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Abstract: Refining raw disparity maps from different algorithms to exploit their complementary
advantages is still challenging. Uncertainty estimation and complex disparity relationships among
pixels limit the accuracy and robustness of existing methods and there is no standard method for
fusion of different kinds of depth data. In this paper, we introduce a new method to fuse disparity
maps from different sources, while incorporating supplementary information (intensity, gradient, etc.)
into a refiner network to better refine raw disparity inputs. A discriminator network classifies
disparities at different receptive fields and scales. Assuming a Markov Random Field for the
refined disparity map produces better estimates of the true disparity distribution. Both fully
supervised and semi-supervised versions of the algorithm are proposed. The approach includes
a more robust loss function to inpaint invalid disparity values and requires much less labeled
data to train in the semi-supervised learning mode. The algorithm can be generalized to fuse
depths from different kinds of depth sources. Experiments explored different fusion opportunities:
stereo-monocular fusion, stereo-ToF fusion and stereo-stereo fusion. The experiments show the
superiority of the proposed algorithm compared with the most recent algorithms on public synthetic
datasets (Scene Flow, SYNTH3, our synthetic garden dataset) and real datasets (Kitti2015 dataset and
Trimbot2020 Garden dataset).

Keywords: depth fusion; disparity fusion; stereo vision, monocular vision; time of flight

1. Introduction

With recent improvements in depth sensing devices, depth information is now easily accessible (In
a stereo camera pair depth and disparity are interchangeable measures: depth = focal _ length × baseline
/ disparity. When data is from a sensor like time of flight sensor, the depths can be converted into
disparities using a constant focal length and baseline). However, each sensor has its own advantages
and disadvantages, with the result that no algorithm can perform accurately and robustly in all
general scenes. For example, active illumination devices such as ToF (Time of Flight) sensors and
structured light cameras [1] estimate the depth information accurately regardless of the scene content
but struggle on low reflective surfaces or outdoors. Stereo vision algorithms [2–6] work better outdoors
and perform accurately on high texture areas but behave poorly in repetitive or textureless regions.
Monocular vision algorithms [7] work robustly in textureless areas but tend to produce blurry depth
edges. Thus, fusing multiple depth maps from different kinds of algorithms or devices and utilizing
their complementary strengths to get more accurate depth information is a valuable technique for
various applications.

Remote Sens. 2019, 11, 487; doi:10.3390/rs11050487 www.mdpi.com/journal/remotesensing

http://www.mdpi.com/journal/remotesensing
http://www.mdpi.com
https://orcid.org/0000-0002-6020-1141
https://orcid.org/0000-0001-6860-9371
http://www.mdpi.com/2072-4292/11/5/487?type=check_update&version=1
http://dx.doi.org/10.3390/rs11050487
http://www.mdpi.com/journal/remotesensing


Remote Sens. 2019, 11, 487 2 of 25

The traditional pipeline for the majority of the fusion algorithms [8–12] is: (1) estimate disparities
from the different sensors, (2) estimate associated confidence maps, and (3) apply a specific fusion
algorithm based on the confidence maps to get a refined disparity map. This approach has three
potential problems. Primarily, estimating the confidence maps for different sensors is a hard task
with limited robustness and accuracy. Second, estimating the disparity relationship among pixels
in a general scene is hard without prior knowledge. Finally, there is no common methodology for
different kinds of depth fusion, such as stereo-stereo fusion, monocular-stereo fusion and stereo-ToF
fusion. Thus, researchers have designed different methods for different fusion tasks. The recent fusion
method [13] based on end to end deep learning has provided a general solution to different kinds
of fusion but has limited accuracy and robustness, in part due to not exploiting other associated
information to help the network make judgments. It also did not exploit the disparity relationship
among pixels.

In this paper, an architecture similar to a Generative Adversarial Network (GAN) [14] (generator
is replaced by a refiner network without random noise input) is proposed to solve the three problems
listed above, by designing an efficient network structure and a robust object function. In addition to the
raw disparity maps the network input also includes other image information, i.e., the original intensity
and gradient images (see Figure 1), in order to facilitate the selection of a more accurate disparity
value from the input disparity images. This avoids having to design a manual confidence measure for
different sensors and allows a common methodology for different kinds of sensor. To preserve and
exploit the local information better, some successful ideas about local structure from Unet [15] and
Densenet [16] have been used. To help the network refine the disparity maps accurately and robustly a
novel objective function was designed. Gradient information is incorporated as a weight into the L1

distance to force the disparity values at the edges to get closer to the ground truth. A smoothness term
helps the network propagate the accurate disparity values at edges to adjacent areas, which inpaints
regions with invalid disparity values. The Wasserstein distance [17,18] replaced the Jensen-Shannon
divergence [14] for GAN loss to reduce training difficulties and avoid mode collapse. With the
discriminator network classifying input samples in different receptive fields and scales, the disparity
Markov Random Field in the refined disparity map gives a better estimate of the real distribution.

Our semi-supervised approach trains the discriminator network to produce the refined disparity
map using not only the labeled data but also the unlabeled data along with the ground truth of the
labeled data. It requires less labeled training data but still achieves accuracy similar to the proposed
fully-supervised method or better performance when using the same amount of labeled data with
additional unlabeled data compared with the supervised method, as shown in the experimental results.

Section 2 reviews key previous disparity fusion algorithms and also recent advances in GAN
networks. Section 3 presents the new fusion model including the objective function and network
structure. Section 4 presents the results of experiments conducted with synthetic and real data (Table 1)
for stereo-monocular fusion, stereo-ToF fusion and stereo-stereo fusion.

Contributions: We have:

1. Improved fusion accuracy by using a network that learns the disparity relationships among pixels
without any prior knowledge.

2. Reduced the labeled data requirement drastically by using the proposed semi-supervised strategy.
3. Increased robustness by fusing intensity and gradient information as well as depth data.
4. Proposed a common network methodology allowing different kinds of sensor fusion without

requiring detailed knowledge of the performance of each sensor.

2. Related Work

The approach of fusing depth maps from different sensors (e.g., stereo-ToF depth fusion) has
become popular. The majority of the fusion work [9–12] shares the same pipeline architecture, which
estimates the uncertainty of each pixel first and then refines the depth map based on those confidence
maps. A recent survey is in [8]. More recently, Dal Mutto et al. [9] used the IR frequency, etc., of a ToF
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sensor to estimate the depth map uncertainty and used the similarity of image patches in the stereo
images to estimate the confidence of pixels in the stereo depth map. Then a MAP-MRF framework
refined the depth map. Later, Marin et al. [10] also utilized sensor physical properties to estimate the
confidence for the ToF depth map and used an empirical model based on the global and local cost of
stereo matching to calculate the confidence map for the stereo vision sensor. The extended LC (Locally
Consistent) technique was used to fuse the depth maps based on each confidence map. To get a more
accurate confidence map for fusion, Agresti et al. [11] used a simple convolution neural network for
uncertainty estimation and then used the LC technique from [10] for the fusion. In addition to the work
in stereo-ToF fusion above, Facil et al. [12] used a weighted interpolation of depths from a monocular
vision sensor and a multi-view vision sensor based on the likelihood of each pixel’s contribution to the
depth value.

The above-mentioned approaches have two issues limiting the accuracy of the refined disparity
map: (1) Estimating the confidence map for each type of sensor accurately is hard and makes the
system unstable. (2) Accurately modeling the complex disparity relationship among neighboring
pixels in random scenes is challenging.

The other class of depth fusion methods is based on deep learning. The method proposed
here belongs to this class and we believe that it is the first to solve the two critical problems above
simultaneously. Some researchers [11,19] have estimated the confidence maps for different sensors with
deep learning methods and then incorporated the confidence as weights into the classical pipeline to
refine the disparity map. However, these methods treat the confidence maps as an intermediate result
and no one has trained the neural network to do the fusion from end to end directly and taken both the
depth and confidence information into account simultaneously. For example, Poggi and Mattoccia [13]
selected the best disparity value for each pixel from the several algorithms by formulating depth fusion
as a multi-labeling deep network classification problem. However, the method only used the disparity
maps from the sensors and neglected other associated image information (e.g., intensities, gradients).
The approach did not exploit the real disparity relationship among neighbouring pixels.

The recent development of the GAN methodology led to the foundation of the approach proposed
here. The GAN was first proposed by Goodfellow et al. [14], who trained two neural networks
(generator and discriminator) simultaneously to make the distribution of the output from the generator
approximate the real data distribution by a minimax two-player strategy. To control the data generation
process, Mirza and Osindero [20] conditioned the model on additional information. There are many
variants based on the initial GAN model as seen in the survey [21]. Some researchers [17,18] used the
Wasserstein distance to measure the distance between the model distribution and the real distribution,
which reduced the difficulty of training the GAN drastically. It also reduced mode collapse to some
extent. GANs have been applied to problems other than disparity fusion. For example, Isola et al. [22]
trained a GAN to translate between image domains which can be also used to transfer the initial
disparity maps from several sensors into a refined disparity map. However, the design proposed in [22]
neglects information useful for disparity fusion, which limits the accuracy of the refined disparity map.

In summary, there are previously developed methods for depth fusion based on both the
algorithmic pipeline and emerging deep network techniques. In this paper, we combine image
evidence as well as raw depth to give a more robust objective function. This is implemented in an
end-to-end architecture similar to a GAN. We are the first to our knowledge to use such structure to
learn the complex disparity relationship among pixels to improve depth fusion accuracy.

3. Methodology

First we introduce the proposed general framework for disparity fusion and then the new loss
functions in the supervised and semi-supervised methods. These functions will make adversarial
training simple and the refined disparity more accurate and robust. Finally, the end-to-end refiner
(Figure 2) and discriminator (Figure 3) network structure are presented.
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3.1. Framework

We develop a method that uses an adversarial network, which is similar to a GAN [14] but with
raw disparity maps, gradient and intensity information as inputs instead of random noise. The refiner
network R (similar to the generator G in [14]) is trained to produce a refined disparity which cannot be
classified as “fake” by the discriminator D. Simultaneously, the discriminator D is trained to become
better at distinguishing that the input from refiner R is fake and the input from the ground truth is real.
By adopting a minimax two-player game strategy, the two neural networks {R, D} make the output
distribution from the refiner network approximate the real data distribution. The full system diagram
is shown in Figure 1.

refined disparity

gradient

intensity

disp2

disp1

Input

Output

(a)

fake

gradient

intensity

disp2

disp1

refined disparity

Input Output

(b)

real
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real disparity

Input Output

(c)

Figure 1. Overview of Sdf-MAN. We train a refiner network R to map raw disparity maps (disp1,
disp2) from two input algorithms to the ground truth based on associated image information
(gradient, intensity). The refiner R tries to predict a refined disparity map close to the ground truth.
The discriminator D tries to discriminate whether its input is fake (refined disparity from R) or real
(real disparity from the ground truth). The refiner and discriminator can see both the supplementary
information and initial disparity inputs simultaneously. We can fuse any number of disparity inputs or
different information cues by concatenating them together directly as inputs. The two networks are
updated alternately. (a) Refiner: a network to refine initial disparity maps; (b) Negative examples: a
discriminator network with refined disparity inputs; (c) Positive examples: a discriminator network
with real disparity inputs.

3.2. Objective Function

To let the refiner produce a more accurate refined disparity map, the objective function is designed
as follows:
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(1) To encourage the disparity value of each pixel to approximate the ground truth and to avoid
blur at scene edges (such as occurs with the Monodepth method [7]), a gradient-based L1 distance
training loss is used, which applies a larger weight to the disparity values at the scene edges:

LL1(R) = E
x∼Preal ,x̃∼Pre f iner

[
exp(α|∇(Il)|) ||x− x̃||1

]
(1)

where R represents the refiner network. x is the ground truth and x̃ is the refined disparity map
from the refiner. Preal and Pre f iner represents the real disparity distribution from the ground truth and
fake disparity distribution produced by the refiner. ∇(Il) is the gradient of the left intensity image
in the scene because all the inputs and refined disparity map are from the left view. α ≥ 0 weights
the gradient. || • ||1 is the L1 distance. The goal is to encourage disparity estimates near image edges
(larger gradients) to get closer to the ground truth.

(2) A gradient-based smoothness term is added to propagate more reliable disparity values from
image edges to the other areas in the image under the assumption that the disparity of neighboring
pixels should be similar if their intensities are similar:

Lsm(R) = E
u∈x̃,v ∈N(u),x̃∼Pre f iner

[
exp(1− β|∇(Il)uv|) ||x̃u − x̃v||1

]
(2)

where x̃u is the disparity value of a pixel u in the refined disparity map x̃ from the refiner. x̃v is the
disparity value of a pixel v in the neighborhood N(u) of pixel u. ∇(Il)uv is the gradient from pixel
u to v in the left intensity image (the refined disparity map is produced on the left view). β ≥ 0 is
responsible for how close the disparities are if the intensities in the neighbourhood are similar.

(3) The underlying assumption in LL1(R) is that the disparity relationship among pixels is
independent. The disparity relationship in Lsm(R) is too simple to describe the real disparity
relationship among neighbours in the real situation. To help the refiner produce a disparity map whose
disparity Markov Random Field is closer to the real distribution, the proposed method inputs disparity
maps from the refiner and the ground truth into the discriminator, which outputs the probability of
the input samples being from the same distribution as the ground truth. This probability is then used
to update the refiner through its loss function. Instead of defining a global discriminator to classify
the whole disparity map, we define it to classify all local disparity patches separately because any
local disparity patch sampled from the refined disparity map should have similar statistics to the real
disparity patch. Thus, by making the discriminator output the probabilities in different receptive fields
or scales (In Figure 3, please refer to D1, D2, ..., D5), the refiner will be forced to make the disparity
distribution in the refined disparity map close to the real. In Equations (3) and (4) below, Di is the
probability at the ith scale that the input patch to the discriminator is from the real distribution at the
ith scale:

LJS−GAN(R, Di) = E
x∼Preal

[
log(Di(x))

]
+ E

x̃∼Pre f iner

[
log(1− Di(x̃))

]
(3)

To avoid JS−GAN mode collapse during training and alleviate other training difficulties, we have
also investigated replacing LJS−GAN(R, Di) with the improved WGAN loss function [18]. λ is the
penalty coefficient (We set it 0.0001 for all the experiments in this paper) and x̂ are the random samples
(For more details, please read [18]):

LWGAN(R, Di) = E
x̃∼Pre f iner

[
Di(x̃)

]
− E

x∼Preal

[
Di(x)

]
+ λ E

x̂∼Px̂

[
(||∇x̂Di(x̂)||2 − 1)2

]
(4)

The experiments explored the difference in performance of these two GAN loss functions. We let
LGAN(R, Di) be either LJS−GAN(R, Di) or LWGAN(R, Di) in the following context. The difference of
performance with both the single scale and multiple scales will also be explored.

(4) By inputting only the refined disparity map and its corresponding ground truth into the
discriminator simultaneously in each step during training, the discriminator is trained in a fully
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supervised manner considering whether the input disparity maps are the same. In semi-supervised
mode, we still feed the refined disparity map and its corresponding ground truth into the discriminator
for the labeled data. But for the unlabeled data, we feed the refined disparity map of the unlabeled data
and random samples from a small ground truth dataset simultaneously. By doing this, the discriminator
will be taught to classify the input samples based on the disparity Markov Random Field. Then, in turn,
the refiner will be trained to produce a disparity Markov Random Field in the refined disparity map
that is closer to the real case.

(5) The combined loss function in the fully supervised learning approach is:

L(R, D) = θ1LLd
L1
(R) + θ2LLd

sm(R) + θ3

M

∑
i=1
LLd

GAN(R, Di) (5)

where M is the number of the scales. θ1, θ2, θ3 are the weights for the different loss terms. In the
fully supervised learning approach (See Equation (5)), we only feed the labeled data (denoted by Ld).
In the semi-supervised learning (See Equation (6)), in each iteration, we feed one batch of labeled
data (denoted by Ld) and one batch of unlabeled data (denoted by Ud) simultaneously. As for the
labeled data Ld, we calculate its L1 loss (denoted by LLd

L1
), smoothness loss (denoted by LLd

sm), and GAN
loss (denoted by LLd

GAN). The input to the discriminator is the refined disparity map (denoted by
Fake1) and corresponding ground truth (denoted by Real1). Thus, the GAN loss for the labeled data
Ld is calculated using Fake1 and Real1. As for the unlabeled data Ud, we only calculate its GAN loss
(LUd

GAN) and neglect the other loss terms. The unlabeled data gets its refined disparity map (denoted by
Fake2) from the refiner. Then feed Real1 and Fake2 into the discriminator to get the GAN loss for the
unlabeled data. As our experiment results show, this approach allows the use of much less labeled data
(expensive) in a semi-supervised method (Equation (6)) to achieve similar performance to the fully
supervised method (Equation (5)) or better performance when using the same amount of labeled data
with additional unlabeled data compared with the supervised method. The combined loss function in
the semi-supervised method is:

L(R, D) = θ1LLd
L1
(R) + θ2LLd

sm(R) +
θ3

2

( M

∑
i=1
LLd

GAN(R, Di) +
M

∑
i=1
LUd

GAN(R, Di)
)

(6)

3.3. Network Architectures

We adopt a fully convolutional neural network [23] and also the partial architectures
from [16,22,24] are adapted here for the refiner and discriminator. The refiner and discriminator
use dense blocks to increase local non-linearity. Transition layers change the size of the feature maps to
reduce the time and space complexity [16]. In each dense block and transition layer, modules of the
form ReLu-BatchNorm-convolution are used. We use two modules in the refiner and four modules in
the discriminator in each dense block, where the filter size is 3 × 3 and stride is 1. The growth rate k
for each dense block is dynamic (unlike [16]). In each transition layer, we only use one module, where
the filter size is 4 × 4 and the stride is 2 (except that in Tran.3 of the discriminator the stride is 1).

Figure 2 shows the main architecture of the refiner, where c1 initial disparity inputs (the
experiments below use c1 = 2 for 2 disparity maps) and c2 pieces of information (the experiments
below use c2 = 2 for the left intensity image and a gradient of intensity image) are concatenated as
input into the generator. The batch size is b and input image resolution is 32m× 32n (m, n are integers).
lg is the number of the feature map channels after the first convolution. To reduce the computational
complexity and increase the extraction ability of local details, each dense block contains only 2 internal
layers (or modules above). Additionally, the skip connections [15] from the previous layers to the
latter layers preserve the local details in order not to lose information after the network bottleneck.
During training, a dropout strategy has been added into the layers in the refiner after the bottleneck to
avoid overfitting and we cancel the dropout part during test to produce a determined result.
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Figure 2. This figure shows some important hyperparameters and the refiner architecture configuration.
Please refer to Table 2 for the specific values in each experiment. Tip: Readers can deepen the refiner by
symmetrically adding more dense blocks and deconvolution layer by themselves according to their
own needs.

Figure 3 is for the discriminator. The discriminator will only be used during training and
abandoned during testing. Thus, the architecture of the discriminator will only influence the
computational costs during training. The initial raw disparity maps, information and real or refined
disparity maps are concatenated and fed into the discriminator. Each dense block contains 4 internal
layers (or modules above). The sigmoid function outputs the probability map (Di, i = 1, 2, ..., 5) that
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the local disparity patch is real or fake at different scales to force the Markov Random Field of the
refined disparity map to get closer to the real distribution at different receptive field sizes.
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Figure 3. This figure shows some important hyperparameters and the discriminator architecture
configuration. Please refer to Table 2 for the specific values in each experiment.
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4. Experimental Evaluation

The network is implemented using TensorFlow [25] and trained & tested using an Intel Core
i7-7820HK processor (quad-core, 8 MB cache, up to 4.4 GHz) and Nvidia Geforce GTX 1080Ti.
First, an ablation study with initial raw disparity inputs ([3,4]) is conducted using a synthetic
garden dataset to analyze the influence of each factor in the energy function and the objective
function. Secondly, three groups of experiments for three fusion tasks (monocular-stereo, stereo-ToF,
stereo-stereo) show the robustness, accuracy and generality of the proposed algorithm using synthetic
datasets (SYNTH3 [11], Scene Flow [4], our synthetic garden dataset (They are not available to the
public currently)) and real datasets (Kitti2015 [26] dataset, Trimbot2020 Garden datasets (For more
description, see Appendix A)). A brief description of datasets (In the semi-supervised method, as for
each labelled training sample, we use it with its ground truth in the supervised part. We also use it
without its ground truth in the unsupervised part) in the paper is shown in Table 1. All the results
show the proposed algorithm’s superiority compared with the state-of-art or classical depth acquisition
algorithms ([2–7]), the state-of-art stereo-stereo fusion algorithms ([13]), the state-of-art stereo-ToF
fusion algorithm [10,11], and the state-of-art image style transfer algorithm [22].

Table 1. A Brief Description of Datasets in This Paper.

Supervised Semi-Supervised

Dataset Labeled Training Samples Test Samples Training Samples Test Samples

Synthetic Garden 4600 421 4600 (labeled) 421
Scene Flow 6000 1460 600 (labeled) + 5400 (unlabeled) 1460

SYNTH3 40 15 40 (labeled) 15
Kitti2015 150 50 None None

Trimbot2020 Garden 1000 250 1000 (labeled) 250

In the following experiments, the inputs to the neural network were first scaled to 32m× 32n and
normalized to [−1, 1]. After that, the input was flipped vertically with a 50% chance to double the
number of training samples. Weights of all the neurons were initialized from a Gaussian distribution
(standard deviation 0.02, mean 0). We trained all the models in all the experiments with a batch
size of 4 in the supervised and semi-supervised method, using Adam [27] with a momentum of 0.5.
The learning rate is changed from 0.005 to 0.0001 gradually. The method in [14] is used to optimize
the refiner network and discriminator network by alternating between one step on the discriminator
and then one step on the refiner. We set the parameters θ1, θ2, θ3 in Equation (5) or Equation (6) to
make those terms contribute differently to the energy function in the training process. We used the L1

distance between the estimated image and ground truth as the error. The unit is pixel. For more details
about the network settings and computational complexity, please see Table 2. To highlight the real test,
the network is so fast that it can run the disparity fusion (e.g., up to 384 × 1248 pixels on Kitti2015
datasets) directly at 90 fps without any cropping (e.g., DSF [13] used samples with 9 × 9 pixels) or
down-sampling.
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Table 2. Computation Time and Parameter Settings.

Ablation Study with Synthetic Garden Dataset

Para. Test time b 32m 32n c1 c2 lg ld θ1 θ2 θ3 α β
Value 0.007 (s/frame) 4 480 640 2 2 12 12 395 5 1 1 650

Stereo-Monocular Fusion with Synthetic Scene Flow Dataset [11]

Para. Test time b 32m 32n c1 c2 lg ld θ1 θ2 θ3 α β
Value 0.042 (s/frame) 4 256 256 2 2 64 64 199 1 1 0.5 100

Stereo-ToF Fusion with Synthetic SYNTH3 Dataset [11]

Para. Test time b 32m 32n c1 c2 lg ld θ1 θ2 θ3 α β
Value 0.012 (s/frame) 4 544 960 2 2 16 16 395 5 1 1 1–1.3K

Stereo-stereo Fusion with Real Kitti2015 Dataset [26]

Para. Test time b 32m 32n c1 c2 lg ld θ1 θ2 θ3 α β
Value 0.011 (s/frame) 4 384 1280 2 2 16 16 1 1 1 1 1–2K

Stereo-stereo Fusion with Real Trimbot2020 Garden Dataset

Para. Test time b 32m 32n c1 c2 lg ld θ1 θ2 θ3 α β
Value 0.008 (s/frame) 4 480 768 2 2 12 12 395 5 1 1 1–1.3K

4.1. Ablation Study

This subsection shows the effectiveness of the loss function design in Section 4.1.1 and the
influence of each factor in the final loss function in Section 4.1.2. All the experiments in this subsection
are conducted on our synthetic garden dataset (The performance demo on the synthetic garden dataset:
https://youtu.be/OqTj6h0QwUw). The synthetic garden dataset contains 4600 training samples and
421 test samples under outdoor environments. Each sample has one pair of rectified stereo images
and dense ground truth with resolution 480 × 640 (height × width) pixels. The reason why we use
a synthetic dataset is that the real dataset (e.g., Kitti2015) does not have dense ground truth, which
will influence the evaluation of the network. We used Dispnet [4] and FPGA-stereo [3] to generate the
two input disparity images. The authors of [3,4] helped us get the best performance on the dataset
as the input to the network. As for each model, we trained it for 100 epochs and it takes 20 h or so.
The inference is fast (about 142 frames per second ) for the 480 × 640 (Height ×Width) resolution
input. One qualitative example is shown in Figure 4 from Section 4.1.1.
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Figure 4. Cont.

https://youtu.be/OqTj6h0QwUw
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Figure 4. We fuse two initial raw disparity inputs (c,d) to get a refined disparity map (e,f) using our
Supervised and Semi method on the synthetic garden dataset. (a) is the ground truth and (b) is the
corresponding scene. Many, but not all, pixels from the fused result are closer to ground truth than the
original inputs. (a) Ground Truth; (b) Scene; (c) FPGA Stereo [3]; (d) Dispnet [4]; (e) Our Supervised;
(f) Our Semi.

4.1.1. Loss Function Design

We aimed at testing the effectiveness of the objective function design from Section 3.2. Table 3
defines different combinations of the strategies that were evaluated, based on the objective functions
defined in Section 3.2. The default network settings and some important parameters in this group of
experiments, please see “Ablation Study” in Table 2.

Table 3. Model definition.

Model Name Combination

Supervised WGAN (4) + multiscale (M = 5) + supervised (5)
Semi WGAN (4) + multiscale (M = 5) + semi-supervised (6)

Monoscale WGAN (4) + monoscale (M = 1) + supervised (5)
JS-GAN JS-GAN (3) + multiscale (M = 5) + supervised (5)

Table 4 shows the performance of each model. We used the same amount of data (4600 labeled
samples) for the supervised and semi-supervised network training (where the semi-supervised training
is augmented with the appropriate number of refined disparity maps and random ground truth).
The test data used 421 samples. The supervised and semi-supervised methods achieved similar
good performance (Semi got the smallest error at 2.84 pixels). The error of the refined disparity map
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output by each network is much lower than the error of the input disparity maps. In the remaining
experiments, only the multi-scale supervised and semi-supervised networks are used with WGAN.

Table 4. Mean absolute disparity error of each model on Synthetic Garden dataset (421 test samples).

Inputs Experimental Outputs

Experiment FPGA Stereo [3] DispNet [4] JS-GAN Monoscale Supervised Semi

Error [px] 11.41 6.28 4.40 3.40 3.10 2.84

4.1.2. Influence of Each Term in Loss Function

In this part, we will change one of the following factors (θ1, θ2, θ3, α, β) in our energy function to see
the influence of each cue in Equation (5). The Baseline method in this part is also the Supervised model
from Section 4.1.1. The performance results are listed in Table 5. We can see LL1(R) in Equation (1)
has the largest influence (corresponding to θ1) and then the gradient information in Equation (1)
(corresponding to α = 0). After that, the smoothing term in Equation (2) (corresponding to θ2) and β

have less influence compared with the former factors. The Loss term in LGAN (corresponding to θ3)
has the least influence.

Table 5. Ablation Study on Each Cue Using the Supervised Model.

Inputs Experimental Outputs

Experiment FPGA Stereo [3] DispNet [4] θ1 = 0 θ2 = 0 θ3 = 0 α = 0 β = 1 Baseline

Error [px] 11.41 6.28 298.2 3.46 3.25 3.48 3.37 3.10

4.2. Robustness and Accuracy Test

Given that the proposed network does not need confidence values from the specific
sensors, the network architecture can be generalized to fusion tasks using different data sources.
Thus, the following experiments will input different quality disparity maps from different sources to
test the robustness and accuracy of the proposed algorithm.

4.2.1. Stereo-Monocular Fusion

Monocular depth estimation algorithms are usually less accurate than stereo vision algorithms.
Stereo vision algorithm PLSM [5] and monocular vision algorithm Monodepth [7] were used to input
the relevant initial disparity maps. Monodepth was retrained on the Scene Flow dataset (Flying A)
with 50 epochs to get its left disparity maps. PLSM with semi-global matching computed the left
disparity map without refinement. The default network settings and some important parameters of
the networks in this part can be seen in “Stereo-Monocular Fusion” in Table 2. 6000 labeled samples
(80%) in Scene Flow (Flying A) were used for the supervised training and 600 labeled samples (8%) +
5400 unlabeled samples for the semi-supervised training. Another 1460 samples (20%) were used for
testing. DSF [13] is a recent high performance fusion algorithm that we compare with. Pix2pix [22]
was set up to use PLSM + Monodepth as inputs and the fused disparity map as output. The reason
to choose Pix2pix as a comparison algorithm is that disparity fusion can be seen as equivalent to an
image style transfer and Pix2pix is a famous image style transfer algorithm. DSF was retrained for
10 epochs (about 5 h per epoch) and Pix2pix [22] was retrained for 100 epochs (0.15 h per epoch).

The relevant error of each algorithm is shown in Table 6. The supervised method (Num = 6000) and
the semi-supervised method (Num = 600) achieve similar top performances while the semi-supervised
method uses much less labeled training data (9 times less than the supervised method). Pix2pix behaves
badly and we neglect it in the following experiments. A qualitative result comparison can be seen in
Figure 5.
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Table 6. Mean absolute disparity error of stereo-monocular fusion on Scene Flow (1460 test samples).

Inputs Comparison Our Fused

Training Data PLSM [5] Monodepth [7] DSF [13] Pix2pix [22] Supervised Semi

Num = 600 2.41 px 3.30 px 2.00 px 2.91 px 1.95 px 1.60 px
Num = 6000 2.41 px 3.30 px 1.87 px 2.65 px 1.55 px NA

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 5. Cont.
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(i) (j)

Figure 5. A qualitative result with inputs from PLSM [5] and Monodepth [7] in stereo-monocular fusion.
The lighter pixels represent bigger disparity errors in figure (d,f,h,j). (a) Ground Truth; (b) Color image;
(c) PLSM [5]; (d) PLSM error; (e) Monodepth [7]; (f) Monodepth error; (g) Supervised 1; (h) Supervised
1 error; (i) semi 2; (j) Semi 2 error.

4.2.2. Stereo-ToF Fusion

The default network settings and some important parameters of the networks in this part, can be
seen in “Stereo-ToF Fusion” in Table 2. The network was trained on the SYNTH3 dataset (40 training
and 15 test samples with resolution 540 × 960 pixels). Semi-global matching from OpenCV was used
to get the stereo disparity map, with the point-wise Birchfield-Tomasi metric, 7 × 7-pixel window
size and 8-path optimization. The initial ToF depth map was projected onto the right stereo camera
image plane and up-sampled and converted to the disparity map. Limited by the very small number
of training samples, the proposed networks do not reach their best performance. But, compared with
the input disparity maps, the proposed methods perform slightly better (See Table 7). The experiment
results for SGM stereo, ToF, LC [10] and DLF [11] are from the paper [11] because we used the same
dataset as [11] from their website (http://lttm.dei.unipd.it/paper_data/deepfusion/). The proposed
Supervised method performs less well because of the insufficient number of training samples.
However, the proposed Semi method ranks first among all of the stereo-ToF fusion algorithms.
One qualitative result is shown in Figure 6.

Table 7. Mean absolute disparity error of ToF-stereo fusion on SYNTH3 (15 test samples).

Inputs Comparison Our Fused

Training Data SGMStereo ToF LC [10] DLF [11] Supervised Semi

Num = 40 3.73 px 2.19 px 2.07 px 2.06 px 2.18 px 2.02 px
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Figure 6. Cont.

http://lttm.dei.unipd.it/paper_data/deepfusion/
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Figure 6. One qualitative result for ToF-stereo fusion with many invalid pixels input. The inputs are
from ToF and disparity calculation algorithm using SGM in OpenCV. The lighter pixels in (d,f,h,j)
represent larger disparity error. (a) Ground Truth; (b) Color image; (c) ToF; (d) ToF error; (e) SGM
OpenCV; (f) SGM error; (g) Supervised 1; (h) Supervised error; (i) Semi 2; (j) Semi 2 error.

4.2.3. Stereo-Stereo Fusion

Performance on Kitti2015 Dataset

We tested the proposed network on the real Kitti2015 dataset, which used a Velodyne HDL-64E
Lidar scanner to get the sparse ground truth and a 1242 × 375 resolution stereo camera to get stereo
image pairs. The initial training dataset contains 200 labeled samples. We used 50 samples from
‘000000_10.png’ to ‘000049_10.png’ in the Kitti2015 training dataset as our test dataset. We used the
other 150 samples as our training set for fine-tuning. By flipping the training samples vertically,
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we doubled the number of training samples. We used the state-of-art stereo vision algorithm
PSMNet [2] as one of our inputs. We used their released pre-trained model (PSMNet [2]: https:
//github.com/JiaRenChang/PSMNet) on the Kitti2015 dataset to get the disparity maps. A traditional
stereo vision algorithm SGM [6] is used as the second input to the network. We set their parameters
to produce more reliable but sparse disparity maps. More specifically, we used the implementation
(‘disparity’ function) from Matlab2016b. The relevant parameters are: ‘DisparityRange’ [0, 160],
‘BlockSize’ 5, ‘ContrastThreshold’ 0.99, ‘UniquenessThreshold’ 70, ‘DistanceThreshold’ 2. The settings
of the neural network are shown in “Stereo-stereo Fusion with Real Kitti2015 Dataset” in Table 2.
We compared the algorithm with the state-of-art technique [13] in stereo-stereo fusion and also stereo
vision inputs [2,6]. As the ground truth of Kitti2015 is sparse, we do not compare the semi-supervised
method (which requires learning the disparity Markov Random Field). We trained our supervised
method on the synthetic garden dataset first and then fine-tuned the pre-trained model on the Kitti2015
dataset. We used 150 labeled samples from ‘00050_10.png’ to ‘000199_10.png’ in the initial training
dataset for the supervised method’s fine-tuning. The relevant results are shown in Table 8. The same
conclusion can be made as with the stereo-monocular and stereo-ToF fusion: the proposed method is
accurate and robust. An example result of stereo-stereo fusion is shown in Figure 7. We can see that the
proposed method compensates for the weaknesses of the inputs and refines the initial disparity maps
effectively. Compared with SGM [6] (0.78 pixels) (This is a more accurate disparity but is calculated
only using more reliable pixels. On average only 40% of the ground truth pixels are used. If we use all
the valid ground truth to calculate its error, it is 22.38 pixels), the fused results are much more dense
and accurate. Compared with PSMNet, the proposed method preserves the details better (e.g., tree,
sky), which are missing in the ground truth though. Our network can deal with the input (resolution:
384 × 1280) at 0.011 s/frame, which is real-time and very fast.

Table 8. Mean absolute disparity error of stereo-stereo fusion on Kitti2015 (50 test samples).

Inputs Comparison Our Fused

Training Data SGM [6] PSMNet [2] DSF [13] Supervised

Num = 150 0.78 px 1.22 px 1.20 px 1.09 px
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Figure 7. We trained our network to fuse the initial disparity maps (c,e) into a refined disparity map
(g) for the same scene (b) from the Kitti2015 dataset [26] using our supervised method. (a) is the
corresponding ground truth. (d,f,h) are the errors of (c,e,g). The lighter pixels have bigger disparity
error in (d,f,h). (a) Ground Truth; (b) Scene; (c) Input Disparity 1: SGM [6]; (d) Input Disparity 1
Error: SGM [6]; (e) Input Disparity 2: PSMNet [2]; (f) Input Disparity 2 Error: PSMNet [2]; (g) Refined
Disparity; (h) Refined Disparity Error.

Performance on Trimbot2020 Garden Dataset

We tested the proposed network on the real Trimbot2020 Garden dataset, which used a Leica
ScanStation P15 to capture a dense 3D Lidar point cloud of the whole real garden and then project it to
each camera view to get the dense ground truth disparity maps. A 480 × 752 resolution stereo camera
was used to get stereo image pairs. The Trimbot2020 Garden dataset contains 1000 labeled samples for
training and 250 labeled samples for testing. We trained the network on the synthetic garden dataset
first and fine-tuned the network on the real garden dataset. We used Dispnet [4] and FPGA-stereo [3]
as inputs. The authors of [3,4] helped us get the best performance on the real Trimbot2020 Garden
dataset as the input to the network. The settings of the network are shown in “Stereo-stereo Fusion
with Real Trimbot Garden Dataset” in Table 2. The demo in the real outdoors garden is available from
https://youtu.be/2yyoXSwCSeM.

The relevant error of each algorithm on valid pixels is shown in Table 9. The supervised method
and the semi-supervised method have achieved similar top performances compared with the rest.
A qualitative result comparison can be seen in Figure 8. The proposed network can deal with the input
(resolution: 480 × 768) at 125 fps, which is faster than real-time.

Table 9. Mean absolute disparity error of stereo-stereo fusion on Trimbot Garden Dataset
(270 test samples).

Inputs Comparison Our Fused

Training Data FPGA Stereo [3] Dispnet [4] DSF [13] Supervised Semi

Num = 1000 2.94 px 1.35 px 0.83 px 0.67 px 0.66 px

https://youtu.be/2yyoXSwCSeM
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Figure 8. Cont.
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Figure 8. One qualitative result for stereo-stereo fusion in real Trimbot2020 Garden Dataset. The lighter
pixels in (d,f,h,j) represent larger disparity error. (a) ground truth; (b) intensity image; (c) FPGA SGM;
(d) FPGA SGM error; (e) DispNet; (f) DispNet error; (g) Supervised 1; (h) error 1 (i) Semi 2; (j) error 2.

4.3. Sensitivity Analysis

All the following experiments are conducted on the Trimbot2020 Garden dataset using the same
settings with Performance on Trimbot2020 Garden Dataset in Section 4.2.3 except the control variables.
The sensitivity analysis is done for the parameter alpha in Equation (1), the number of scales M in
Equations (5) and (6), the number of feature maps for the refiner network and discriminator network
architectures lg = ld = L, and also the parameter momentum in the optimization algorithm Adam.

4.3.1. Alpha

Table 10 (corresponding to Figure 9) shows the performance change when alpha varies from 0.5
to 1.5 with an interval 0.25. Figure 9 shows the robustness of the proposed algorithm. When alpha = 1,
it achieves its best performance.

Table 10. Sensitivity Analysis (Alpha).

Alpha 0.5 0.75 1 1.25 1.5

Supervised 0.75 0.69 0.67 0.86 0.72
Semi 0.71 0.69 0.66 0.74 0.85

Figure 9. Sensitivity Analysis (Alpha).

4.3.2. The Number of Scales

Table 11 (corresponding to Figure 10) shows the performance change when the number of scales
M varies from 1 to 5 with an interval 1. Figure 10 shows that with the increment of the number of
scales, the error decrease gradually. Therefore we chose M = 5.
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Table 11. Sensitivity Analysis (M).

M 1 2 3 4 5

Supervised 0.87 0.81 0.74 0.69 0.67
Semi 0.80 0.80 0.79 0.74 0.66

Figure 10. Sensitivity Analysis (M).

4.3.3. The Number of Feature Maps

Table 12 (corresponding to Figure 11) shows the performance change when L varies from 6 to 18
with an interval 3. Figure 11 shows that with the increment of the number of feature maps’ channels,
the overall performance does not change too much but when L = 12 it performs best.

Table 12. Sensitivity Analysis (L).

L 6 9 12 15 18

Supervised 0.75 0.85 0.67 0.81 0.78
Semi 0.76 0.77 0.66 0.73 0.72

Figure 11. Sensitivity Analysis (L).

4.3.4. Momentum

As for the momentum in the Adam optimization algorithm, different momentum values are
used to redo the experiments again. The experimental results are shown in Table 13 and Figure 12.
Table 13 (corresponding to Figure 12) shows the performance change when momentum varies from
0.1 to 0.9 with an interval 0.1. Figure 12 shows that when momentum is bigger than 0.5, it achieves
better performance compared with below 0.5. When it is equal to 0.5, both the supervised and
semi-supervised methods achieve the best performance simultaneously.
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Table 13. Sensitivity Analysis (Momentum).

Momentum 0.1 0.3 0.5 0.7 0.9

Supervised 0.81 0.83 0.67 0.76 0.67
Semi 0.87 0.90 0.66 0.66 0.70

Figure 12. Sensitivity Analysis (Momentum).

4.3.5. Statistical Analysis

In the paper, for the experimental results above, we have done them once, because of the costs of
deep net retraining. To show the robustness and accuracy of the proposed method, we repeated the
experiments on the real Trimbot2020 datasets five times using the same settings. The corresponding
results are shown in Table 14. As can be seen, the proposed algorithms are significantly better than the
DSF algorithm, however it is less clear if there is a significant difference between the supervised and
semi-supervised performances.

Table 14. Statistical Analysis.

Repeated Experiment Statical Result

Experiment 1 2 3 4 5 Mean Std.

DSF 0.83 0.89 0.86 0.87 0.85 0.86 0.02
Supervised 0.73 0.77 0.67 0.70 0.72 0.72 0.04

Semi 0.67 0.71 0.66 0.76 0.71 0.70 0.04

5. Conclusions and Discussion

The paper has presented a method to refine disparity maps based on fusing the results from
multiple disparity calculation algorithms and other supplementary image information (e.g., intensity,
gradient). The proposed method can generalize to perform different fusion tasks and achieves better
accuracy compared with several recent fusion algorithms. It could potentially fuse multiple algorithms
(not only 2 algorithms as shown in this paper) by concatenating more initial disparity maps in the
network’s input but this has not been explored. The objective function and network architecture are
novel and effective. In addition, the proposed semi-supervised method greatly reduces the amount
of ground truth training data needed, while achieving comparable performance with the proposed
supervised method. The proposed semi-supervised method can achieve better performance when
using the same amount of labeled data as the supervised method plus the additional unlabeled data.
In the future, we plan to explore unsupervised disparity fusion with adversarial neural networks using
left-right intensity consistency between the two stereo vision cameras. Meanwhile, future exploration
on disparity fusion in object space (e.g., [28]) is considered. It will be interesting to compare the
disparity fusion in image space versus object space. Additionally, more datasets will be used to explore
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the generalization of the proposed method, such as using remote sensing datasets that are acquired by
Satellite or UAV sensors.
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Abbreviations

The following abbreviations are used in this manuscript:

ToF Time-of-Flight
GAN Generative Adversarial Network
MRF Markov Random Field
MAP-MRF Maximum a Posteriori-Markov Random Field

Appendix A. Description of Trimbot2020 Garden Dataset

We make use of the Trimbot Garden 2017 dataset used for the semantic reconstruction challenge
of the ICCV 2017 workshop ‘3D Reconstruction meets Semantics’ [29]. The dataset consists of a 3D
laser scan of the garden as well as multiple traversals of the robot through the garden (see Figure A1).
In addition to the challenge dataset (2 camera pairs), we included all 5 camera pairs (Figure A2),
obtaining total 1250 sample pairs. Robot poses for the traversals were recorded in the coordinate
system of the laser scanner using a Topcon laser tracker. The results were subsequently refined using
Structure-from-Motion [30]. The quantitative evaluation is performed only on a subset of pixels which
correspond to static non-ground areas (the grass on the ground surface yields noisy GT measurements
as well as other moving parts like tree branches).

The accuracy of stereo depth map estimates depends on the distance of the cameras to the scene,
with the uncertainty growing quadratically with the distance. In contrast, the uncertainty grows only
linearly in the disparity space (measured in pixels). As is common [31,32], we thus measured the
accuracy of the stereo algorithms by comparing their estimated disparity values with the ground truth
disparity values provided by the laser scanner.

http://trimbot2020.webhosting.rug.nl/
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Figure A1. Trimbot Garden 2017 GT dataset [29]. (Above): point cloud with color-encoded height.
(Below): semantic point cloud with trajectories (magenta line) and camera centers (yellow).
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Figure A2. Trimbot Garden 2017 GT dataset [29]. (Left): Pentagonal camera rig mounted on the robot
with five stereo pairs. (Right): Top view of camera rig with test set pairs (green field of veiw) and
training set pairs (yellow field of view).
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