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Abstract: Land cover mapping of large areas is challenging due to the significant volume of satellite
data to acquire and process, as well as the lack of spatial continuity due to cloud cover. Temporal
aggregation—the use of metrics (i.e., mean or median) derived from satellite data over a period
of time—is an approach that benefits from recent increases in the frequency of free satellite data
acquisition and cloud-computing power. This enables the efficient use of multi-temporal data and
the exploitation of cloud-gap filling techniques for land cover mapping. Here, we provide the
first formal comparison of the accuracy between land cover maps created with temporal aggregation
of Sentinel-1 (S1), Sentinel-2 (S2), and Landsat-8 (L8) data from one-year and test whether this
method matches the accuracy of traditional approaches. hirty-two datasets were created for Wales by
applying automated cloud-masking and temporally aggregating data over different time intervals,
using Google Earth Engine. Manually processed S2 data was used for comparison using a traditional
two-date composite approach. Supervised classifications were created, and their accuracy was
assessed using field-based data. Temporal aggregation only matched the accuracy of the traditional
two-date composite approach (77.9%) when an optimal combination of optical and radar data was
used (76.5%). Combined datasets (S1, S2 or S1, S2, and L8) outperformed single-sensor datasets,
while datasets based on spectral indices obtained the lowest levels of accuracy. The analysis of
cloud cover showed that to ensure at least one cloud-free pixel per time interval, a maximum of
two intervals per year for temporal aggregation were possible with L8, while three or four intervals
could be used for S2. This study demonstrates that temporal aggregation is a promising tool for
integrating large amounts of data in an efficient way and that it can compensate for the lower quality
of automatic image selection and cloud masking. It also shows that combining data from different
sensors can improve classification accuracy. However, this study highlights the need for identifying
optimal combinations of satellite data and aggregation parameters in order to match the accuracy of
manually selected and processed image composites.

Keywords: cloud computing; cloud masking; data fusion; gap filling; radar; supervised classifications

1. Introduction

Land cover maps help us better understand environmental processes, such as water and
biochemical cycles, energy exchanges, or biodiversity alterations [1]. Land cover has been recognised
as an Essential Climate Variable (ECV) [2] and has also been proposed as a Satellite Remote Sensing
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Essential Biodiversity Variable [3]. The characterisation of land cover at a high thematic and spatial
resolution (i.e., 30 m) enables monitoring of the Earth’s surface at a scale comparable to human
activity [4]. During the last few years, there has been an explosion in the availability of medium–high
resolution satellite data, and many visualisation and processing platforms have emerged, resulting in
a new generation of land cover maps and methods [5].

Land cover mapping typically involves a number of stages, including data selection, data
processing, and land cover classification (supervised or unsupervised). When mapping large regions
(i.e., national or regional scale), the selection and processing of satellite images poses several challenges.
One of the first challenges is the large amount of data that must be extracted and processed.
For example, the UK Land Cover Map 2015 (LCM2015), a national land cover map which classified
two-date image composites over the course of a year, used over 100 Landsat images, each of which
required manual cloud-masking. This volume of data requires a large amount of storage, together
with significant computing power and time. Another critical challenge is the lack of spatial continuity
due to differential cloud covers [6]. Cloud cover affects the spatial frequency of cloud-free images,
resulting in spatial inconsistencies in classification. Additionally, acquiring complete spatial coverage
for cloudy areas of the world requires the use of numerous partially cloudy images. This increases the
number of images that must be obtained, stored, and processed.

The launch of new medium–high resolution satellites, such as those of the Copernicus Programme,
is increasing the frequency of free image acquisitions. The combination of data from Landsat 8 (L8) and
Sentinel-2A/B should provide an average minimum of one image every three days [7]. The Sentinel-1
radar imaging satellite (S1) is particularly promising in terms of dealing with data continuity issues, as
the radar signal is not affected by clouds. The increase in the number of sensors and free satellite data
has led to the emergence of new computing platforms that help users select and process large volumes
of geospatial data. A good example is Google Earth Engine (GEE), a cloud-based computing platform
which provides easy access to satellite datasets on a planetary scale [8]. Platforms such as GEE allow
users to avoid storing images locally and provide greater computing power for image processing
and analysis. This combination of new sensors and platforms is allowing researchers to find new
approaches to large-scale land cover mapping by changing the way data are selected and processed.

The computing power of these new platforms, enables the application of complex algorithms to
large amounts of data. New land cover mapping methods exploit this to fill the gaps generated by the
lack of medium–high resolution data for certain dates or by automated cloud-masking procedures.
Gap-filling techniques such as data fusion [9,10], pixel unmixing [11], data interpolation [12],
or best-pixel selection [13,14] have all been applied to time series data for the land cover mapping
of large areas. Temporal aggregation, which is the use of metrics (i.e., mean, median, max/min, etc.)
derived from measurements such as reflectance or the Normalized Difference Vegetation Index (NDVI)
that are calculated over a period of time [15,16], is also becoming a popular approach to dealing with
data gaps and inconsistent numbers of available satellite images [17–19]. These techniques differ from
approaches that use all of the available data [20], as they significantly reduce the volume of data to
produce smaller, more manageable data sets. Temporal aggregation is simpler than other gap filling
algorithms, and platforms such as GEE enable it to be applied over hundreds of images rapidly [5].
This means that the cost and time needed to produce large-scale land cover maps with no data gaps
can be significantly reduced. The major concern with this methodology is that it relies on there being
enough images available to create reliable aggregated measurements over a period of time. Insufficient
data or poor quality automated pre-processing methods, such as cloud-detection algorithms, may
lead to low classification accuracy [17]. However, it has not yet been tested whether land cover
classification using temporal aggregation techniques is more accurate than manually pre-processed
data. The reliability of temporal aggregations will depend on the number of good images over the
temporal aggregation period. This will vary spatially and temporally, as well as depending on the
repeat frequency of the satellite sensor. Therefore, an assessment of the optimal type, or combination,
of satellite input data to obtain satisfactory land cover classifications is needed.
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Here, we assessed the accuracy of land cover maps created using temporal aggregation of
one-year of data derived from L8, S1, and Sentinel-2 (S2) satellites. The two main objectives were to
(1) test whether land cover classifications, created using temporal aggregation of large amounts of
automatically-processed satellite data, outperform those created with traditional non-aggregated
two-date composites and (2) compare the classification accuracy of temporally aggregated data
from different sensors. To do this, multiple datasets were created using the temporal aggregation of
satellite-derived measurements taken over different time intervals within one year. GEE was used
to apply automated cloud-masking and to temporally aggregate the data. All data were resampled
to 30 metres to match the spatial resolution of the most coarsely resolved sensor (L8). This was done
to isolate the effects of temporally aggregated measurements on the classification accuracy. A wide
variety of datasets were created, including combined multi-sensor data, and supervised classifications
were used to create land cover maps. The accuracy of the land cover maps was then assessed using
a field-based land cover dataset. The methods were tested in the UK which is a relatively cloudy area
of the world [21].

2. Materials and Methods

2.1. Study Area

The study area is in the UK and covers most of Wales (82.7%) and some bordering regions of
England (Figure 1). The area covers 200 × 100 km2 and corresponds to tiles T30UVC and T30UVD of S2.
The region is geographically diverse, with mountainous areas in the north and centre. It is characterised
by a maritime climate, with mild temperatures and rain on more than 200 days a year (https://www.
metoffice.gov.uk/), so is often cloudy. The lowlands are dominated by grasslands dedicated to animal
grazing, with some cropland in the east and near the north coast. The main urban areas are located
in the south. Forested patches are abundant and distributed throughout the region. Semi-natural
lowland habitats, formed by heathlands, natural grasslands, and saltmarshes are dispersed and
fragmented, and they are mainly found in the coastal areas. Uplands are formed by a mosaic of
coniferous woodlands, bogs, heath, and semi-natural grasslands [22].
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2.2. Datasets

The datasets were created using images from three satellites: L8, S2, and S1. L8 and S2 carry
optical sensors and are the most common current data sources for medium–high resolution land cover
mapping, while S1 carries a radar instrument (Table 1).

Table 1. The main features of the sensors used in this study.

Landsat 8 Sentinel-2 Sentinel-1

Sensor (type) OLI (optical) MSI (optical) C-SAR (radar)

Spatial resolution (m) 15 */30/100 * 10/20/60 * 5 **

Number of bands (used) 11 (7) 12 (9) 1

Spectral bands (µm)

0.435–0.451,
0.452−0.512,
0.533–0.590,
0.636–0.673,
0.851−0.879,
1.566–1.651,

10.60–11.19 *,
11.50–12.51,
2.107–2.294,

0.503–0.676 *,
1.363–1.384 *

0.449–0.545 *,
0.458–0.523,
0.543–0.578,
0.650−0.680,
0.698–0.713,
0.733−0.748,
0.773–0.793,
0.785−0.899,

0.855−0.875 *,
0.932−0.958 *,
1.338−1.414 *,
1.565−1.655,
2.100−2.280

Repeat Frequency (days) 16 10 12

Swath (km) 180 290 80 **

Polarization Not Applicable Not Applicable Dual (HH + HV, VV + VH) **

* Not used in this study; ** Strip Map Mode (used in this study).

Data from October 2016 to September 2017 were used. Data spanning the course of one year
is ideal for the identification of land cover types that have seasonality patterns, such as agricultural
crops, while also allowing for the analysis of medium-term land cover change [23]. All datasets, with
the exception of the “two-date composite” datasets, were created by the temporal aggregation of
optical or radar data across different time intervals. For example, a one-interval dataset aggregated the
data taken over the whole year into one image, while a two-interval dataset aggregated the data into
two images, representing the six-month winter/summer season split, and so on (Figure 2). Datasets
with a higher number of intervals aggregated the data across smaller time intervals of equal length.
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The image pre-processing (see the details for each dataset in the following sections) and the
aggregation of the data across time intervals was performed using GEE [17], except in the case of
the “two-date composite” datasets. For optical data (L8 and S2), automatic cloud and cloud shadow
masking methods were used. Cloud-masking creates gaps with no-data in different locations for
different image dates. This means that the temporal aggregation will be performed using a varying
number of images (dates) for different pixels. In order to assess the effect of cloud gaps on temporal
aggregations, maps and histograms were created representing the amount of cloud-free pixels for
different time intervals.

All images were resampled to 30 metres to match the original spatial resolution of L8, which
offers the coarsest resolution of the sensors used. Doing so minimises the effect of spatial resolution on
the final classification accuracies, thus simplifying the comparison between datasets. Additionally,
elevation, aspect, and slope bands were added to the datasets to increase the classification accuracy [24].
The datasets were divided according to the sensor or processing procedure. A summary of the datasets
main features can be seen in Table 2. The acquisition dates of every image used for the temporal
aggregations can be found in Supplementary Material S1.

Table 2. The list of datasets showing data inputs, the temporal aggregation method, and the number of
intervals through the year. 1 denotes automatic cloud mask.

Type Name Sensor Bands Metric Intervals

Landsat 8 l8_med2 L8 B1-7 median 2
l8_mea2 L8 B1-7 mean 2
l8_var2 L8 B1-7 median and variance 2
l8_med1 L8 B1-7 median 1
l8_mea1 L8 B1-7 mean 1
l8_var1 L8 B1-7 median and variance 1

Indices ndvi_med2 L8 NDVI median 2
ndvi_med1 L8 NDVI median 1
ndvi_var1 L8 NDVI median and variance 1
ndvi_mea1 L8 NDVI mean 1
ndmi_var1 L8 NDVI/NDMI median and variance 1
ndmi_med2 L8 NDVI/NDMI median 2
ndwi_var1 L8 NDVI/NDWI median and variance 1
ndwi_med2 L8 NDVI/NDWI median 2

Sentinel 2 s2_med1 S2 B2-8,11,12 median 1
s2_var1 S2 B2-8,11,12 median and variance 1
s2_med2 S2 B2-8,11,12 median 2
s2_var2 S2 B2-8,11,12 median and variance 2
s2_mea2 S2 B2-8,11,12 mean 2
s2_med3 S2 B2-8,11,12 median 3
s2_med4 S2 B2-8,11,12 median 4

Sentinel 1 s1_med1 S1 VV,VH,(VV-VH) median 1
s1_med2 S1 VV,VH,(VV-VH) median 2
s1_med3 S1 VV,VH,(VV-VH) median 3
s1_med4 S1 VV,VH,(VV-VH) median 4
s1_med6 S1 VV,VH,(VV-VH) median 6
s1_med12 S1 VV,VH,(VV-VH) median 12

Combined s1_s2 S1; S2 VV,VH,(VV-VH);
B2-8,11,12 median 12; 2

s2_l8 S2; L8 B2-8,11,12; B1-7 median 2; 2

s1_s2_l8 S1; S2; L8 VV,VH,(VV-VH);
B2-8,11,12; B1-7 median 12; 2; 2

Two-date traditional S2 B2-8,11,12 reflectance 2
composite auto_cm 1 S2 B2-8,11,12 reflectance 2
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2.2.1. Landsat 8

L8 data were extracted from the USGS Landsat 8 Surface Reflectance Tier 1 dataset provided
by GEE. These data are derived from L8’s OLI/TIRS sensors and have been orthorectified and
atmospherically corrected to obtain surface reflectance. Bands one to seven, with an original spatial
resolution of 30 metres, were used in this study. An automatic cloud masking procedure was applied
using the C Function of Mask (CFMask; [25]) band included with the Landsat data.

Temporal aggregation was applied by calculating the mean, median, and variance of the
reflectance values across all the available images for a specified time interval. A single seven-band
image is, therefore, obtained for every interval for each aggregation function. One or two time intervals
(with lengths of 12 and six months, respectively) were used for the Landsat 8 datasets. Temporal
aggregation methods work best when there are sufficient cloud-free values for each pixel in the
time interval to get a representative value from the aggregation function. Intervals that are too short
should, therefore, be avoided for the aggregation function to work correctly. Based on the preliminary
cloud-cover analysis for Landsat, shorter intervals would have resulted in images with a large number
of no-data values or pixels with just a one cloud-free date. This would have increased the risk of using
cloud-contaminated data, as the cloud-masking methods do not always work perfectly [26]. In total,
six datasets were created using the mean, median, or a combination of median and variance for one or
two intervals within the space of a year (Table 2).

2.2.2. Indices

Three spectral indices, the NDVI [27], the Normalized Difference Moisture Index (NDMI; [28]),
and the Normalized Difference Water Index (NDWI; [29]), were used to create the “indices” datasets.
The NDVI is calculated using the red and near-infrared (NIR) bands, (ρNIR − ρRED)/(ρNIR + ρRED),
where ρ represents spectral reflectance and characterises the “greenness” of the surface. The NDMI is
calculated using the NIR and the mid-infrared (MIR) bands, (ρNIR − ρMIR)/(ρNIR + ρMIR) and identifies
the moisture content of soil and vegetation. The NDWI is calculated using the NIR and the green
bands, (ρGREEN − ρNIR)/(ρGREEN + ρNIR), and identifies water bodies. The first two indices are related
to the structure and cover of vegetation, and all three indices have been widely used in land cover
characterisation [23].

L8 data, atmospherically corrected and cloud masked as described in Section 2.2.1, were used
to derive the indices. The mean, median, and variance of the indices were calculated for either one
or two intervals. The temporally aggregated images using NDVI, or a combination of NDVI and
NDMI/NDWI, were used to create the datasets (Table 2).

2.2.3. Sentinel-2

Sentinel-2 data with level 1C processing [30] provided by GEE were used. These data have been
orthorectified and radio-corrected providing top-of-atmosphere reflectance values. Bands 2 to 8, 11,
and 12 were used with original spatial resolutions of 10 or 20 metres. An automatic cloud masking
procedure was applied using band QA60 of the S2 1C product, masking both opaque clouds and
cirrus clouds.

Following the same methodology as the two previous sections, the mean, median, and variance
of the S2 reflectance values were calculated for one, two, three, and four time intervals. Datasets
using three and four time intervals were included because despite not being comparable to Landsat 8
datasets (with a maximum of two intervals), they may give some insights into the effects of adding
additional time intervals onto the classification accuracies. These temporally aggregated images were
then combined and resampled to 30 metres to create several “Sentinel-2” datasets (Table 2).
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2.2.4. Sentinel-1

Radar data were analysed using the dual-polarised C-band data from the Synthetic Aperture
Radar (SAR) instrument carried by the S1A and S1B satellites. The level-1 Ground Range Detected
product (GRD, [31]) provided by GEE was used. The GRD images have been radiometrically
calibrated and orthorectified, and the terrain correction has been applied using SRTM30 [32]. Two
different polarisation modes were used: single co-polarisation with vertical transmit/receive (VV) and
dual-band co-polarisation with vertical transmit and horizontal receive (VH). An extra pre-processing
procedure, consisting of spatial filtering using a 7 × 7 Refined Lee speckle filter [33], was applied in
order to eliminate the “speckle noise” characteristic of radar images and to make them functional
for land cover detection at the spatial resolution used in this study. An extra band, VV-VH, was also
created using the difference between the two polarisation modes. A three-band composite image was
then created for each date, combining the three polarisation modes (VV, VH, and VV-VH), as this
combination has been reported as optimal for land cover characterisation [34].

Radar data is not affected by clouds, so a considerable number of gap-free images can be obtained
every month. However, radar data is affected by weather conditions (i.e., recent rainfall or wind) and
with S1A and S1B can produce large data sets, so temporal aggregation may still be a valuable tool.
For the Sentinel-1 datasets, the main focus was on analysing different numbers of time intervals for the
temporal aggregation. Temporally aggregated images using the median values were obtained for each
of the bands (VV, VH, and VV-VH), thus creating composites for one, two, four, six, and 12 intervals
across the year. All datasets were resampled to 30 metres (Table 2).

2.2.5. Multi-Sensor

A fourth type of dataset was created by combining the best single-sensor type datasets.
Three datasets were created by merging S2 with L8 data, S1 with S2 data, and S1 with S2 and
L8 data. The selection of the best dataset for each of the single-sensor types was done a posteriori,
once the classification accuracy had been estimated for the datasets in the previous sections
(Table 2). Misalignments between satellite images from different satellites were examined visually
by a comparison with easily identifiable ground locations and showed that spatial mismatches were
always less than one 30 metre pixel.

2.2.6. Two-Date Composite

One final type of dataset was created using single-date images but without applying temporal
aggregation techniques. Two relatively cloud-free S2 images were downloaded from the ESA Sentinel
Hub (https://scihub.copernicus.eu/): one winter image (5 January 2017) and one summer image
(17 June 2017). The images were obtained with a Level-1C pre-processing (orthorectified and
radio-corrected). Only bands one to eight, 11, and 12 were used. An atmospheric correction was
applied using the sen2cor algorithm [35] in the SNAP Toolbox. A terrain correction was then applied
using a Minnaert algorithm with a slope correction [36]. In this case, cloud-masking was manually
applied using visual interpretation. The two pre-processed images were combined into a two-date
composite and resampled to 30 metres. This use of summer and winter images to create a two-date
composite is the ”traditional” method used by the UK Land Cover Maps [37,38]. It is used in this paper
to provide a baseline accuracy against which to compare the other classifications and to determine
whether the temporal aggregations match the accuracy of existing “traditional” methods.

A second “two-date composite” dataset was created using the same two images but without any
extra pre-processing (Level-1C processing only). By doing so, the effects of the terrain correction and
manual cloud-masking on classification could also be evaluated.

https://scihub.copernicus.eu/
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2.3. Land Cover Classification

Land cover classifications were carried out for each dataset by applying a supervised classification.
Thirteen land cover classes were selected based on the UK Broad Habitat (BH; [39]) classification
(Table 3). Training areas were based on polygons that had been identified with the same BH in the UK
Land Cover Map 2000 (LCM2000; [37]) and 2007 (LCM2007; [38]), thus mimicking the classification
methodology used for the UK LCM2015 (Rowland et al., in prep.). In this way, only stable areas or
areas with a high probability of belonging to the assigned class can be selected. These areas were
complemented with manually added polygons for rarer classes or classes for which the LCM2000 and
LCM2007 were more inconsistent, such as coastal or semi-natural classes (e.g., fen). From the final set
of training polygons, 10,000 points were randomly selected for each land cover class and were used to
train a classification algorithm. A Random Forest (RF; [40]) classifier with 200 trees was trained and
applied to each dataset to create land cover classifications. Because the validation of the classifications
was performed by using an independent dataset, all training polygons were fed to the RF classifier,
leaving out one-third of the training data for each bootstrap sample. The RF training and classification
was implemented using the WEKA Data Mining Software [41].

Table 3. The definitions of land cover classes.

Land Cover Class Description Validation Data
Classes *

Broadleaf woodland Broadleaved tree species and mixed “Broadleaved, Mixed
woodland and Yew Woodland”

Coniferous woodland Coniferous tree species where they exceed 80% of the total cover “Coniferous Woodland”

Arable Arable, horticultural and ploughed land; annual leys,
rotational set-aside and fallow

“Arable and
Horticulture”

Grassland Managed grasslands and other semi-natural “Improved Grassland”
grasslands (grasses and herbs) on “Calcareous Grassland”

non acidic soils “Neutral Grassland”

Acid grassland Grasses and herbs on soils derived from acidic bedrock “Acid Grassland”

Bog and fen Wetlands with peat-forming vegetation “Bog”
such as bog, fen, fen meadows, rush pasture, swamp,

flushes and springs
“Fen, Marsh and

Swamp”

Heather Vegetation that has more than a 25% cover of species from
the heath family “Dwarf Shrub Heath”

Inland rock Natural and artificial exposed rock surfaces “Inland Rock”

Saltwater Sea waters “Saltwater”

Freshwater Lakes, pools, rivers and man-made waters “Freshwater”

Coastal Beaches, sand dunes, ledges, pools “Supralittoral Rock”

and exposed rock in the maritime zone
“Supralittoral Sediment”

“Littoral Rock”
“Littoral Sediment”

Saltmarsh Vegetated portions of intertidal mudflats; species adapted
to immersion by tides “Littoral Sediment” **

Built-up areas Urban and rural settlements “Built-up Areas and
Gardens”

* These classes are based on the UK Broad Habitats or Priority Habitats [39]. ** The Saltmarsh class is based on the
“Saltmarsh” UK Priority Habitat, which is included in the “Littoral Sediment” Broad Habitat.

2.4. Accuracy Assessment

The Glastir Monitoring and Evaluation Programme (GMEP; [42]) dataset was used for
an independent map validation. The GMEP is a field survey-based habitat and vegetation monitoring
programme which provides high-resolution georeferenced data of the Welsh countryside. Polygon
data for UK Broad Habitats, collected by the GMEP in 2013, 2014, 2015, and 2016 were used. Some BH
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were merged to match the 13 classes used in this study. National Forest Inventory (NFI; [43]) data from
2016 were used to filter broadleaved and coniferous woodland patches, which had been harvested
between the GMEP monitoring campaign and the acquisition of the satellite data. The GMEP data show
a general lack of saltmarsh and inland rock polygons. In order to fill this gap between the classifications
and the validation data, information on these two classes was extracted from the Natural Resources
Wales (NRW) Terrestrial Phase 1 Habitat Survey (hereafter referred to as the Phase 1 Survey; [44]).
The Phase 1 Survey is a semi-natural habitat map of Wales and is based on field surveys conducted
over the course of several decades. Despite the potentially large time gap between the creation of
Phase 1 Survey data and the dates of the satellite images used in this study, mismatches between the
classifications and the validation data in terms of the presence of saltmarsh and inland rock polygons
are unlikely to be due to changes in the land cover class, as these two classes are very stable over time.
To avoid areas of change, the additional validation polygons were also manually reviewed against
aerial photography.

The final set of validation polygons was buffered inwards by 30 metres to avoid selecting mixed
pixels at the object boundaries. A total of ten thousand points were randomly selected from the
validation set, and the differences between the validation data and the classifications were studied
using confusion matrices. The overall accuracy (OA) estimation and the kappa coefficient [45] were
used to compare the classification accuracy between datasets.

Finally, to understand the effects of the number of bands on the land cover predictions,
the classification accuracies were plotted against the number of satellite data bands. The datasets were
grouped by type, and a linear model with an adjusted R2 was calculated.

3. Results

3.1. Cloud Cover

For temporal aggregations, sufficient observations are required per interval to ensure a good
estimate. To evaluate this, the availability of cloud-free pixels during the year studied was estimated
for L8 and S2. In general, the S2 data showed a very low number of pixels with zero or one cloud-free
image(s) when using one or two time intervals, while L8 data showed more than 10% of pixels with
zero or one cloud-free image(s) when using two intervals.

The temporal aggregation over one year led to high numbers of cloud-free pixels throughout
the whole study area for the L8 and S2 satellites (Figure 3). Low values were observed for L8 for the
summer and winter time intervals. Values lower than four are observed in coastal regions during
summer and in central regions (corresponding to upland areas) during winter. Large areas with values
of two or less were found for the winter interval in the centre of the map. No clear geographical
patterns for low numbers of cloud-free images were found for S2. However, a triangular-shaped area
in the southeast presented lower values for both the single-interval map and the summer/winter maps.
This is because the study area is divided into two orbit paths of the S2 satellite, meaning that the date
and number of image acquisitions for these two regions differ. In this case, the eastern orbit shows
fewer cloud-free images, leading to the creation of this pattern.

All pixels had at least two cloud-free instances over the one-year interval for L8, with seven being
the most common value (Figure 4a). However, almost 10% of pixels had just one cloud-free instance
for the winter interval and about 10% of them had just two cloud-free values for summer. For S2,
there were no pixels with less than seven cloud-free values over the one-year interval, with 26 being
the most common value (Figure 4b). The winter interval did not present any pixels with less than four
cloud-free values, while less than 5% of pixels in the summer interval had less than three. A bimodal
shape was observed for the S2 histograms, which was due to the differences between the regions
falling into the different S2 orbit trajectories [7].
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3.2. Classification Accuracy

The classification accuracy of each dataset scenario was assessed using confusion matrices and
their derived accuracy indices. The confusion matrices can be found in Supplementary Material S2.
The two traditional-style two-date composites, which were not temporally aggregated, obtained the
highest classification accuracy, followed by the combined sensors datasets. The kappa index was very
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closely related to the overall accuracy (OA), meaning that datasets with a higher OA also obtained
higher kappa values. A summary of the accuracy results can be found in Figure 5.
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All of the “Landsat 8” datasets obtained very similar levels of accuracy, with the OA ranging from
68.6% to 70.8%. The most accurate “Landsat 8” dataset used the median and variance values taken
over two intervals. The datasets based on just the L8-derived indices obtained the lowest levels of
accuracy. The temporal aggregation over the mean or median values of NDVI obtained very similar
levels of accuracy, with the datasets using two intervals or a combination of median and variance over
one interval being the most accurate. The combination of NDVI with NDMI or NDWI obtained higher
levels of accuracy than the temporal aggregations using only NDVI, with the datasets using median
values over two time intervals being the most accurate (OA = 62.2%).

The OA of the “Sentinel-2” scenarios ranged between 69.4% and 73.3%. The most accurate
classification used median values calculated over three (OA = 72.9%) or four (OA = 73.3%) time
intervals. These were followed by the dataset created using median values over two intervals
(OA = 72.7%). Figure 6a shows this dataset and its classification for a region that presented cloudy
pixels on several image dates. This dataset was slightly more accurate than the equivalent dataset
created using the L8 data (OA = 70.8%). The OA of the “Sentinel-1” datasets increased with the number
of time intervals. The scenario that used mean values over 12 time intervals obtained the maximum
level of accuracy, with an OA of 69.0%, which was slightly below the most accurate scenarios of the
“Landsat 8” or “Sentinel-2” types.
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The classification accuracy of individual land cover classes was compared for the most accurate
Sentinel-1, Sentinel-2, and Landsat 8 classifications (Figure 7). Differences in the accuracy between
Sentinel-2 and Landsat 8 were less than 7% for all classes, except for inland rock. Arable, bog and
fen, inland rock, and sea water were slightly more accurately classified with the Landsat 8 dataset.
Sentinel-2 datasets obtained better accuracy than Sentinel-1 for all classes except for arable and fen and
bog. The higher frequency of the Sentinel-1 data may help to capture the phenology of arable lands,
while its capability to detect soil moisture may help with the detection of fen and bogs. Inland rock was
validated using only 12 points, due to its scarcity in the landscape, so slight changes in classifications
produce a high variability in accuracy between datasets for this class. Saltwater’s accurate detection
and its confusion with coastal classes is strongly dependent on the tidal state at the time of image
acquisition. However, inland rock and saltwater have relatively few validation points, so their accuracy
will not have a significant impact on the overall classification accuracies.

The “Combined” datasets obtained better accuracy results than any of the single-sensor datasets
using temporally aggregated data. The dataset that combined S1, S2, and L8 data obtained the highest
accuracy with a OA of 76.5%, followed by the scenario combining S1 and S2 data (OA = 75.4%).
The scenarios combining the two optical sensors, i.e., L8 and S2, obtained an appreciably lower level
of accuracy (OA = 72.8%) than the other two combined scenarios. The land cover classification map
using the S1/S2/L8 combined data—the most accurate temporally-aggregated scenario—can be seen
in Figure 8. Figure 9 shows this classification, together with the classification of the least accurate
scenario, as well as its discrepancies with the validation data.

Finally, the two traditional “two-date composite” datasets, which were based on non-temporally
aggregated data, obtained the highest accuracy. The area of these classifications were, however, smaller
than the rest of the classifications, as one of the satellite images covered only about 80% of the study
area. The dataset that used manual cloud-masking obtained the highest accuracy, with an OA of 77.9%,
although the dataset that used automatic cloud-masking was almost equal at 76.5%. Despite the fact
that both datasets obtained similar classification accuracies, the automatic cloud-masking failed to
identify large cloud patches in some regions (Figure 6b,c). This affected the classification of these
cloudy areas but, due to the quantity and distribution of the validation areas, were not enough to
substantially decrease the estimated overall classification accuracy.
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The effect on the overall accuracy of increasing the number of bands varied between the different
dataset types (Figure 10). The “Combined” and “Indices” datasets showed very high correlations
between the number of bands and the OA. The increase in OA for the “Indices” datasets was very acute.
However, the number of bands only ranged between one and four for this dataset type, while the range
for the rest of the datasets was at least 20 bands. The correlation with the “Sentinel-1” type dataset was
moderate, while correlations with the “Sentinel-2” and “Landsat 8” types were weak.Remote Sens. 2019, 11, x FOR PEER REVIEW  15 of 21 
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4. Discussion

One of the challenges in producing land cover maps of large areas is the inconsistency in the
number of cloud-free pixels available over a period of time. In this study, the differences in the number
of cloud-free images per pixel over a year were analysed to evaluate the effects on the temporal
aggregation of L8 and S2 data. For the data assessed in this study, to ensure at least one cloud-free
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pixel per time interval, a maximum of two intervals per year were possible with L8, while more than
two intervals could be used for Sentinel-2. This is due to Sentinel-2’s higher revisit frequency during
2016 (10 days against 16 days for L8). With the recent launch of Sentinel-2B, the revisit frequency of
both Sentinel-2A and 2B is expected to increase to an average of five days, with that number becoming
larger for higher latitudes [7]. Such high revisit frequencies could enable the creation of temporal
aggregations over at least five or six intervals per year. This will allow researchers to better characterise
the seasonality of certain land types and to use time-series analysis approaches [23]. Differences in
cloud-free coverage are also affected by the differences in satellite coverage, an issue that should be
considered for large areas. For the study area, Sentinel-2 data showed a different level of cloud-free
coverage for a large triangular region in the southeast, which corresponded to a different orbit path.
This could result in inconsistencies in accuracy [12], and it should be acknowledged when deciding
the length of the interval to be used for temporal aggregation or when evaluating the appropriateness
of gap-filling methodologies.

The highest OA for a temporally aggregated dataset was 76.5% (the dataset combining L8, S1, and
S2 data). Issues that may have the potential to decrease classification accuracy were detected with the
training data; they include the overestimation of certain widespread classes (i.e., acid grassland) and
the scarcity of training polygons for common upland classes (i.e., bog). The quality of the training data
is key to obtaining satisfactory classification results [46]. A large area of this image was covered with
uplands that are a complicated mix of habitats occurring in a complex mix of mosaics and gradual
transitions between different habitats. These habitats can be difficult for surveyors in the field to map
reliably and do not really conform to the idea of discrete patches of land cover implicit in mapping the
dominant land cover in the pixel [22].

Some studies that have applied innovative input-data approaches for land cover mapping have
obtained higher classification accuracies [47,48]. In general, most of those studies classified fewer
classes than our study or they used classes that have traditionally been easier to characterise from
remotely sensed data (i.e., forests or water). Inglada et al. [12], on the other hand, used interpolation
methods to create a land cover classification of France, characterising a wide variety of land cover
classes and obtaining kappa values ranging between 0.82 and 0.86. The main difficulty of comparing
the accuracies of these studies with those obtained in our study is that their validation data was
mainly based on the visual interpretation of remotely sensed data (satellite or aerial photography).
Gebhardt et al. [17] applied temporal aggregation methodologies to create a land cover map of Mexico
and obtained overall accuracies of up to 76% using ground-based validation data. Although the use
of stratified-sampled ground reference data for validation, as we do here, is not exempt from error,
it is considered a more accurate representation of the land surface and it can avoid the biases inherent
in validating against remotely sensed data in terms of spatial or thematic resolution [49]. In any case,
the aim of this study was to compare the accuracies of different input datasets. To do this, the training
samples and validation samples were kept constant for every dataset. Using stratified-sampled ground
data for validation was key for our purposes, as reliable data for rare land cover classes such as
different types of natural grasslands can be difficult to obtain accurately from remote sensed datasets.

The classification accuracies varied from 46% to 76.5%. The “Indices” datasets, which were based
on NDVI/NDMI/NDWI estimates, obtained the lowest levels of accuracy. The dataset that combined
NDVI and NDMI over two time intervals was the most accurate; however, its accuracy was much
lower than for the datasets using reflectance measurements. Although spectral indices have been
shown to be a simple and effective way of analysing time series of vegetation data [50] and may
improve the characterisation of the land cover when combined with other reflectance measures [51],
our indices alone did not obtain good results in terms of predicting a wide variety of land cover
classes. This is probably due to the fact that these indices considerably reduce the amount of spectral
information used to characterize land cover and that indices are mostly useful when combined with
reflectance bands. The “Sentinel-1” datasets obtained, on average, worse accuracies than the other
two optical sensors. However, the dataset that used 12 time intervals obtained almost the same level of
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accuracy as the most accurate L8-based classification. Previous studies have shown the potential of S1
to characterise certain land types, such as crops [52] or forests [53]. S1 has also shown good results
for the land cover mapping of heterogeneous landscapes [34]. However, this study showed how S1’s
capabilities for characterising land cover are principally based on its image frequency, as it is able to
use a considerable number of dates per year whilst maintaining a relatively low number of bands.
The temporal aggregation of S1 data might provide a good strategy for including frequent radar data
in classifications but without needing to include every image that can be acquired in a year.

The “Sentinel-2” datasets obtained higher accuracy than other single-sensor datasets with
a maximum OA of 73%, which was significantly higher than the most accurate “Landsat 8” dataset.
However, this S2-based dataset used four time intervals, while the L8 datasets used a maximum of
two intervals due to the lower numbers of available cloud-free pixels. The accuracy of the datasets
using two intervals did not differ between S2 and L8. It has to be noted that some authors have pointed
out the poor performance of the cloud mask used for S2 [54]. Additionally, the S2 data currently
available via GEE is not atmospherically corrected, whereas the L8 data is. These two limitations might
have affected the potential of S2 and its additional bands to outperform L8. We used the L8 and S2
data sets from GEE despite their differences in processing because one of our aims was to determine to
what extent pre-processing could be simplified by adopting workflows in GEE.

The “Combined” datasets, which used multi-sensor derived data, obtained the most accurate
classifications of all the temporally aggregated datasets. The combination of L8 and S2 data produced
lower levels of accuracy than those that combined optical and radar data (L8/S2 or L8/S2/S1).
Known co-registration problems between Landsat 8 and Sentinel-2 [55,56] could have lowered the
accuracy of the combined datasets. However, our methodology, avoiding boundaries between land
cover types for classification training and validation pixels, should reduce the effects of spatial
misalignment between images. The launch of the Harmonized Landsat and Sentinel Datasets [57]
should minimize this issue in the near future. Our results support findings from previous studies,
which have suggested the potential of combining optical and radar data to characterise and detect
changes in land cover [58–60].

The effect of the number of selected time intervals on classification accuracy was studied.
In general, a higher number of intervals resulted in a higher level of classification accuracy,
and two-interval datasets outperformed one-interval datasets that included variance measurements.
Increasing the number of intervals has a similar effect to increasing the number of single-date images
per year and helps to characterise the land cover, as certain classes have distinctive phenological
signatures that can be detected by the classification algorithm [61]. The accuracy obtained by the
“Sentinel-1” datasets increased linearly according to the number of time intervals. The temporal
aggregation of S1 data over a sufficient number of time intervals can help to improve the accuracy of
land cover classifications, especially when combined with optical data, while avoiding the necessity of
adding massive amounts of data.

A linear correlation between the number of bands and the classification accuracy was found for
some dataset types. Yu et al. [62] showed in their review that accuracy increased according to the
number of bands, especially if the datasets combined data from different sensors. This was also true
for this study, except in the case of the “Sentinel-2” and “Landsat 8” datasets, probably because some
of these datasets included variance data, which increased the number of bands without significantly
increasing the accuracy. Whether additional bands increase accuracy will depend on whether they
contain additional information, for example, by capturing a different point in time. The growth in
the availability of remote sensed data and processing platforms over the last few years is facilitating
the usage of larger volumes of data [5] and is, therefore, providing the potential for improving the
accuracy of land cover classifications. However, the selection of optimal input data is still important,
as the accuracy/data size trade-off has not disappeared. For example, GEE proved to be a great tool for
selecting, cloud-masking, stacking, and extracting big satellite datasets. However, GEE memory limits
on the size of arrays prevented the training of the RF algorithm with the large number of training
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samples and input bands assessed here. To counter this we created the input data stacks in GEE
and then exported them and processed them locally using established RF classification work flows.
Processing in GEE is also currently affected by the very different levels of pre-processing applied to
the data collections by the agencies providing the data. So the L8 data was atmospherically corrected
and had an established cloud-mask, whereas the S2 data was not atmospherically corrected and had
a cloud-mask that still has significant issues [54]. This complicates analyses between the capabilities of
different sensors and will make GEE unsuitable for some types of processing.

The highest levels of accuracy were obtained by datasets that used traditional non-temporally
aggregated two-date composites. The accuracy of the two-date composite with automatic
cloud-masking was not significantly lower than the manually cloud-masked one. The images for
these datasets were selected based on the low amount of cloud cover, and thus, the effects of poor
cloud-masking for the automatically cloud-masked composite did not significantly affect the accuracy,
as the quality of the classification was only affected in a relatively small area. Only the most accurate of
the temporally aggregated datasets, which combined optical and radar data, matched the accuracy of
the two-date composites. This highlights the quality of the methods that have underpinned the UK’s
Land Cover Map series to date. Some manual pre-processing tasks, such as manual cloud-masking
or the manual selection of cloud-free areas for gap-filling, can require large amounts of labour [63].
Adopting the temporal aggregation methods and automatic cloud-masking could help to reduce the
time needed to produce land cover maps of large areas, especially for regions for which the acquisition
of cloud-free images is particularly difficult. However, increased accuracy should not be presupposed
if these methods are used. For example, Senf et al. [10] found that data fusion matched the accuracy of
manually processed Landsat images, but a lower level of accuracy was obtained when there were not
enough cloud-free images available per year.

Approaches that use all available satellite data are also capable of dealing with the gaps and
capable of reducing cloud-masking inaccuracies and have produced promising results for land cover
mapping and the land cover change detection of large areas [20,64]. Non-aggregated datasets can be,
however, very difficult to manage, and most classification algorithms cannot handle the combination
of a large volume of training data, a large number of classes, and a high number of input bands,
even when using cloud-computing platforms. On the other hand, temporal aggregation maintains
reasonably small-sized data to feed the classification algorithms, while having the potential to reduce
the processing time needed for land cover mapping of large areas. However, an optimal choice of
satellite data and aggregation parameters are crucial to maintain the accuracy levels of the more
traditional, manually intensive approaches.

5. Conclusions

The recent availability of frequent satellite data and cloud computing platforms are stimulating
the emergence of new approaches for the land cover mapping of large areas. This paper has analysed
one of these approaches, i.e., the temporal aggregation of automatically pre-processed satellite
data, comparing it with traditional methods and studying the classification accuracy of different
temporally aggregated datasets. Temporal aggregation of all the available images, over the course of
one year, only matched the manually selected and processed two-date composite when an optimal
combination of optical and radar data was used. Combined datasets (S1/S2 or S1/S2/L8) outperformed
single-sensor datasets, while datasets based on spectral indices obtained the lowest levels of accuracy.
This study provides, to the best of our knowledge, the first formal comparison of the accuracy between
multi-sensor data and single-sensor data using S1, S2, and L8 data for land cover mapping, as well as
providing a wide range of combinations and parameters for the classification input data.

Cloud computing platforms such as GEE allow researchers to compensate for the lower quality of
automatic pre-processing methods by using larger amounts of satellite data. However, identifying the
optimal input datasets, in terms of the best combination of satellite data, temporal interval, and other
data aggregation parameters, are needed in order to match the accuracy of manually selected and
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processed image composites. While optimal satellite datasets might differ slightly for other regions and
land classes, our findings offer a framework for the comparison and selection of suitable temporally
aggregated data. Further work will be needed to compare temporal aggregation with other gap-filling
techniques, such as data interpolation or data fusion.
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