look complex image (L 

= 1) which has a sufficiently large number of distributed targets within a resolution cell, the 

amplitude A = |Z| has a Rayleigh distribution, and its probability density function (PDF) is defined 

as p(A)=
𝑟

𝜎2exp(-
r2

2𝜎2) with a mean E(A) = √
𝜋

2
𝜎 and variance Var(A) = (2 −

π

2
) σ2. For a DS point to be 

estimated, its N time amplitude samples can be written as {A1, A2, … , AN}, and the point estimate of 

mean 𝜇(𝑝) for pixel p is A̅(P) = (A1(P) + (A2(P)+⋯(AN(P))/N. Thus, according to the central limit 

theorem, the optimum interval containing the form of Jiang et al. [33] is as follows: 

𝐏{𝝁(𝒑) − √𝐕𝐚𝐫(𝐀(𝐩))/𝑵 · 𝑼𝜶/𝟐 < 𝑨̅(𝑷)  <  𝝁(𝒑) + √𝐕𝐚𝐫(𝐀(𝐩))/𝑵 · 𝑼𝜶/𝟐} =1-𝜶 (1) 

where 𝑈𝛼/2 is the 𝛼/2 percentile of the standard normal distribution. 

The initial estimate of mean 𝜇(𝑝) is determined by averaging neighbours lying in the interval 

under 𝛼 = 50% including pixels that are spatially connected and distant from the centre pixel. Then, 

Equation (1) is used again for the same neighbours with the refined value of 𝜇(𝑝), whose temporal 

sample mean located in the interval and connected to the centre pixel directly or through another 

SHP are regarded as the homogeneous pixels of the reference pixel. 

3.2.2. Coherence Covariance Matrix  

The coherence matrix between two SLCs plays a crucial role in characterizing the statistical 

parameters of each DS such as the interferometric phase and coherence [18,40]. Since actual values of 

the coherence matrix are difficult to obtain in practice, a spatial average of the pixels in a simple 

rectangular window is often used as a compromise. However, this average will suffer from a biased 

estimate of coherence observations due to the risk of indiscriminate averaging from different 

scattering properties. This problem can be mitigated by identifying the homogeneous pixels with the 

same statistical distribution to obtain a more accurate interference phase and coherence. After 

identification of the SHP of the reference pixel, the coherence matrix of the estimated sample SHPs 

can be given by the following: 

 𝐓 = 𝐄[𝐲𝐲𝐇] ≈
𝟏

𝐍𝐏
∑𝐲𝐲𝐇

 

𝐲∈𝛀

 (2) 

where E is the expectation, 𝑦 = [𝑦1, 𝑦2, 𝑦3 … . 𝑦𝑁] is the normalized complex observation vector 

in the time series of the N SAR image，and 𝐸[|𝑦𝑗|
2
]=1. The parameter  H indicates the Hermitian 

conjugation and Ω is a homogeneous patch containing the NP homogeneous pixel of that reference 

pixel. The absolute values and phase values of the off-diagonal elements of T are the estimated 

coherence value γ ãnd spatially filtered interferometric phase φ, respectively [28]. Therefore, T can 

be expressed as follows: 

 𝐓 =

[
 
 
 
 

𝟏 𝛄̃𝟏,𝟐𝐞
𝐣∅𝟏,𝟐 … 𝛄̃𝟏,𝐍𝐞𝐣∅𝟏,𝐍

𝛄̃𝟐,𝟏𝐞
𝐣∅𝟐,𝟏 𝟏 … 𝛄̃𝟐,𝐍𝐞𝐣∅𝟐,𝐍

⋮ ⋮ ⋱ ⋮
𝛄̃𝐍,𝟏𝐞

𝐣∅𝐍,𝟏 𝛄̃𝐍,𝟐𝐞
𝐣∅𝐍,𝟐 … 𝟏 ]

 
 
 
 

= |𝐓|◦Ф (3) 
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ej∅m,n  indicates the interferometric phases between the mth acquisition and nth acquisition 

[28,35].  

3.2.3. Estimation of the Optimal Phase Based on Eigendecomposition 

After the SHP identifications and coherence matrix calculation, the next step is estimation of the 

optimal interferometric phases associated with each DS pixel. SqueeSAR™ utilizes the phase 

triangulation algorithm to obtain the best estimates of the N-1 phases from N(N−1)/2 off-diagonal 

interferometric phases in the coherence matrix [28]. A main limitation of this method is the heavy 

computing burden and required iterative optimization process. To efficiently estimate the optimal 

phases corresponding to the different scattering mechanisms, we perform the eigendecomposition 

on a coherence matrix followed by [34,35]. The eigendecomposition of the covariance matrix T can 

be obtained as follows: 

 𝐓 = ∑𝛌𝒊𝐓𝒊 = ∑𝛌𝒊𝑼𝒊

𝑵

𝒊=𝟏

𝑵

𝒊=𝟏

𝑼𝒊
𝑯 (4) 

where λi is the eigenvalue and Ui is the corresponding eigenvector. All the eigenvalues λi of T 

are sorted in descending order such as λ1 ≥ λ2 ≥ ⋯… ≥ λN. Assuming that the effective phase was 

the first n feature matrix and the latter N-n was the noise phase, the coherence matrix can be 

rewritten as follows: 

 𝐓 = ∑𝛌𝐢𝐓𝐢

𝐧

𝐢=𝟏

+ ∑ 𝛌𝐢𝐓𝐢

𝐍

𝐢=𝐧+𝟏

= 𝐓𝐬𝐢𝐠𝐧𝐚𝐥 + 𝐓𝐧𝐨𝐢𝐬𝐞 (5) 

In our study, we consider the primary (T1) dominant scattering mechanism as the deformation 

signal [34]. The phase of the eigenvector corresponding to the largest eigenvalue (λ1) is substituted 

and used to estimate land deformation for the DS [35,41]. 

3.2.4. Goodness of Fit Test 

The goodness of fit is used to evaluate the quality of the optimal phase with respect to each DS 

pixel. Assuming that the estimated optimal phase was  θ = [θ1, θ2, … , θN]  and the original 

interferometric phase of the nth SLC and the kth SLC was ∅n,k, the goodness of fit test can be 

expressed by the following [28]: 

 𝛄 =
𝟏

𝑵𝟐 − 𝑵
∑ ∑ 𝒆𝒊∅𝒏,𝒌

𝑵

𝑲≠𝒏

𝑵

𝒏=𝟏

𝒆−𝒊(𝜽𝒏−𝜽𝒌) (6) 

According to the given threshold, only an initial DS candidate point exhibiting a γ value higher 

than the threshold was retained and substituted the phase value of the original SAR images with 

their optimized values.  

3.3. Time Series InSAR Analysis 

The DS targets with estimated optimal phases are equivalent to quasi-PS targets, and they can 

be combined with PS targets for further analysis using a standard PSI tool [28, 35-36]. In this study, 

only initial DS candidates exhibiting an index higher than 0.75 are processed together with the PSs 

using the time series InSAR analysis within the IPTA framework [8] to derive the displacement time 

series for each MP. Following the previous literature [28, 35–36], we assumed that the final DS 

targets contain the same atmospheric signal as the PS in our study. First, the 2D linear regression 

analysis of the interferometric phase has been performed for phase unwrapping in the temporal 

domain and for solving both height correction with respect to an external DEM and deformation rate 

of the point target relative to the reference. Then the residual phases were calculated by removing 

the phase contribution due to model parameters. The atmospheric phase and nonlinear deformation 

of the residual phase could be discriminated based on their different spatial and temporal 

behaviour. Finally, iterative regression analysis is used to improve the model parameters including 

the point height, the linear deformation rate and the atmospheric phases. 
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4. Results  

4.1. Hong Kong International Airport 

4.1.1. PSI vs. DSI 

Figure 5 illustrates a comparison of MPs over the HKIA site identified by a PSI method (IPTA 

implementation) and the proposed DSI strategy. Overall, the DSI strategy retrieved approximately 8 

times the number of MPs compared to using the PSI method, with the spatial density (total number) 

of MPs increasing from 46,000/km2 (574,637) with PSI to 360,000/km2 (4,495,561) with DSI. The PSI 

method provided very good coverage over most parts of the man-made structures such as roofs, 

buildings, rail tracks and the seawall of the airport. However, the proposed DSI strategy provides 

extra information over the area covered with sparse vegetation, asphalt ground, non-cultivated land 

with short vegetation or other development regions. The MPs on both the southern and northern 

runways were also increased greatly. This stems from the runway being very smooth, and the 

received radar reflected echo signal is weak, which cannot be effectively identified by the PSI 

method.  

  
(a) (b) 

Figure 5. The MPs identified using PSI method (a) and proposed DSI strategy (b) at HKIA. 

Figure 6 a,b illustrates the linear deformation velocity results at HKIA in the radar line-of-sight 

(LOS) direction retrieved by the PSI and DSI strategy, respectively. Although the two results have 

similar deformation patterns, our strategy provides much denser measurements in both 

deformation and stable areas. In particular, the DSI results indicate that the middle part between the 

two original islands has experienced a large amount of subsidence with a maximum subsidence of 

greater than 15 mm/yr, whereas it is not clearly detected using the PSI result due to sparse 

measurements. A more detailed analysis from the DSI results on the spatiotemporal characterization 

of land subsidence will be presented in subsequent subsections. 
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(a) 

 
(b) 

Figure 6. Comparison between the LOS velocity map [mm/yr] at HKIA from TerraSAR-X Spotlight 

images retrieved by (a) the PSI method and (b) the proposed DSI strategy. The white dotted line 

represents the boundary of the Y-shaped building. 
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4.1.2. DSI-derived Settlement Behaviours 

In general, the observed InSAR-derived deformation pattern is directly related to the 

reclamation geological conditions underlying the airport. The DSI-derived results in Figure 6b 

indicate a homogenous and stable pattern within both original islands of Chek Lap Kok and Lam 

Chau. This is attributed to the geological conditions of the two original islands, which are dominated 

by fine-grained and fine-to-medium-grained granite bedrock (see Figure 2a) [3]. In contrast to the 

homogeneous and stable behaviour of the two original islands, a complex settlement pattern with 

relatively large deformation rates and a local spatial variability was detected in the reclamation 

zones, which are characterized by highly compressible, recent alluvial deposits (see Figure 2a) [3]. 

Moderate (light yellow, between -3 to -10 mm/yr) to strong (red, less them -20 mm/yr) settlement 

rates and localized settlement patterns were observed in the majority of the reclaimed area of the 

airport, e.g., both ends of the northern runway, particularly near the Y-shaped terminal building (see 

zone 1 in Figure 6b), western end of the southern runway (see zone 2 in Figure 6b), mid-field 

development region and reclamation region between the two original islands west of Chek Lap 

Kok Island. 

 Here, we focus on the analysis of the spatial-temporal deformation patterns over two 

apparently subsiding zones (represented by white rectangles in Figure 6b). In zone 1, the northern 

runway near the Y-shaped terminal building experienced spatially continuous land subsidence (see 

Figure 6b). A significant subsidence pattern with a deformation rate of -10 mm/yr to -23 mm/yr is 

highlighted on the zoomed-in deformation velocity map (see Figure 7a), and the deformation time 

series corresponding to the three typical pixels (labelled as points A, B and C in Figure 7a) are 

illustrated in Figure 7b. Specifically, points A and C have undergone a linear deformation of 

approximately -23 mm/yr, and point B had linear displacement trends of -16 mm/yr, respectively. 

One possible explanation for this anomalous subsidence in zone 1 may rely on the natural 

consolidation process of the underlying compressible soil [3]. However, the Y-shaped terminal 

building on the airport platform, even within the reclamation areas, appears to be nearly stable. This 

can be explained by the fact that the buildings have mostly been constructed on piled foundations 

that reach the granite bedrock below (see Figure 2a) [38].  

 
 

(a) (b) 

Figure 7. DSI results of the northern runway near the Y-shaped terminal building from TerraSAR-X 

Spotlight images, the location of which is represented by the white rectangle (zone 1) in Figure 6b. (a) 

Linear deformation rate superimposed on Google Earth image and (b) displacement time series of 

points A, B and C in Figure 7a. Grey areas approximately indicate the winter periods from Oct. to 

Dec. of 2008 and 2009. 

Another strongly subsiding zone (zone 2, represented by white rectangle 2 in Figure 6b), which 

is located in the southern runway of the airport, west of the original Lam Chau Island, is 

characterized by an exceptional differential settlement. In zone 2, three distinct subsidence bowls 

with a maximum subsidence rate of 20 mm/yr are detected. This is because in the western sector of 
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Lam Chau Island, there is a highly compressible alluvial stratum that is 5-10 m thick, comprising soft 

to firm grey silts and clays and occasional organic remains (see Figure 2b) [3]. To more clearly 

highlight the observed subsidence, we present a zoomed-in deformation rate map of this region in 

Figure 8a. Major subsidence is detected in these areas, which show high densities of MPs based on 

the DSI results. Several points are selected to show the time series deformation in Figure 8b (labelled 

as points A, B and C in Figure 8a). Clearly, point B was rapidly deforming (-22.6 mm/yr) between 

January 2009 and October 2009, and this deformation slowed down (-12.4 mm/yr) after October 

2009. Although the subsidence rates at point A and point C are slightly different, the time series 

pattern matched well. Figure 8c presents the deformation time series corresponding to two typical 

pixels (labelled in Figure 8a as points E and F) within the original Lam Chau Island. In contrast, the 

displacements of these two points exhibit almost no deformation signal (mostly between -3 mm and 

3 mm). It can be observed that the reclamation subsidence trend is slowing down in the first and in 

the last part of the monitoring period (winter periods from Oct. to Dec. of 2008 and 2009), and the 

displacements of two points within the original Lam Chau Island exhibit a slight cyclical uplift 

(about 2 mm- 3 mm) correspondingly in these two periods (see grey areas in Figure 8b and Figure 

8c). We assume that this anomalous behaviour might be related to groundwater or complex 

hydrogeological environment in the reclamation. The seasonal variations of the groundwater table 

level due to tide fluctuation and rainfall typically have a significant influence on a short-time 

settlement process in coastal areas [3,11,38]. 
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Figure 8. DSI results of the southern runway from TerraSAR-X Spotlight images, west of the original 

Lam Chau Island, the location of which is represented by the white rectangle (zone 2) in Figure 6b. 

(a) Linear deformation rate superimposed on Google Earth image, (b) displacement time series of 

points A, B and C, and (c) displacement time series of point D and E in Figure 8a. Grey areas 

approximately indicate the winter periods from Oct. to Dec. of 2008 and 2009. 

Figure 9 illustrates the LOS displacement time series over the entire HKIA. The acquisition from 

October 13, 2008 is set as the reference image, and the spatial-temporal subsidence evolution is 

clearly visible over time. The maximum accumulative subsidence is up to 30 mm over the whole 

monitoring period. 
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Figure 9. The LOS displacement time series over HKIA retrieved by the proposed DSI strategy from 

TerraSAR-X Spotlight images. 

  



Remote Sens. 2018, 10, 1738  15 of 25 

 

4.1.3. Validation of DSI-derived Deformation Rates 

An accuracy assessment of the InSAR-derived displacement results was performed by 

comparing the results to the precise levelling measurements located mainly on the southern runway. 

The field data, which was provided by the Hong Kong Airport Authority, were repeatedly collected 

by first-order spirit levelling surveys during the period between March 2006 and July 2008. Jiang et 

al. [3] suggested that secondary compression process was dominant in HKIA after 2005. Although 

the period is different between levelling surveys and interferometric analysis, we assume that the 

deformation rate is linear and current natural and anthropogenic deformation will persist 

throughout the two periods since the time interval is short. A total of 42 levelling benchmark 

locations are presented in Figure 6b. To enable the comparison, the levelling measurements have 

been projected along the radar LOS direction. The basic idea is tantamount to comparing all MPs 

identified in a defined circle (50 m) around the levelling benchmark position, and then, the average 

and standard deviation of the absolute difference of deformation rate between the selected MPs and 

corresponding benchmark is calculated. 

Figure 10 illustrates a scatterplot with error bars for two groups of averaged velocities for PSI 

and DSI compared to the levelling measurements. As shown in Figure 10a, the correlation coefficient 

between the PSI and levelling measurements is 0.861, and the two validation parameters (average 

and standard deviation of the velocity absolute difference) are μ =1.81 mm/yr and δ = 2.10 mm/yr, 

which implies that the PSI results agree well with the levelling survey measurements. Compared 

with the PSI method, the proposed DSI achieves a slight improvement of these parameters in the 

accuracy assessment: the correlation coefficient is 0.875, μ =1.87 mm/yr and δ = 2.08 mm/yr (see 

Figure 10b). The DSI error bars become shorter for more samples involved in statistics, which reveals 

that the DSI measurements are less uncertainty and more reliable. The systematic difference in 

Figure 10 might be caused by inconsistent acquisition periods of levelling measurements and InSAR 

observations. In addition, atmospheric phases and the inconsistent spatial location of levelling 

measurements and InSAR observations will also affect the accuracy assessment. 

For further analysis between observed settlements and levelling survey measurements, we 

focused on the residual settlements at the southern runway of the airport, which is characterized by 

complicated reclamation geology due to variations in alluvial deposit thicknesses and lithologies 

(see Figure 2b) [42]. Figure 11 indicates that the deformation rates retrieved by both PSI and DSI 

agree well with the levelling measurements profile along the southern runway (represented by the 

black dotted line in Figure 6b). Moreover, the higher residual settlement rates tend to be in further 

parts of the southern runway, which are generally away from the original islands. The recorded 

behaviours of the differential settlement agree well with underlying engineering and geological 

conditions. 

 

(a) 

 

(b) 

Figure 10. Scatterplot with error bars for the InSAR-retrieved deformation rates and levelling 

measurements: (a) PSI method and (b) DSI strategy. 
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Figure 11. Comparison between the InSAR-retrieved deformation rates and benchmark levelling 

measurements (represented by white circles in Figure 6b) along the southern runway: (a) PSI 

method, and (b) DSI strategy. Grey areas approximately indicate the boundaries of the original 

islands of Chek Lap Kok and Lam Chau. The segment A–B of the black line shows the location of 

geological cross-section in Figure 2a. 

4.2. Hong Kong Science Park 

4.2.1. PSI vs. DSI  

The same PSI and DSI processing procedures used at HKIA are also applied in this study area. 

The distribution of PSs and DSs at the HKSP site is shown in Figure 12. Obviously, the DSI reveals a 

great improvement in the density of MPs with respect to the PSI, and an incredible ability to identify 

MPs across various land covers in reclaimed areas, which are typically unfavourable for 

conventional InSAR approaches. While the PSI method only tends to exist in areas dominated by 

point-like scatterers such as building structures in developed areas, the seawall, and highways, the 

number of MPs identified with the DSI (90,374 DSs) increases by over 3.5 times compared with the 

PSI (33,483 PSs). The increased MPs are concentrated mainly in non-urban areas such as bare soil, 

sparse vegetated areas and asphalt pavement, particularly in the undeveloped area of HKSP (see 

Figure 12). Neither the PSI or DSI strategy are able to effectively extract the monitoring points in the 

developing area, because this area was undergoing large-scale construction activities during the 

monitoring period, which led to severe temporal decorrelation. 
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Figure 12. Comparison of MPs at the HKSP site identified by the PSI method (a) and the proposed 

DSI strategy (b). 

4.2.2. Settlement Pattern Based on InSAR Measurements 

Figure 13 illustrates the land subsidence rates of the HKSP site from May 2008 to December 

2009 acquired by both the PSI and DSI methods, in which the deformation patterns are generally 

similar to each other. Overall, a relatively stable and homogeneous pattern is detected in three 

distinct regions of the site including the Chinese University of Hong Kong and the transportation 

infrastructures of the East Rail Line, both of which are located on rocky ground, and the developed 

area of the southern HKSP reclamation land where the buildings have mostly been constructed on 

piled foundations.  

In contrast, the InSAR results reveal three exceptional, localized subsiding zones (zones 1, 2 and 

3) in the HKSP reclamation land, which is shown in Figure 13b. Severe reclamation settlements with 

relatively sparse MPs are detected within zone 1 in the developing area of the HKSP with a 

maximum reclamation settlement of -27 mm/yr. One possible explanation for this anomalous 

phenomenon may rely on the heavy construction activities that occurred during the monitoring 

period. Moderate settlement patterns are detected in the undeveloped areas of the HKSP 

reclamation land (zones 2 and 3), which range from -5 mm/yr to -15 mm/yr. This is because these 

undeveloped areas experienced a consolidation process of underlying soft soils. Moreover, these 

exceptional subsidence signals are further represented by a deformation time series relevant to the 

typical pixels in zones 1, 2 and 3 (labelled in Figure 13b as points A, B and C, respectively), which is 

illustrated in Figure 14. The cumulative displacement of points A, B and C for the whole period are 

-35 mm, -26 mm and 15 mm, respectively.  
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(a) (b) 

Figure 13. The LOS deformation velocity results of HKSP from TerraSAR-X Stripmap images retrieved by 

the PSI method (a) and the proposed DSI strategy (b). 

 

Figure 14. Displacement time series corresponding to the pixels labelled points A, B and C in Figure 13b. 

5. Discussions 

5.1. Performance Evaluation of SHP Identification and Optimal Phase Estimation 

To assess the reliability of our results in terms of performance of SHPs over areas with multiple 

types of land cover and highly complex scattering characteristics, we select the HKSP reclaimed area 

for this purpose, since the reclamation land at this site was underdeveloped during the TerraSAR-X 

data acquisition period, and the land contained various types of terrain targets such as bare soils, 

buildings, roads, sparse vegetation and mixed land covers (see Figure 15a). Figure 15 illustrates a 

comparison between the homogeneous pixels identified by the KS test and FaSHPS on the stack of 22 

TerraSAR-X images for the HKSP site using a 15*15 window size, in which the central pixel would 

be selected as initial DS candidates if the number of SHPs exceeded 20 pixels [28]. Overall, as 
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expected, point-like targets (e.g., building and other man-made structures) have a lower number of 

SHPs than bare soil, sparse vegetation or the sea surface for both algorithms, whereas the image 

detail and identification reliability of SHPs are quite different. For example, delineations of the road 

boundaries are blurred in the KS test due to its lower test power when the central pixel has different 

scattering properties from the adjacent terrain targets; the FaSHPS reveals its discriminative power 

in different groups and delineates linear features well. Moreover, the KS test has limited capabilities 

to distinguish mixed land covers in the changed areas, which makes the SHP identification 

unreliable. The KS test clearly misidentified the initial DS candidates in the mixed land covers area, 

and the number of SHPs in these areas is up to 210 (see Figure 15e), whereas the FaSHPS identifies 

far fewer SHPs in the mixed land cover areas compared to the KS test (see Figure 15f). This is also 

due to the KS test being more sensitive to the variability, and it cannot correctly reject the null 

hypothesis.  

(a) (b) (c) 

 
(d) 

 
(e) 

 
(f) 

Figure 15. (a) The TerraSAR-X temporally averaged amplitude image over HKSP. (b) and (c) 

represent the number of SHP maps identified by the KS test and FaSHPS with 15*15 window sizes. 

(d), (e) and (f) are the zoomed-in maps in the white rectangles in (a), (b) and (c), respectively. 

Figure 16a. illustrates that the KS test can lead to a higher number of SHPs on the right tail of 

the histogram. Due to a lower rejection rate in the KS test, a total of 43169 central pixels (nearly 4.3%) 

are identified as the SHP with a full window size (window size is 15 × 15), i.e., 225 pixels. In contrast, 

Figure 16b shows that the FaSHPS has a higher rejection rate and a lower number of SHP on the 

right tail of the histogram. Practically no pixels (only two) identify the SHP with a full window size. 

It makes sense that the higher rejection rate in FaSHPS correlates to better delineations between 

different ground features and reliable SHP identification. Aside from allowing a more robust SHP 

identification, the FaSHPS algorithm has a significant advantage in terms of computation efficiency, 

which is much higher than the KS algorithms. A detailed comparison will be presented in subsection 5.2. 
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(a) (b) 

Figure 16. Histograms of the SHP number identified by (a) KS test and (b) FaSHPS. Horizontal axis is 

the number of SHPs based on a 15 × 15 window. Vertical axis is the pixel count at each corresponding 

SHP number. 

In addition, the performance of optimal phase estimation is investigated. The phase 

optimization procedure based on eigendecomposition greatly improve the quality of differential 

interferograms in comparison with the original phases of DSs (see Figure 17). The advantage of 

optimized phases is not only well smoothed in the homogeneous regions, but it also maintains better 

edge and shape preservation. Moreover, a very high computation efficiency is achieved by the phase 

optimization method based on the eigendecomposition, which will be discussed in detail in 

subsection 5.2.  

 

(a) 

 

(b) 

Figure 17. Comparison between (a) the original phases of DSs and (b) the optimized phases obtained 

by the eigendecomposition algorithm. 

5.2. Computational Efficiency and Sensitivity Analysis 

As mentioned in section 3, the state-of-the-art DSI methods involve two important but 

time-consuming steps: the SHP identification and the optimal phase estimation. To demonstrate the 

advantages of the proposed DSI strategy, we evaluated the computational efficiency of three DSI 

strategies in terms of different combinations of the two key steps. Strategy I utilized the KS test to 
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detect SHP and extract the optimal phases based on a maximum likelihood (ML) estimator [28,43]. 

Strategy II adopted the KS test to detect SHPs and an eigendecomposition algorithm to estimate the 

optimal phases, in which the latter step can largely speed up the computation, but the former step is 

still considerably expensive in terms of computational cost. In our proposed DSI strategy (Strategy 

III), two fast and robust algorithms based on FaSHPS and eigendecomposition have been integrated 

to identify SHPs and estimate the optimal phases, which enables a significant increase in 

computational efficiency with respect to the current DSI methods. 

To quantitatively illustrate the computational efficiency of three combined strategies, we select 

a subset image (1000*1000 pixels) of time series TerraSAR-X datasets acquired in the HKSP and test 

it with the MATLAB software on a 2.0 GHz processor. Table 1 presents computational efficiency of 

among these three strategies for 1000*1000 pixels. Strategy I processing requires approximately 8.98 

h and 71.8 h for KS test and ML estimator, respectively. Strategy II requires 8.98 h and 3.59 h for KS 

test and optimal phase based on eigendecomposition. The situation can be greatly improved by our 

proposed strategy, which only requires approximately 0.32 h and 3.59 h for FaSHPS and 

eigendecomposition, respectively. The calculation of the coherence matrix is included in the time 

consumed during phase estimation. This demonstrates that the computational efficiency of our 

proposed strategy could be enhanced 30 times in the initial DS candidate identification and 20 times 

in the DS phase optimization. 

Table 1. Comparison of computational efficiency of three combined strategies for 1000*1000 pixels. 

Strategy  SHP Identification Time (hr.)  Phase Estimation Time (hr.)  Computation Efficiency 

I KS test 8.98 ML estimator 71.8 low 

II KS test 8.98 Eigendecomposition  3.59 moderate 

III FaSHPS 0.32 Eigendecomposition  3.59 very high 

Furthermore, Figure 18 presents a parameter sensitivity analysis for the computational time of 

FaSHPS and eigendecomposition using different stack sizes and estimate window sizes. Clearly, the 

proposed strategy including FaSHPS and eigendecomposition is less affected by stack size (see 

Figure 18a). As the number of images used for homogeneous pixel selection increases, the 

computational burden is less influenced. FaSHPS only uses the mean of the central pixel in the entire 

time series for homogeneous pixel selection, and the efficiency of the eigendecomposition is less 

affected by the matrix dimension. However, the computational time increases slightly with a larger 

window size estimate (see Figure 18b), which implies that the efficiency of both FaSHPS and 

eigendecomposition is sensitive to the window size. For example, the computing burden of FaSHPS 

and eigendecomposition require 755 sec. and 11,383 sec. when the estimate window size is set to 

11*11 with a fixed 15 stack size, whereas it increases to approximately 2,924 sec. and 3,748 sec., 

respectively, when the window size increases to 27*27.  
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Figure 18. Computational time for FaSHPS and eigendecomposition using (a) different stack sizes 

and (b) estimated window sizes for 1000*1000 pixels. 

6. Conclusions 

In this study, a fast and robust DSI analysis of spatial and temporal behaviours of reclamation 

settlements in Hong Kong was carried out by applying an improved DSI processing strategy, which 

is a combinatorial innovation of the FaSHPS and eigendecomposition algorithms, to a total of 29 

TerraSAR-X High Resolution Spotlight images over HKIA and 22 TerraSAR-X Stripmap images 

over HKSP acquired between 2008 and 2009. As expected, the DSI strategy reveals remarkably 

detailed reclamation subsidence fields over these two coastal reclaimed regions, with a significant 

increase in the MPs densities by 7.8 and 3.7 times for HKIA and HKSP, respectively, compared with 

the conventional PIS method. Moreover, the accuracy assessment compared to the levelling survey 

measurements at HKIA verifies the DS-derived deformation results, with a mean difference of 1.87 



Remote Sens. 2018, 10, 1738  23 of 25 

 

mm/yr and a standard deviation of 2.08 mm/yr. At HKIA, the InSAR results reveal moderate 

(between -3 to -10 mm/yr) to strong (up to -20 mm/yr) subsidence rates and a localized differential 

settlement pattern within the majority of the reclaimed portion of the airport platform. At HKSP, an 

exceptionally severe subsiding zone is detected in the northern developing area of reclamation land, 

which shows a maximum subsidence rate of 20 mm/yr. In particular, the integration of both the 

FaSHPS and eigendecomposition algorithms enables the proposed strategy to archive an 

unprecedented, high computational efficiency that is well beyond that of the state-of-the-art DSI 

methods, in which the efficiency could be enhanced 30 times during the DS identification and 20 

times during the DS phase optimization. The results demonstrate the advantages of the proposed 

DSI strategy in computational efficiency and estimation reliability in monitoring ground 

deformation, particularly over reclaimed coastal areas. 

Finally, the current Earth Observation (EO) scenario is characterized by the availability of large 

amounts of SAR data over the course of the last 20 years [29,44]. In particular, the new generation 

SAR missions, such as the Sentinel-1 constellation of the Copernicus SAR satellites and RADARSAT 

Constellation missions (RCM), are designed with higher spatial resolutions, more systematic 

wide-area coverage and shorter revisit cycles, which enables global-scale monitoring of the Earth at 

high temporal and spatial resolutions [29]. The large volume of SAR data will greatly promote the 

development and applications of InSAR in monitoring ground deformation [29,45]. Due to the 

insensitivity of stack sizes and the very high computational efficiency, our proposed DSI strategy 

has great potential to handle the InSAR Big Data applications well [45], especially for mapping and 

measuring ground deformation over non-urban areas, including permafrost thaw, volcanoes, 

earthquakes, landslides and so on. 
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