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Abstract: The uncertainties associated with rainfall estimates comprise various measurement scales:
from rain gauges and ground-based radars to the satellite rainfall retrievals. The quality of satellite
rainfall products has improved significantly in recent decades; however, such algorithms require
validation studies using observational rainfall data. For this reason, this study aims to apply the
H-SAF consolidated radar data processing to the X-band radar used in the CHUVA campaigns
and apply the well established H-SAF validation procedure to these data and verify the quality
of EUMETSAT H-SAF operational passive microwave precipitation products in two regions of
Brazil (Vale do Paraíba and Manaus). These products are based on two rainfall retrieval algorithms:
the physically based Bayesian Cloud Dynamics and Radiation Database (CDRD algorithm) for
SSMI/S sensors and the Passive microwave Neural network Precipitation Retrieval algorithm (PNPR)
for cross-track scanning radiometers (AMSU-A/AMSU-B/MHS sensors) and for the ATMS sensor.
These algorithms, optimized for Europe, Africa and the Southern Atlantic region, provide estimates
for the MSG full disk area. Firstly, the radar data was treated with an overall quality index which
includes corrections for different error sources like ground clutter, range distance, rain-induced
attenuation, among others. Different polarimetric and non-polarimetric QPE algorithms have been
tested and the Vulpiani algorithm (hereafter, Rq2Vu15) presents the best precipitation retrievals when
compared with independent rain gauges. Regarding the results from satellite-based algorithms,
generally, all rainfall retrievals tend to detect a larger precipitation area than the ground-based radar
and overestimate intense rain rates for the Manaus region. Such behavior is related to the fact that the
environmental and meteorological conditions of the Amazon region are not well represented in the
algorithms. Differently, for the Vale do Paraíba region, the precipitation patterns were well detected
and the estimates are in accordance with the reference as indicated by the low mean bias values.

Keywords: rain gauges; radar; quality indexes; satellite rainfall retrievals; validation

1. Introduction

The knowledge about the distribution of water around the globe is an aspect of extreme
relevance for the management of natural resources. The precipitation is, within the hydrological
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cycle, unanimously recognized as a central component, regulating the energy balance through the
interactions of water vapor and clouds, where redistribution of latent heat occurs in the atmosphere.
A detailed characterization about precipitation, its formation processes and its life cycle is essential
to improve the quality of weather and climate forecasts and also to help decision-makers in their
resolutions to be taken in areas affected by the rain.

Due to its inherent complexity, rainfall presents high spatial and temporal variability resulting
in different regimes, all these factors combined make the tasks of observation, comprehension and
prediction more challenging. The quantification of precipitation, in terms of frequency and intensity,
is performed by rain gauge and meteorological radars [single and double polarization] at ground.
However, these, in turn, have a sparse and uneven distribution, especially in mountainous regions,
forest and over the ocean. Thus, satellite-based precipitation estimates fill these gaps and complement
the rainfall observation system.

The quality of satellite rainfall products has improved significantly in recent decades, especially
with the advent of satellites/missions such as the Tropical Rainfall Measuring Mission (TRMM) [1] and
the Global Precipitation Measurement (GPM) [2]. In addition to the greater number of channels and
radiometers available to clouds and precipitation exploitation, the improvements to computational
methods and precipitation clouds modeling provided the possibility of development of several rainfall
retrieval techniques (i.e, [3–5]).

In this context, the EUMETSAT Satellite Application Facility on Support to Operational Hydrology
and Water Management (H-SAF) provides rainfall estimations based on infrared and microwave
satellite sensors aboard polar and geostationary satellites. On each new Continuous Development
Phase (CDOP), new products are released and validation processes are necessary to verify the
algorithms performance both in the H-SAF area, as in extra-European regions. The validation of
these satellite retrievals is performed by the H-SAF Precipitation Product Validation Group (PPVG)
where a common validation methodology has been defined inside the PPVG in order to make those
validation results from several institutes comparable and understandable [6,7].

From the validation perspective, the rain gauge networks can provide accurate rainfall
information; however they are point measurements and are unevenly distributed around the globe.
On the other hand, meteorological radars can provide far better coverage in space and time, especially
considering dual polarization radars that provide information about the hydrometeors such as size,
shape and variety, which allows for better understanding cloud and precipitation microphysics.
Nonetheless, an important issue related to radar systems is the error sources associated with it,
which makes challenging the quantitative precipitation estimation (QPE)-based solely on radar, unless
these error sources are properly treated. Typically, the error sources that can be identified are: radar
calibration, ground-clutter, wet-radome attenuation, rain-induced attenuation, vertical profile of
reflectivity (VPR) and non-uniform beam filling. Despite this, polarimetric radars offer new variables
that allow greater insight in precipitation and new ways to deal with these error sources [8].

Regarding the quantification of the characteristics of the uncertainties (random components and
systematic errors) associated with satellite precipitation estimates, several efforts have been carried
out around the world. One example is the CHUVA Project (Cloud processes of the main precipitation
systems in Brazil: A contribution to cloud resolving modeling and to the GPM [Global Precipitation
Measurement]) that aims to study the clouds and precipitation processes, through six field experiments
under different precipitation regimes in Brazil. One of the major goals of the CHUVA project
is to evaluate and improve the quality of satellite-based precipitation estimates from the GPM
constellation [9]. More about the CHUVA project and its field campaigns can be found online in
the CHUVA Project website: http://chuvaproject.cptec.inpe.br.

This study has two main goals: (i) to apply the H-SAF consolidated radar data processing to
the X-band radar used in the CHUVA campaigns and; (ii) apply the consolidated H-SAF validation
procedure to these data and verify the quality of H-SAF products over specific regions in Brazil.
In Section 2, the study areas, radar characteristic and rain gauge distribution are described. In the same
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section, the methodology for radar data treatment (quality index) and radar-based rainfall algorithms
are described. A brief description of satellite algorithms is also provided. In Section 3 the results of the
evaluation of rainfall radar estimates with respect to the rain gauges are presented, as well the results
from the satellite verification process, where statistical and pixel by pixel evaluations are performed.
Finally, a summary of the main results is presented in Section 5.

2. Materials and Methods

2.1. Study Area and Data Sources (Radar and Rain Gauges)

This study was developed based on two CHUVA field campaigns. The first experiment occurred
in the Vale do Paraíba region located in the southeastern part of Brazil and the second campaign
took place in Manaus city in the northern region of Brazil (centrally located in the Amazon basin).
The satellite-based evaluation process considers the precipitating events with largest rain rates for
both campaigns. Specifically, the case studies analyzed in Manaus took place on 15, 21, 23, 24, 25,
26 February and 2 and 8 March 2014 (8 days) while in the Vale do Paraíba campaign 6 days were
considered: 11, 13 November and 1, 8, 14 and 20 December 2011 for a total of 14 precipitating events.
For both campaigns the X-band polarimetric radar, manufactured by Gematronik (Germany) has been
employed with the main characteristics: Magnetron with 35 Kw per channel, simultaneous horizontal
and vertical polarization, pulse width of 0.5 µs, operative pulse repetition frequency (PRF) of 1500 Hz,
1.8 m antenna diameter, 1.3◦ beam width, operation frequency of 9.375 GHz, 150 m of range resolution
and maximum distance of 100 km.

The Vale do Paraíba campaign occurred in São Paulo State in an elevated valley between the
Serra da Mantiqueira and Serra do Mar mountain ranges. This field campaign had the longest
duration for the CHUVA experiment, with an Intensive Observation Period (IOP) starting from
1 November to 22 December 2011, followed by a second period with less intensive measurements
through 31 March 2012. The site strategy is indicated in Figure 1, where the X-band polarimetric radar
was installed near São José dos Campos (Lat. 23◦12′31.33′′S, Lon. 45◦57′7.87′′W, 650 m ASL) above the
roof of the UNIVAP building (Vale do Paraíba University) being approximately 82 km inland from the
ocean. The radar scanning strategy produced a volume scan with 13 elevations (varying from 1 to 25
degrees) with a scan time of 6 min. Seven measurement sites (called UNIVAP, CTA, IEAV, Jambeiro,
CESP, Pousada and Caragua) were established and equipped with rain gauges located at 9, 11, 22, 43,
51 and 75 km from the radar site, respectively, along a perpendicular line towards the ocean (Figure 1).

Figure 1. Position of the X-band radar and of the rain gauges indicated with a thumbtack in each site,
during the Vale do Paraíba campaign.
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The main rainfall systems that were observed during the campaign were caused by the penetration
of cold fronts, local convection and organized mesoscale systems. The presence of a 500 hPa trough to
the east (first half of the period) and west (second part) was responsible for the atmospheric moisture
flow over the region and, consequently, the precipitation regime. Several thunderstorm events, some
associated with hail, were reported during the campaign [10].

During the Manaus campaign, the X-band polarimetric radar was installed in the Amazon
rainforest about 60 km from Manaus, between the Negro and Amazon rivers (Lat. 3◦12′46.86′′S,
Lon. 60◦35′53.92′′W, 69 m ASL). The X-band radar scanning strategy produced one volume scan with
15 elevations (varying from 0.5 to 30 degrees) every 10 min. Two measurement sites (called T3 and
Manacapuru) were established and equipped with rain gauges. T3 is located in the same position
of the radar site while Manacapuru is approximately 10 km from the radar site (Figure 2). The field
campaign occurred in two IOPs, the first happened from 13 February to 31 March 2014 during the wet
season, and the second one between 1 and 30 September 2014 at the end of the dry season.

Figure 2. Position of the X-band radar and of the rain gauges indicated with a thumbtack in each site,
during Manaus campaign.

The austral winter corresponds to the dry season in most of the Amazon region, although it
represents a rainy maximum for the far northwest of the basin [11]. Well-defined wet and dry seasons
are associated with the so-called South American Monsoon System (SAMS) [12].

2.2. Radar Data Quality Index

To perform a reliable validation procedure, the common validation methodology developed by
the H-SAF Precipitation Product Validation Group (PPVG) was applied to the CHUVA radar data.
The proposed scheme aims to compensate or, at least, minimize or eliminate those uncertainties.
Moreover, a quality indicator for each source of error was introduced through appropriate tests.
These quality matrices are composed by partial indexes that will be part of an overall data quality
indicator as shown in Figure 3. In this figure, the main error sources taken into account are shown:
ground clutter, partial beam blocking (PBB), range distance, non-uniform vertical profiles of reflectivity
(VPR), differential phase processing and rain induced attenuation [8].

Any contamination of the radar signal by non-precipitation echoes, including returns from ground
is considered in the qclutter index. In order to eliminate these effects, the raw volumetric data is treated
trough a filtering technique based on a fuzzy logic approach. More details about this methodology can
be accessed at [13]. The Figure 4 shows an example of clutter correction applied for an event occurred
on 1 December 2011 in the Vale do Paraíba campaign.
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Figure 3. Weather radar data processing chain.

(a) (b)

Figure 4. PPI, at lowest elevation angle of (a) raw reflectivity and (b) reflectivity filtered to remove the
clutter contamination on 1 December 2011 in the Vale do Paraíba campaign.

Another type of contamination is when the radar beam intercepts an obstruction. In this case, two
situations are possible: (1) only part of the beam cross section illuminates the intercepted topography
(partial blockage), or (2) the radar beam is completely blocked (total blockage). The beam blockage
filtering approach qPBB applied in this study is described in [14]. An example is shown in Figure 5 of
the visibility map obtained at the lowest elevation angle.

(a) (b)

Figure 5. (a) Map of radar visibility in Vale do Paraíba (black, no visibility and white, full visibility)
for the 1◦ elevation and (b) profile of the beam, PBB and DEM along a given azimuth (330 degrees).
Maximum range is 100 km.



Remote Sens. 2018, 10, 1743 6 of 24

The radar data quality decreases with the beam broadening with the distance r from the radar.
This effect cannot be corrected, however the data range-related deterioration can be determined
quantitatively and taken into account in the qdistance. Following the approach proposed by [15] we
adapted the equation from [6] considering q = 0.5 for r≥ rmax to avoid an abrupt decrease in the quality
index. The value 134 (km) is set so that for r = 100 (the radar range) we obtain q = 0.5 for r ≥ rmax. It
was also introduced a square root operation and the qdistance index can be calculated using a non-linear
function, as in following Equation (1):

qdistance =


0.5 for r ≥ rmax

1 for r ≤ rmin√
134− r

134− rmin
for rmin < r < rmax

(1)

where rmax can be set to 100 km and rmin = ∆r/2 (∆r is the radar range resolution). The rmax is the
radius of radar domain, the maximum range is 100 km. Range resolution is the ability of a radar system
to distinguish between two or more targets on the same beam but at different ranges. It depends
mainly on the width of the transmitted pulse and for this radar it is 150 m (∆r = 150 m). The square root
is introduced in order to ensure that the quality does not drop too fast as the range distance increases.

Reflectivity values within the layer close to the 0◦ isotherm (referred to as melting layer or bright
band) are overdetermined since it consists mainly of water-coated non-Rayleigh scatterers. Because of
that, the most important parameter that defines the non-uniform vertical profiles of reflectivity (VPR)
is the height of the freezing level (FL). The qVPR is estimated following the Friedrich approach and
taking into account the freezing level height, the layer between 200 m above the FL and 500 m below it,
the beam width and the antenna elevation [15].

A polarimetric radar system provides measurements of the total differential phase ΦDP that is
the sum of the differential propagation ΦDP and the backscatter phase δhv. Only the propagation
component is considered for attenuation correction and for rainfall estimation purposes, with KDP
being related to the range derivative of ΦDP, which is affected by system noise, offset, and potential
aliasing problems. In order to handle this issue (qnoise), an Iterative moving-window range Finite
Derivative scheme (IFD) approach is used and can be summarized through flow chart of Figure 6 and
Equation (2). More information about this scheme can be accessed at [13].

Pre-filtering  Phase smoothed by applying a 2D median filter

𝑲𝑫𝑷 retrieval
 𝑲𝑫𝑷 is estimated as the range derivative of the filtered 𝜱𝑫𝑷 using

a given sized moving window L

𝜱𝑫𝑷

reconstruction
 𝑲𝑫𝑷 check

 𝜱𝑫𝑷 reconstruction as the range integral of the estimated 𝑲𝑫𝑷

𝑲𝑫𝑷

𝜱𝑫𝑷𝑭

𝜱𝑫𝑷𝑴

𝑲𝑫𝑷 𝜱𝑫𝑷

Figure 6. Weather radar data processing chain.

qnoise =


1 if KDP ≥ 0.5

2KDP if 0 < KDP ≤ 0.5

0 if KDP < 0

(2)
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Usually, there are a variety of possible solutions for attenuation correction in dual-polarization
radars. All of them are based on the use of differential phase shift [16]. In the common polarimetric
approach, for compensating rain path attenuation, the specific attenuation (AH) assumes a linear
relationship with the specific differential phase (KDP) [17]. This approach is applied for frequencies
ranging from 5 GHz to at least 19 GHz, which includes both the C (5.6 GHz) and X-band (9.4 GHz)
radars. The quality index qAtt associated with rain path attenuation can be defined as Equation (3):

qatt =


1 for PIA < PIAmin

0.5 for PIA > PIAmax
2PIAmax − PIAmin − PIA

2(PIAmax − PIAmin)
for PIAmin ≤ PIA ≤ PIAmax

(3)

where PIAmin = 3 dB and PIAmax = 15 dB.
Finally, the overall radar data quality Q can be retrieved by combining all the considered quality

indicators. All the partial quality matrices are used in a multiplicative combination. Figure 7 shows an
example of the attenuation correction map in the Vale do Paraíba and Manaus campaigns. Additional
examples of the overall quality index will be shown in Section 3.

(a) (b)

Figure 7. (a) Attenuation correction map at lowest elevation angle associated with radar in (a) Vale
do Paraíba on 13 November 2011 at 22:06 UTC (center) and (b) Manaus on 21 February 2014 at 8:50
UTC (right).

2.3. Rainfall Estimation from Radar Data

Beyond the quality index procedure described in the previous section, another important
aspect to be taken into account is that there are different algorithms in use for radar-based rainfall
retrievals. Traditionally, the simplest rainfall relation is the Z-R relation, where rainfall (R) is estimated
from reflectivity (Z). With the availability of polarimetric variables, it is possible to exploit several
combinations (e.g., Z and ZDR, among others) towards an optimal rainfall rate estimation. From the
reflectivity (Z), the rainfall can be calculated by means of a power-law type relationship in Equation (4):

R(ZH) = aZb
H (4)

where R is rainfall rate in mm h−1 and ZH in mm6 m−3 units, while a and b are two coefficients whose
value depends on the type of precipitation. The use of polarimetric quantities clearly provides better
results in terms of precipitation estimation, being able to employ more than the reflectivity ZH also the
specific phase KDP and the differential reflectivity ZDR in various combinations. For the precipitation
estimation, the R-Z and the R-KDP relationships were adopted. Indeed, the algorithms that estimate
rainfall from KDP are particularly attractive at wavelengths such as X-band because they are derived
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from phase measurements and they are unaffected by absolute calibration error and attenuation caused
by precipitation along the propagation path [8]. The R-KDP relationship can be written as Equation (5):

R(KDP) = c · (|KDP|)d · sign(KDP) (5)

For the parameterization of R(ZH) and R(KDP) (Equations (4) and (5)), the approach from [18]
(MP48) and from CHUVA campaign in Fortaleza [19] (SC12) were used respectively. Another pair of
coefficients is adopted for R-KDP model, using [8] (BC01). Additionally, the parameters for R(ZH) and
R(KDP) are summarized in Table 1.

Table 1. Parameters of R(ZH) and R(KDP) power law relations for the CHUVA X-band Radar.

R(ZH ) R(KDP)
a b c d

MP48 0.0208 0.680 SC12 15.813 0.774
BC01 19.193 0.850

The use of radar reflectivity for radar-based rainfall retrievals is frequently subject of
underestimation [6], especially when the lowest beam map (LBM) is used. In order to reduce this
effect, an additional polarimetric rainfall algorithm was proposed by Vulpiani [20]. The technique is
based on the combination of reflectivity factor and specific differential phase and considers two types
of weighting. The first consideration uses the KDP gradually with increasing rainfall intensity, the
combined algorithm takes the form of a weighted sum as Equation (6):

Rq = qnoise · RK + (1− qnoise) · RZ (6)

where RZ and RK are the rainfall estimates obtained by applying specific power laws (Equations (4)
and (5)) to the lowest non-shielded radar bin of ZH and KDP, respectively. The coefficients that
were adopted to derive RK and RZ are shown in Table 1, while the weight is the quality index qnoise
(Equation (2)). The second consideration uses a combined polarimetric rainfall algorithm with another
type of weighting between the contributions of ZH and KDP, as Equation (7):

Rq =
qloss · RZ + qnoise · RK

qloss + qnoise
(7)

where RK and RZ parameters are the same of Equation (6), while the weights are the quality indexes
qloss (qloss = qpbbx × qatt) and qnoise indicated in Equation (2). Therefore, the different algorithms used
with the various coefficient combinations are summarized as follow:

1. RZ : (4) with MP48 coefficients.
2. RK1: (5) with SC12 coefficients.
3. RK2: (5)with BC01 coefficients.
4. Rq1: (7) with MP48 and SC12 coefficients.
5. Rq2: (7) with MP48 and BC01 coefficients.
6. Rq1Vu15: (6) with MP48 and SC12 coefficients.
7. Rq2Vu15: (6) with MP48 and BC01 coefficients.

The results related with the different algorithms will be shown in Section 3.

2.4. Satellite Products and Dataset Generation

The passive microwave (PMW) precipitation products within the EUMETSAT H-SAF ([21]) are
based on the development and refinement of retrieval techniques exploiting all available radiometers
in the GPM constellation. In this context, operational PMW precipitation products for the different
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radiometers are being released within H-SAF. They are based on two approaches ([22]): the physically
based Bayesian Cloud Dynamics and Radiation Database (CDRD) algorithm ([23,24]) for conically
scanning radiometers and the Passive microwave Neural network Precipitation Retrieval algorithm
(PNPR) for cross-track scanning radiometers ([25,26]). Three PMW H-SAF products were considered
in this study: H01 (CDRD approach applied to SSMIS), H02 (PNPR developed for AMSU/MHS), and
H18 (PNPR adapted to ATMS).

The algorithms are based on the use of a cloud-radiation database made up of thousands of
microphysical-meteorological profiles derived from cloud-resolving model simulations of different
precipitation events including 60 simulations over the European/Mediterranean area ([23]) and
34 simulations over Africa and Southern Atlantic. The main features of each product can be accessed
in detail in the respective references cited above.

To perform the validation over Brazil, we had to acquire all the input data (brightness temperatures
in TB) for the the CHUVA experiments timeframe, and then, to process the H-SAF products to extend
the coverage of the retrievals in order to include the whole country (extended to 75◦N–60◦S and
80◦W–80◦E). The inputs for the H01 were the SSMI/S orbits of the DMSP F16, F17 and F18 satellites.
For the H02 algorithm, the input files were the AMSU-A, AMSU-B and MHS orbits from NOAA-18,
NOAA-19, MetOp-A and MetOp-B. In addition, lastly, we used the ATMS orbits from the Suomi-NPP
satellite as input for the H18 algorithm. Though we have analyzed the three products: H01, H02 and
H18 for the Manaus campaign, we only analyzed the H01 and H02 products for the Vale do Paraíba
campaign because the ATMS data was not available in 2011.

2.5. Application of the Common Validation Code (CVC)

The common validation code (CVC) developed by the Precipitation Product Validation Group
(PPVG) [7] enables implementation of a common validation procedure to make the validation results
comparable. The products to be validated differ in terms of retrieval technique, spatial and temporal
resolutions. Therefore, each product requires a specific validation procedure. The methodology can be
divided on the following general steps:

• Ground data error analysis;
• Upscaling of radar data to match the satellite product nominal resolution;
• Temporal matching of precipitation products (satellite and ground);
• Application of evaluation statistical methods (continuous and multi-categorical) to all available

overpasses, for each pixel pair (satellite-ground).

In order to use the CVC on the Brazilian radar data, the code had to be adapted by including the
new radar coordinates (Vale do Paraíba and Manaus) and changing the reading routine to the new radar
data. The CVC was configured to match a maximum temporal difference between satellite and radar
of 16 min. The radar data was upscaled to the satellite product nominal resolution, considering the
antenna pattern (Gaussian function), viewing geometry, and scanning strategy (conical and cross-track)
of the MW radiometers. As the radar data was filtered beforehand (quality control), the pixels with low
quality were eliminated in the upscale processing. To investigate the performance of the precipitation
products, the statistical scores commonly used in the pixel-based validation by the H-SAF PPVG
were considered.

3. Results

In this section, we present the results of the evaluation of rain gauge measurements and the
performance radar-based rainfall algorithms for one case study of Vale do Paraíba and Manaus,
respectively. Sequentially, we performed the validation of the H01, H02 and H18 algorithms, breaking
it down into two phases, the statistical evaluation and pixel-by-pixel analysis. In order to summarize
the results for all case studies, we chose to exhibit one representative event for each campaign; however,
the results of the remaining cases will also be discussed further ahead.
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3.1. Vale do Paraíba Campaign: 13 November 2011

This precipitating event refers to the occurrence of extensive convection followed by stratiform
rainfall. Figure 8 shows the 24-h accumulation (from 00:00 to 24:00 UTC) derived from the distinct
rainfall algorithms considered in this study. Each map corresponds to a specific rainfall technique and
includes the cumulative values recorded by rain gauges on the left of each map. In comparison to
rain gauges, the radar QPE based on RZ estimator (Figure 8a), shows clear signs of underestimation,
especially regarding the convective cores. On the other hand, the KDP-based algorithms have a similar
pattern to those recorded by rain gauges.

(a) (b) (c)

(d) (e)

(f) (g)

Figure 8. Surface Rainfall Total (SRT) 24 hourly accumulated using (a) RZ model, (b) RK1 model,
(c) RK2 model, (d) Rq1 model, (e) Rq2 model, (f) Rq1Vu15 model and (g) Rq2Vu15 model for the event
which occurred on 13 November 2011. The corresponding values accumulated by the rain gauges are
shown in the map.
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3.2. Manaus Campaign: 8 March 2014

This event was characterized by extensive and intense stratiform precipitation in Manaus. Figure 9
presents the different algorithms with the rain gauge records indicated at the bottom-left of each
map. Similarly of the Vale do Paraíba event the algorithm just based on reflectivity (RZ) also
presented a general underestimation of 24-h accumulation (Figure 9a) and the Rq2Vu15 presented
the best performance (Figure 9g).

(a) (b) (c)

(d) (e)

(f) (g)

Figure 9. Surface Rainfall Total (SRT) 24 hourly accumulated using (a) RZ model, (b) RK1 model,
(c) RK2 model, (d) Rq1 model, (e) Rq2 model, (f) Rq1Vu15 model and (g) Rq2Vu15 model for the event
which occurred on 8 March 2014. The corresponding values accumulated by the rain gauges are shown
in the map.

A performance verification of the radar-based rainfall retrievals was made regarding the rain
gauges (figures and tables were not shown here). The comparison considering the nearest value
shows better results. In general, the radar-based rainfall RZ (just based on reflectivity) presented
underestimation, the KDP-based algorithms had good performance when compared with rain gauges
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measurements. The best estimator was the Rq2Vu15, because it presented the perfect correlation
coefficient score, which is one. And bias, mean absolute error and root mean square not higher than
0.11, 0.13 and 0.41, respectively.

3.3. Validation of H-SAF Precipitation Products

The second part, which is the main focus of this study, is to identify the performance of the H-SAF
products in order to provide the algorithm developers with information on the limitations and issues
of the retrievals over specific regions in Brazil. The case studies under analysis are the same 14 cases
(for both campaigns) that were considered previously on the radar data quality analysis. As mentioned
before, three satellite rainfall products were analyzed: H01 (CDRD approach applied to SSMIS), H02b
(PNPR v1 developed for AMSU/MHS), and H18 (PNPR v2 adapted to ATMS). We present a statistical
analysis based on continuous and dichotomous statistical scores computed within the CVC, along with
an in-depth analysis of the selected cases, followed by a pixel by pixel analysis. The considerations
concerning the acquisition of the matching pairs (radar × satellite) are exposed in Section 2.5.

3.3.1. Statistical Evaluation

Because of its best estimation performance, the Rq2Vu15 algorithm was chosen for the statistical
evaluation. In order to investigate the impact of different quality indexes in the radar retrievals, we
performed a sensitivity analysis (not shown here). According to this analysis, we found that a quality
index value equal or greater than 0.7 could be considered a good compromise between the desired
performance of the statistical scores and the size of the dataset (that guarantees the reliability of the
results), i.e., the number of pixels in the sample. The statistical scores used in the validation procedure
are presented in Tables 2 and 3. The continuous statistical scores were computed for the pixels in
which both radar and satellite give rainfall estimates larger than 0.25 mm/h (hits only). On the other
hand, all pixels are considered for the multicategory scores. The number of pixels for each algorithm is
different because it depends on the number of available satellite overpasses.

For Manaus, the events under analysis counted a total of 33 overpass matchings (which means
correspondence in time and space for both the satellite and radar measurements) for H01, 49 matchings
for H02 and 13 matchings for H18. Since ATMS is aboard a single satellite, the number of overpasses
over the region of interest is less than the other sensors (consequently, lower number of matched
pixel pairs).

Table 2. Continuous statistical scores.

Score Perfect Score Calculation

Mean error or bias (ME) 0 ME =
1
N

n

∑
k=1

(satk − obsk)

Standard deviation (SD) 0 SD =

√
1
N

n

∑
k=1

(satk − obsk −ME)2

Root mean square error (RMSE) 0 RMSE =

√
1
N

n

∑
k=1

(satk − obsk)2

Fractional standard error (FSE) 0 FSE =

√
1
N ∑n

k=1(satk − obsk)2

1
N ∑n

1 obsk
=

RMSE
1
N ∑n

1 obsk

Correlation coefficient (CC) 1 CC =
∑n

k=1(sat− ¯sat)(obs− ¯obs))√
∑n

k=1(sat− ¯sat)2
√

∑n
k=1(obs− ¯obs)2
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Table 3. Multicategory scores.

Score Perfect Score Calculation

Probability of Detection (POD) 1 POD =
hits

hits + misses
=

hits
observed yes

False alarm rate (FAR) 0 FAR =
f alse alarms

hits + f alse alarms
=

f alse alarms
f orecast yes

Critical success index (CSI) 1 CSI =
hits

hits + misses + f alse alarms

Table 4 presents continuous scores for the algorithms in analysis, the number inside the brackets
refers to the number of matched pixel pairs for each algorithm. All algorithms tend to overestimate
the X-band radar estimates. The H01 presented the largest values for ME, RMSE and FSE. In general
H02 had slightly better scores than H01, such as lower mean rainfall rate values, ME, RMSE, SD and
FSE. Finally, the H18 presents intermediate scores in relation to the other algorithms, having just the
smallest FSE. Regarding multicategory scores (Table 5), it is worth noticing that both algorithms based
on the neural network approach presented better detection skills than H01, the highest POD (0.96 and
0.81), the lowest FAR (0.47 and 0.39) and highest critical CSI (0.51 and 0.53), respectively.

Table 4. Statistical continuous scores for Manaus for H01, H02 and H18. The number inside parenthesis
represents the number of matched pixel pairs for each algorithm.

Algorithm Sat. Mean Rad. Mean ME RMSE SD FSE CORR

H01 (406) 4.60 0.93 3.67 5.20 3.69 5.59 0.40
H02 (631) 3.78 1.18 2.59 5.11 4.40 4.32 0.32
H18 (140) 4.53 1.46 3.07 5.10 4.07 3.48 0.34

Table 5. Multicategory scores for Manaus for H01, H02 and H18. The number inside parenthesis
concerns the number of matched pixel pairs for each algorithm.

Algorithm POD FAR CSI

H01 (3149) 0.75 0.54 0.39
H02 (1889) 0.96 0.47 0.51
H18 (916) 0.81 0.39 0.53

The Vale do Paraíba campaign counted a total of 27 overpass matchings for H01 and 31 matchings
for H02. The respective statistical scores are presented in Tables 6 and 7. We can see from Table 6 that
H01 and H02 algorithms presented similar mean rain rates, slightly lower than the radar estimates,
thus determining small and negative values for ME. These results can be attributed to either the better
performance of the satellite products for this region (at least in terms of bias), or the better quality of
the ground-radar estimates over this region. Compared to Manaus region, the multicategory scores
for Vale do Paraíba presented lower FAR values (0.39 for H01 and 0.21 for H02), lower POD values
(0.49 for H01 and 0.43 for H02) and similar CSI values

Table 6. Continuous scores for Vale do Paraíba for H01 and H02. The number inside parenthesis
concerns the number of matched pixel pairs for each algorithm.

Algorithm Sat. Mean Rad. Mean ME RMSE SD FSE CORR

H01 (181) 2.53 2.89 −0.35 4.00 3.98 1.38 0.44
H02 (124) 2.45 2.76 −0.30 3.56 3.55 1.29 0.37
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Table 7. Multi-category scores for Vale do Paraíba for H01 and H02. The number inside parenthesis
concerns the number of matched pixel pairs for each algorithm.

Algorithm POD FAR CSI

H01 (2420) 0.49 0.49 0.33
H02 (991) 0.43 0.21 0.39

3.3.2. Pixel by Pixel Analysis

In order to further analyze the algorithms performance, a case study analysis for each product
and each campaign, with pixel by pixel comparison, was carried out.

A case study for Manaus, which occurred on 21 December 2014 was presented, with the overall
quality index shown in Figure 10a and the radar rainfall field in its original resolution in Figure 10b.
On this day, a well defined squall line approached the X-band radar region. The systems persisted
on the region from the morning around 08:20 UTC to the afternoon 15:40 UTC. It is possible to see
the presence of convective cores with rainfall rate upwards to 35 mm/h in the regions between the
north-west and the south-west quadrants in Figure 10b. The remaining regions are dominated by light
and stratiform precipitation with rainfall rates going up to 6 mm/h. In Figure 11a it is possible to see
the filtered radar data by applying the quality index threshold at 0.7 and upscaled to the satellite native
grid, and in Figure 11b the respective H01 rainfall retrieval is shown. The light rain rate provided
by the radar (light blue), is associated with moderate precipitation values by H01 (shades of green).
Additionally, the moderate rain rates from radar (green and dark blue) is strongly overestimated by
the H01 (orange to red) algorithm. We can say that H01 has a general tendency to overestimate all
rainfall classes.

(a) (b)

Figure 10. (a) Overall radar quality index and (b) Rain rate from radar on 21 February 2014 at 12:10 UTC.

For H02, one overpass for the case which occurred on 8 March 2014 (at 05:30 UTC) is shown.
Convective cells are visible along the border of the Rio Negro River, followed by smaller convective
cells over the Southeast quadrant (Figure 12). Figure 13a,b show that the H02 algorithm provides
precipitations from light to moderate values (shades of green) in pixels where the radar detects absence
of precipitation (gray pixels). This tendency to produce a large area of precipitating pixels is related to
the precipitation screening, which is the algorithm module where potential precipitating pixels are
selected. This feature is related to the relatively high FAR scores (shown in Table 7).
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(a) (b)

Figure 11. (a) Rain rate from radar upscaled to the satellite grid and (b) H01 rain rate retrieval in
Manaus on 21 February 2014 at 12:10 UTC.

(a) (b)

Figure 12. (a) Overall radar quality index and (b) Rain rate from radar on 8 March 2014 at 05:30 UTC.

(a) (b)

Figure 13. (a) Rain rate from radar upscaled to the satellite grid and (b) H02 rain rate map in Manaus
on 8 March 2014 at 05:30 UTC.
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The example for H18 shown in Figures 14 and 15 is for the same event presented in H02, on
8 March 2014 but at 05:10 UTC. Despite the fact that the satellite overpasses (H02 and H18) were very
close in time (20 min of difference) it was enough for modifications in the precipitation field to appear.
The H18 precipitation pattern is similar to H02 because they are based on the same precipitation
screening method. It is worth pointing out that the screening of precipitation is equal for all products
in analysis in this study and it is applied over all background surfaces, except over desert. It is very
likely that the screening procedure is not well tuned for the atmospheric conditions of the Amazon
region, characterized by the high water vapor content. On the other hand, in the area with the most
intense convective cores, the H18 tends to produce a lower overestimation rate when compared to H02.
This aspect is related to the difference in the two retrieval algorithms (PNPR for AMSU/MHS and
PNPR for ATMS) (as pointed out by [26], where H18 is based on just one neural network for all surface
types, trained with a unique database with the additional channels in the water vapor absorption band
at TB183±3 ([26]).

(a) (b)

Figure 14. (a) Overall radar quality index and (b) Rain rate from radar on 8 March 2014 at 05:10 UTC.

(a) (b)

Figure 15. (a) Rain rate from radar upscaled to the satellite grid and (b) H18 rain rate map in Manaus
on 8 March 2014 at 05:10 UTC.

It is noticeable that the three algorithms have a tendency to overestimate the larger rain rates.
The study in reference [27] evaluated the ability of two GPM rainfall algorithms (GPROF2014 and
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IMERG) in reproducing the main characteristics and the diurnal cycle of precipitation as observed by
the S-band SIPAM radar, in the Manaus region during the CHUVA campaign. The authors have found
similar results where GPROF2014 (GMI) presents large overestimation of the rain rate volume and
occurrence greater than 10 mm h−1 during IOP1.

The first example for the Vale do Paraíba campaign refers to the presence of convective clusters
associated with the SACZ (South Atlantic Convergence Zone). The coincident overpass between the
satellite and the radar occurred at 21:18 UTC and shows the presence of a few intense convective cells
along the Rio Negro River (Figure 16b). The overall quality index (Figure 16a) in this region is most
affected by the blocking effects caused by two mountain ranges, the Serra da Mantiqueira (western)
and Serra do Mar (eastern). Analyzing the upscaled maps (Figure 17) it is clear that, differently from
Manaus, the precipitation pattern is well detected by the H01. Concerning the rainfall estimation, in
this case, the tendency of the algorithm is to underestimate the highest precipitation rates seen by the
radar. Despite this feature, the estimates are in better agreement with the radar than the estimates in
the Manaus campaign (as shown by the lower ME for this region in Table 6).

(a) (b)

Figure 16. (a) Overall radar quality index and (b) Rain rate from radar on 1 December 2011 at 21:18 UTC.

(a) (b)

Figure 17. (a) Rain rate from radar upscaled to the satellite grid and (b) H01 rain rate map in Vale do
Paraíba on 1 December 2011 at 21:18 UTC.
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The second example for the Vale do Paraíba campaign (Figures 18 and 19) consists of the
occurrence of local convection with sparse intense convective cells occurring predominantly in
the afternoon (Figure 18b). During this event, the precipitation pattern is also quite close to the
ground-based reference, which is also reflected on the lowest FAR values (Table 7). Concerning the
rainfall estimation, in this case, the algorithm tends to underestimate the highest precipitation
rates observed by the radar. However, the PMW estimates are in better agreement with the radar
observations than the estimates generated in the Manaus campaign (as indicated by the lower ME for
this region in Table 6).

(a) (b)

Figure 18. (a) Overall radar quality index and (b) Rain rate from radar on 8 December 2011 at 18:06 UTC.

(a) (b)

Figure 19. (a) Rain rate from radar upscaled to the satellite grid and (b) H02 rain rate map in Vale do
Paraíba on 8 December 2011 at 18:06 UTC.

4. Discussion

We will discuss the main features of the H01 algorithm that mostly influence the results in Brazilian
areas: the precipitation screening process, the surface classification and the representativeness of the
cloud model simulations in the a priori database.

The first aspect, the precipitation screening process, selects the potentially precipitating pixels
before the retrieval process. The screening used in the algorithms is based on the method described
by [28], which uses the comparison of the TBs, which are the water vapor absorption band at TB183±3
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and TB183±7 GHz and the TB53GHz channel in the oxygen absorption band around 50 GHz. A detailed
description of the implementation of the H-SAF products screening process can be accessed in [21,25].

Figure 20 present the radiative signatures from the TB183±3, TB183±7 and TB53GHz channels
for Manaus for the case study on 21 February 2014. Analyzing the radar area, we can notice that
in Amazon region (Figure 20a,b) both water vapor absorption channels present a strong TB decay
(minimal values around 160–180 K). This pattern seems to be associated with a change in the weight
function peak of these channels in the presence of high water content, typical of the Amazon rainforest.
As a consequence, an extensive area of precipitation can be seen in the screening map and in the final
rainfall rates (Figure 20d,e). This can affect the efficiency of the screening in identifying potential
precipitating pixels, especially when the clouds are not very deep as they appear to be during the wet
season in the Amazon region.

On the other hand, for the Vale do Paraíba region (Figure 21), the channels 183 ± 7 and
183 ± 3 GHz do not present strong decay in TB inside the radar area and the screening map (Figure 21d)
follows the same pattern that was observed in 183 ± 7 GHz channel ((Figure 21b). Differently from
Manaus, we can see that the retrieval does not generate precipitation (gray pixels in Figure 21e) in the
entire area provided by the screening as potentially precipitating (indicated by red in Figure 21d).

(a) (b) (c)

(d) (e)

Figure 20. (a) TB183±3 GHz, (b) TB183±7 GHz, (c) TB53 GHz, (d) Screening of precipitation (0—no rain,
1—rain) and (e) Surface Precipitation (mm/h) on 21 February 2014 at 12:10 UTC in the Manaus region.



Remote Sens. 2018, 10, 1743 20 of 24

(a) (b) (c)

(d) (e)

Figure 21. (a) TB183±3 GHz, (b) TB183±7 GHz, (c) TB53 GHz, (d) Screening of precipitation (0—no rain,
1—rain) and (e) Surface Precipitation (mm/h) on 1 December 2011 at 21:18 UTC in the Vale do
Paraíba region.

In the Amazon region we have noticed that the surface characteristics were not properly classified.
This region is dominated by large inland water bodies (Amazonas and Rio Negro rivers) and
surrounded by vegetated land. Figure 22a shows that, in the radar area, the algorithm classifies
the surface as coastal pixels, which is the least populated database, therefore, the least representative
and usually affected by larger uncertainties. In the Vale do Paraíba region (Figure 22b) the algorithm
considers large part of the radar area as vegetated land and the Bayesian approach look for land
profiles, which leads to the choice of more appropriate rain rate profiles.

In the Bayesian approach, the surface classification impacts the choice of channels used in
retrieval processing, which influences the selection of hydrometeor profiles in the a priori database and,
ultimately, the rainfall rate retrieval.

Finally, the representativeness of the cloud model simulations in the a priori database, which is
currently optimized for Europe and Africa, does not properly represent the typical microphysical and
rainfall profiles of brazilian regions. Improving the database including simulations that represent the
brazilian rainfall regimes could solve the issue.
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(a) (b)

Figure 22. Surface Identification (1—Ocean, 2—Land, 3—Coast) for (a) Manaus and (b) Vale do Paraíba.

5. Conclusions

This work analyzed the data collected by mobile X-band polarimetric radars during two
campaigns of the CHUVA project, both in the Vale do Paraíba and Manaus regions. First, in order
to ensure that the verification of the H-SAF precipitation products is based on well-treated data, the
ground radar data was submitted to a quality control procedure and the rainfall estimates were tested
with different algorithms. The current polarimetric processing chain attempted to correct the error
contributions of the different sources of uncertainty and provide the estimation of the reflectivity
(ZH) and the specific differential phase (KDP), which contain the microphysical information required
to perform attenuation correction and quantify the precipitation rate. Different polarimetric QPE
algorithms have been coded and evaluated at a hourly time-step using independent rain gauges. The
algorithms that were tested are: simple Z-R relationship (Marshall-Palmer, 1948 [18]) indicated as
RZ, algorithms based on KDP solely (RK1 and RK2), algorithms based on combination of KDP and
ZH , whose weights are the quality indexes qloss and qnoise (Rq1 and Rq2), and algorithms based on
combination of KDP at medium-high KDP (above 0.5◦ km−1) and attenuation-corrected ZH at low KDP
(below 0.5◦ km−1) (Rq1Vu15 and Rq2Vu15). The results confirmed the benefits brought by polarimetry to
quantify radar rainfall retrievals and seems to indicate (considering the problems of a possible radome
attenuation, which are not considered here), that the algorithm which best estimates the precipitation
intensity was Rq2Vu15. Even though RK2 also provided good results, Rq2Vu15 had better performance
for both low and for high precipitation rates.

Regarding the results from the satellite algorithms validation, for the Manaus region, the CDRD
algorithm (H01) tends to overestimate all rain rates classes (light to heavy). The PNPR algorithm for
AMSU-A/AMSU-B/MHS sensors (H02) presents better POD than H01, but it also presents high FAR
values. The PNPR for the ATMS sensor (H18) presents lower overestimation of heavy rain rates when
compared to H02, probably due to the different neural network used on H18. It is worth considering
that the sample size for this verification study (14 cases) was quite small, and a more extensive
validation with a larger ground-based dataset would be suggested to perform a more comprehensive
quality assessment.

All analyzed rainfall retrieval algorithms for the Amazon region showed high FAR values and
larger precipitation patterns which are deeply related to the precipitation screening scheme. The
screening seems to be substantially affected by the high water vapor content in this region. The
H01 (CDRD for SSMIS—Bayesian approach), in specific, it was affected by highly variable surface
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emissivities, impacting the selection of hydrometeor profiles in the a priori database and, ultimately,
the rainfall rate retrieval. Moreover, we must take into account the uncertainties on precipitation
estimates, which in the Bayesian approach are represented by the coefficients of error covariance
matrices (for TBs, and ancillary and meteorological parameters) as analyzed in [24] ) and in [29]. For
the Vale do Paraíba region, both algorithms, H01 and H02, produced ME values that were quite close
to zero (or negative) and lower FAR values (from 0.21 to 0.49) than Manaus. Unlike the Manaus case,
the precipitation patterns were well detected and the estimations were in good agreement with the
reference as indicated by the low ME values.

As for future plans, we intend to perform new verifications in a denser and more comprehensive
sample for other Brazilian regions. Since we identified limitations in the precipitation screening
scheme over the Amazon region, we plan on developing a new scheme that is able to handle the water
vapour content in this region. That would require, furthermore, work on the development of a new
surface classification capable of characterizing the surface diversity properly. The next steps must
be made using the pluviometric precipitation dataset provided by the National Institute for Space
Research (CPTEC/INPE) and also the dataset from new radars acquired by the National Center for
Natural Disaster Monitoring and Alerts (CEMADEN). Lastly, for future work we intend to extend the
cloud-radiation database used as a priori information in the algorithms in order to obtain radiative and
microphysical profiles representative of brazilian rainfall regimes.
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