
remote  
sensing

Article

30 m Resolution Global Annual Burned Area
Mapping Based on Landsat Images and
Google Earth Engine

Tengfei Long 1,2, Zhaoming Zhang 1,2,*, Guojin He 1,2,*, Weili Jiao 1,2, Chao Tang 1,3,
Bingfang Wu 1, Xiaomei Zhang 1,2, Guizhou Wang 1,2 and Ranyu Yin 1,3

1 Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China;
longtf@radi.ac.cn (T.L.); jiaowl@radi.ac.cn (W.J.); tangchao@radi.ac.cn (C.T.); wubf@radi.ac.cn (B.W.);
zhangxm@radi.ac.cn (X.Z.); wanggz01@radi.ac.cn (G.W.); yinry@radi.ac.cn (R.Y.)

2 Hainan Key Laboratory for Earth Observation, Sanya 572029, China
3 University of Chinese Academy of Sciences, Beijing 100049, China
* Correspondence: zhangzm@radi.ac.cn (Z.Z.); hegj@radi.ac.cn (G.H.)

Received: 17 January 2019; Accepted: 20 February 2019; Published: 27 February 2019
����������
�������

Abstract: Heretofore, global Burned Area (BA) products have only been available at coarse spatial
resolution, since most of the current global BA products are produced with the help of active fire
detection or dense time-series change analysis, which requires very high temporal resolution. In this
study, however, we focus on an automated global burned area mapping approach based on Landsat
images. By utilizing the huge catalog of satellite imagery, as well as the high-performance computing
capacity of Google Earth Engine, we propose an automated pipeline for generating 30-m resolution
global-scale annual burned area maps from time-series of Landsat images, and a novel 30-m resolution
Global annual Burned Area Map of 2015 (GABAM 2015) was released. All the available Landsat-8
images during 2014–2015 and various spectral indices were utilized to calculate the burned probability
of each pixel using random decision forests, which were globally trained with stratified (considering
both fire frequency and type of land cover) samples, and a seed-growing approach was conducted to
shape the final burned areas after several carefully-designed logical filters (NDVI filter, Normalized
Burned Ratio (NBR) filter, and temporal filter). GABAM 2015 consists of spatial extent of fires that
occurred during 2015 and not of fires that occurred in previous years. Cross-comparison with the
recent Fire_cci Version 5.0 BA product found a similar spatial distribution and a strong correlation
(R2 = 0.74) between the burned areas from the two products, although differences were found in
specific land cover categories (particularly in agriculture land). Preliminary global validation showed
the commission and omission errors of GABAM 2015 to be 13.17% and 30.13%, respectively.

Keywords: global burned area; Landsat, Google Earth Engine; time-series; temporal filtering

1. Introduction

Accurate and complete data of fire locations and Burned areas (BA) are important for a variety of
applications including quantifying trends and patterns of fire occurrence and assessing the impacts
of fires on a range of natural and social systems, e.g., simulating carbon emissions from biomass
burning [1]. Remotely-sensed satellite imagery has been widely used to generate burned area
products. Burned area products at the global scale using satellite images have been mostly based
on coarse spatial resolution data such as Advanced Very High Resolution Radiometer (AVHRR),
Geostationary Operational Environmental Satellite (GOES), VEGETATION, or Moderate Resolution
Imaging Spectroradiometer (MODIS) images. The main global burned area products include GBS
(8 km) [2], Global Burned Area 2000 (GBA2000, 1 km) [3], GLOBSCAR (1 km) [4], GlobCarbon (1 km) [5],
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L3JRC (1 km) [6], MCD45 (500 m) [7], Global Fire Emissions Database (GFED) (0.5 degree) [8], MCD64
(500 m) [9], and Fire_cci (250 m) [10].

The recently released Fire_cci product was produced based on MODIS images and has the highest
spatial resolution (250 m) of all the existing global BA products [1,11], and it can greatly support
global climate modeling at moderate resolution thanks to its promising results. However, owing to the
growing availability of satellite images of higher resolution, the requirement of BA products derived
from those images is also increasing as these products can provide more detailed perimeters of BA,
as well as small burned patches. For instance, imagery collected by the family of Landsat sensors is
useful and appropriate for monitoring the extent of BA and provides spatial and temporal resolutions
ideal for science and management applications. Landsat sensors can provide a longer temporal record
(from the 1970s until now) of burned area relative to existing global BA products and potentially
with increased accuracy and spatial detail in most areas on the Earth [12]. Great importance has been
attached to developing BA products based on Landsat data in the past 10 years [12–14]. Up to now,
there is no Landsat-based global BA product; however, some regional Landsat BA products have been
publicly released in recent years. Australia released its Fire Scars (AFS) products derived from all
available Landsat 5, 7, and 8 images using the time-series change detection technique [15]. Fire scars
are automatically detected and mapped using dense time-series of Landsat imagery acquired over the
period 1987–2015, and the AFS product only covers the state of Queensland, Australia. The Monitoring
Trends in Burn Severity (MTBS) project, sponsored by the Wildland Fire Leadership Council (WFLC),
provides consistent, 30-m resolution burn severity data and fire perimeters across all lands of the
United States from 1984–2015 (only fires larger than 200 ha in the eastern U.S. and 400 ha in the western
U.S. are mapped) [16]. MTBS products are generated based on the difference of the Normalized Burned
Ratio (NBR) calculated from pre-fire and post-fire images, in which the BA boundary is delineated
by on-screen interpretation, and the process of developing a categorical burn severity product is
subjective and dependent on analyst interpretation. The Burned Area Essential Climate Variable
(BAECV), developed by the U.S. Geological Survey (USGS), produces Landsat-derived BA products
across the conterminous United States (CONUS) from 1984–2015, and its products were released in
April 2017 [14]. The main differences between MTBS and BAECV is that the BAECV products are
automatically generated based on all available Landsat images.

In summary, global BA products are only available at coarse spatial resolution, while 30-m
resolution burned area products are limited to specific regions. The majority of coarse spatial
resolution algorithms developed to produce global BA products use a multi-temporal change detection
technique, because such satellite data have very high temporal resolution and are capable of monitoring
fire-affected land cover changes. For example, the algorithm of the MODIS BA product (MCD45) is
developed by the bi-directional reflectance model-based expectation change detection approach [7].
One of the difficulties in producing Landsat-based BA products is that the traditional approaches
successfully applied to extract global BA from MODIS, VEGETATION, etc., do not work well due to
the limited temporal resolution of the Landsat sensors. Moreover, the analysis of post-fire reflectance
may be easily contaminated by clouds or weakened by quick vegetation recovery, particularly in
Tropical regions [17]. Another difficulty is that global 30-m resolution annual BA mapping needs to
utilize dense time-series Landsat images, and the required datasets can be hundreds of thousands
of Landsat scenes, resulting in impractical processing time. Although some research has addressed
detecting BA regionally from Landsat time-series [15,18,19], the results at the global scale have not
been reported. However, thanks to Google Earth Engine (GEE), a new generation of cloud computing
platforms with access to a huge catalog of satellite imagery and global-scale analysis capabilities [20], it
is now possible to perform global-scale geospatial analysis efficiently as the pre-processing of satellite
images becomes more user-friendly.
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In this study, we focused on an automated approach to generate global-scale high resolution BA
maps with dense time-series of Landsat images on GEE, in which all the available Landsat-8 images
and various spectral indices were utilized to calculate the burned probability of each pixel using a
machine learning model (random forest), and a seed-growing approach was conducted to shape the
final burned areas after several carefully-designed logical filters. With learning-based global models,
the classification becomes automatic without the need for regional adaptations after the training
phase [21]. Due to the great variability of environments and burned conditions, several well-studied
spectral indices for Landsat images were considered, including those specifically developed for burn
detection, as they are sensitive to charcoal and ash deposition, such as NBR [22], NBR2 [23], the
Burned Area Index (BAI) [24], the Mid-Infrared Burn Index (MIRBI) [25], and others that are not
burn-specific, but useful to map burned areas when cooperating with burn-specific indices. For
instance, although the Normalized Difference Vegetation Index (NDVI) is not the best index for burned
area mapping, it is sensitive to vegetation greenness and therefore to the absence of vegetation in the
case of burned areas [26]. The Global Environmental Monitoring Index (GEMI) [27] is an improved
vegetation index, specifically designed to minimize problems of contamination of the vegetation signal
by extraneous factors, which are considered very important for the remote sensing of dark surfaces such
as recently-burned areas [28]. The Soil-Adjusted Vegetation Index (SAVI) [29], which was originally
designed for sparse vegetation and outperforms NDVI in environments with a single vegetation
type [30], is helpful to improve the separability of burns from soil and water [12]. The Normalized
Difference Moisture Index (NDMI) [31], which is sensitive to the moisture levels in vegetation, is
relative to fuel levels in fire-prone areas. By applying the proposed approach, a novel 30-m resolution
Global Annual Burned Area Map of 2015 (GABAM 2015) was released, and the accuracy of this product
was validated by using reference data derived from a stratified random sampling method and multiple
data sources.

This work is related to the method of BAECV, but with many differences for global adaption,
e.g., training data preparation, feature choosing, and burned seed generating. Particularly, some
logical filters, i.e., NDVI filter, NBR filter, and temporal filter, are proposed to exclude the unreasonable
confused surfaces, with the help of the MODIS Vegetation Continuous Fields (VCF) product. These
filters are less related to the regional characteristics than the original BAECV algorithm, and thus more
suitable for global BA mapping. Additionally, this was the first trial to produce a global BA map from
a huge catalog of Landsat images in GEE, and it shows the potential to generate long time-series 30-m
resolution global BA products automatically and efficiently (less than five days for an annual map),
with the help of carefully-prepared training samples.

2. Methodology

2.1. Datasets

As many data were used in this work, we firstly give a brief description of all the involved data
(as shown in Table 1), for the sake of clarity.

The following are more specific notes about the data selection for BA mapping and validation.
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Table 1. Description of data sources. GFED, Global Fire Emissions Database; BA, Burned Area; MTBS,
Monitoring Trends in Burn Severity.

Data Usage Source

MCD12C1 [32] Stratified sampling https://e4ftl01.cr.usgs.gov/MOTA/MCD12C1.006/for type of land cover

GFED4 [33] Stratified sampling https://www.globalfiredata.org/data.htmlfor fire frequency

Landsat-8 BA mapping and validation https://code.earthengine.google.com/dataset/LANDSAT/LC08/C01/T2_SR
https://code.earthengine.google.com/dataset/LANDSAT/LC08/C01/T1_SR

MOD44B [34] Adjustment constraint https://code.earthengine.google.com/dataset/MODIS/051/MOD44Bconditions for BA mapping

Fire_cci v5 [11] Comparison https://geogra.uah.es/fire_cci

CBERS-4 MUX Validation http://www.dgi.inpe.br/catalogo/

Gaofen-1 WFV Validation http://218.247.138.119:7777/DSSPlatform/productSearch.html

MTBS [16] Validation https://www.mtbs.gov/direct-download

BA mapping: In this study, all the available Landsat images during 2014–2015 were the main data
source used for global BA mapping. At a pixel, the occurrence of a single Landsat satellite could be
about 23 or more times (considering the overlap between adjacent paths, particularly at higher latitudes)
within a year, and it would double when contemporary satellites (e.g., Landsat-7 and Landsat-8) are
utilized. However, considering the failure of the Scan Line Corrector (SLC) in the ETM+ instrument
of the Landsat-7 satellite, we only utilized USGS Landsat-8 Surface Reflectance collections. The
Quality Assessment (QA) band of Landsat image, which was generated by the FMaskalgorithm [35],
was used to perform QA masking. Pixels flagged as being clouds, cloud shadows, water, snow, ice,
or filled/dropped pixels were excluded from Landsat scenes, and only clear land pixels remained after
QA masking.

Validation: Commonly, when satellite data are used as reference data, they should have higher
spatial resolution than the data used to generate the BA product [36]. For the Landsat BA product,
however, access to global higher resolution time-series satellite data is difficult, and [37] suggested a
thorough validation scheme, in which high-resolution data were used to complement the independent
Landsat-derived reference data. Consequently, in this study, some publicly-available satellite images
of higher-resolution were utilized, while Landsat comprised the majority of the validation data source.
Specifically, Landsat-8 (LC8) images were employed to generate reference data independently for most
of the validation sites except those located in the United States (U.S.), South America, and China. In
the U.S., the MTBS perimeters of 2015 were used as the supplemental reference data of LC8 images,
and in South America and China, CBERS-4 MUX(CB4) and Gaofen-1 WFV(GF1) satellite images were
used to create the perimeters of the burned area, respectively. The characteristics of CB4 and GF1 are
illustrated in Table 2.

Table 2. Characteristics of CBERS-4 MUX and Gaofen-1 WFV.

Sensors Spatial Resolution Swath Width Spectral Bands (µm)
at Nadir (m) at Nadir (km) Blue Green Red NIR

CBERS-4 MUX 20 120 0.45–0.52 0.52–0.59 0.63–0.69 0.77–0.89Gaofen-1 WFV 16 192

2.2. Sampling Design

The spectral characteristics of burned areas vary in complex ways for different ecosystems, fire
regimes, and climatic conditions. In terms of guaranteeing the accuracy of the global burned area map
and also the completeness of quality assessment, a stratified random sampling method [38–40] was
used to generate two sets of sites for classifier training and the validation of GABAM 2015, respectively.

https://e4ftl01.cr.usgs.gov/MOTA/MCD12C1.006/
https://www.globalfiredata.org/data.html
https://code.earthengine.google.com/dataset/LANDSAT/LC08/C01/T2_SR
https://code.earthengine.google.com/dataset/LANDSAT/LC08/C01/T1_SR
https://code.earthengine.google.com/dataset/MODIS/051/MOD44B
https://geogra.uah.es/fire_cci
http://www.dgi.inpe.br/catalogo/
http://218.247.138.119:7777/DSSPlatform/productSearch.html
https://www.mtbs.gov/direct-download
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The training and validation sites were chosen randomly based on stratifications of both fire frequency
and the type of land cover.

Firstly, the Earth’s land surface was partitioned based on the 14 land cover classes according to
the MCD12C1 product [32] of 2012 using the University of Maryland (UMD) scheme. These types were
then merged into 8 categories based on their similarities [41], i.e., broadleaved evergreen, broadleaved
deciduous, coniferous, mixed forest, shrub, rangeland, agriculture, and others. Table 3 shows the
reclassification rule from UMD land cover types to new classifications. As the “others” category
consists of the biomes less prone to fire, only the other 7 land cover categories were considered to
create the geographic stratifications in this work.

Secondly, the globe was divided into 5 partitions based on the BA density in 2015 provided
by the Global Fire Emissions Database (GFED) Version 4.0 [33], the most widely-used inventory in
global biogeochemical and atmospheric modeling studies [9]. Specifically, GFED4 monthly products
of 2015 were utilized to produce an annual composition (GFED4 2015), consisting of 720 rows and
1440 columns, which correspond to the global 0.25◦ × 0.25◦ GFED grid, and each pixel summed the
total areas of BA (BA density, km2) occurring in the grid cell during the whole year. The BA density of
GFED4 2015 was then divided into 5 equal-frequency intervals [41] with quantile classification.

Table 3. Mapping between the original University of Maryland (UMD) land cover types and the new
classifications for the geographic stratification.

New Classification Original UMD Type

Broadleaved Evergreen Evergreen Broadleaf Forest
Broadleaved Deciduous Deciduous Broadleaf Forest
Coniferous Evergreen Needleleaf Forest

Deciduous Needleleaf Forest
Mixed Forest Mixed Forest
Shrub Closed Shrublands

Open Shrublands
Rangeland Woody Savannas

Savannas
Grasslands

Agriculture Croplands
Others Water

Urban and Built-up
Barren or Sparsely Vegetated

By spatially intersecting the 7 land cover categories and 5 BA density levels, we obtained the
final 35 strata with different fire frequencies and biomes. The samples were equally allocated to 5 BA
density levels, but for different land cover categories, we also took into account the BA extent within
each stratum: larger sample sizes were allocated to strata with higher BA extent [42]. According to
the strategy of stratified sampling, 120 samples (24 for each BA density level) were randomly selected
to generate the training dataset, and the spatial dimension of sampling units was based on Landsat
World Reference System II (WRS-II). Similarly, 80 validation sites (16 for each BA density level) were
also created by stratified random sampling, but trying to keep a distance (at least 200 km) from the
training samples so as not to fall into the extent of training Landsat scenes. Figure 1 illustrates the
distribution of 120 random Landsat image scenes and 80 validation sites over a map of BA density
extracted from GFED4 2015, and Table 4 shows the distribution of training and validation samples
over the different land cover types.
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Table 4. Distribution of training and validation samples over the different land cover types.

Land Cover Type Training Sample Count Validation Sample Count

Broadleaved Evergreen 16 11
Broadleaved Deciduous 12 9
Coniferous 13 9
Mixed Forest 12 8
Shrub 18 12
Rangeland 25 15
Agriculture 24 16

Figure 1. The distribution of 120 random Landsat image scenes and 80 validation sites over a map of
BA density extracted from GFED4 2015.

2.3. Training Dataset

In terms of analyzing the characteristics of burned areas in Landsat images, 120 Landsat-8
image scenes were chosen according to the WRS-II frames generated by stratified random sampling
in Section 2.2. All the Landsat-8 images used in this study were acquired from datasets of USGS
Landsat-8 Surface Reflectance Tier 1 and Tier 2 in the Google Earth Engine platform. These data have
been atmospherically corrected using LaSRC [43] and include a cloud, shadow, water, and snow mask
produced using FMask [35], as well as a per-pixel saturation mask. For the purpose of burned area
mapping, 6 bands of the Landsat-8 image were used, i.e., three visible bands (blue, 0.452–0.512 µm;
green, 0.533–0.590 µm; red, 0.636–0.673 µm), Near Infrared band (NIR, 0.851–0.879 µm), and two Short
Wave Infrared bands (SWIR1, 1.566–1.651 µm; SWIR2, 2.107–2.294 µm).

In this study, the burned area mapping algorithm was implemented on the GEE platform, and
the maximum quantity of input samples was limited by GEE’s classifiers; thus, an average 90–100
sample points were collected by experienced experts from each Landsat-8 image, making the total
quantity of sample points 12,881 (6735 burned samples and 6,146 unburned samples). Specifically,
Shortwave Infrared (SWIR2), Near Infrared (NIR) and green bands were composited into a Red, Green,
Blue (RGB) combination in order to visualize burned areas better, and burned samples, including fire
scars of different burn severity and of various biomass types, were extracted from the pixels showing
magenta color [44]. The unburned pixels were extracted randomly over the non-fire-affected areas
covering vegetation, built-up land, bare land, topographic shadows, borders of lakes, etc. For those
confused pixels for which it was difficult to identify whether they were burned scars, a further check
was performed by examining the Landsat images on the nearest date of the previous year or higher
resolution images on the nearest date in the Google Earth software. To ensure only clearly-burned
pixels were selected, the burned samples were collected carefully to avoid pixels near the boundaries of
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burned scar [13]; and burned pixels located in burning flame or covered by smoke were also excluded
to prevent potential contamination of burned samples. Note that each sample point covered a few
(5 on average) Landsat pixels; these pixels were clearly burned or not affected by fire since they were
not located near the boundaries of burned scar. Land surface reflectance of the collected samples in the
blue, green, red, NIR, SWIR1, and SWIR2 bands were extracted for further analysis.

2.4. Sensitive Features for Burned Surfaces

Figure 2 shows the statistical mean reflectance (with standard deviations) of burned and unburned
samples in Landsat 8 bands.

Burned areas are characterized by deposits of charcoal, ash, and fuel, and the reflectance of the
burned pixels generally increases along with the wavelength, while the burned pixels have similar
reflectance in the SWIR1 and SWIR2 bands, which is greater than that in other bands. However, the
spectral character of post-fire pixels varies greatly (standard deviations in Figure 2) according to the
type and condition of the vegetation prior to burning and the degree of combustion [45], and none
of existing spectral indices can be considered the best choice for identifying burned surfaces without
misclassification with other targets in all environments or fire regimes [46]. Consequently, in this study,
we made use of the most common spectral indices for Landsat images previously suggested in BA
studies, and their formulas are summarized as Table 5. Together, 14 Landsat features (8 spectral indices
in Table 5 and the surface reflectance in 6 bands of the Landsat-8 image) were selected as sensitive
features to perform global burned area mapping.

Figure 2. Means and standard deviations of the land surface reflectance of burned and unburned
Landsat-8 pixels in different bands.

Table 5. The formulas of spectral indices that are sensitive to burned areas.

Name Abbreviation Reference Formula

Normalized Burned Ratio NBR Key and Benson [22] NBR =
ρNIR−ρSWIR2
ρNIR+ρSWIR2

Normalized Burned Ratio 2 NBR2 Lutes et al. [23] NBR2 =
ρSWIR1−ρSWIR2
ρSWIR1+ρSWIR2

Burned Area Index BAI Martín [24] BAI = 1
(ρNIR−0.06)2+(ρRED−0.1)2

Mid-Infrared Burn Index MIRBI Trigg and Flasse [25] MIRBI = 10ρSWIR2 − 0.98ρSWIR1 + 2
Normalized Difference Vegetation Index NDVI Stroppiana et al. [26] NDVI = ρNIR−ρRED

ρNIR+ρRED

Global Environmental Monitoring Index GEMI Pinty and Verstraete [27] GEMI = η(1−0.25η)−(ρRED−0.125)
1−ρRED

,

η =
2(ρ2

NIR−ρ2
RED)+1.5ρNIR+0.5ρRED

ρNIR+ρRED+0.5

Soil-Adjusted Vegetation Index SAVI Huete [29] SAVI = (1+L)(ρNIR−ρRED)
ρNIR+ρRED+L , L = 0.5

Normalized Difference Moisture Index NDMI Wilson and Sader [31] NDMI = ρNIR−ρSWIR1
ρNIR+ρSWIR1

ρRED is the surface reflectance in the red; ρNIR is the surface reflectance in NIR; ρSWIR1 is the surface reflectance
in the SWIR1 band; and ρSWIR2 is the surface reflectance in the SWIR2 band.
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2.5. Burned Area Mapping via GEE

In this study, the annual burned area map was defined as the spatial extent of fires that occurred
within a whole year and not of fires that occurred in previous years. Therefore, global 30-m resolution
annual burned areas’ mapping needed to utilize dense time-series Landsat images, and the pipeline of
annual burned area mapping via GEE is described as Figure 3.

As shown in Figure 3, the pipeline mainly consisted of three steps, model training, per-pixel
processing, and burned area shaping, and the following provides more details of each step.

Burned Area Shaping

Model Training

Per-pixel Processing

NBR2NBR

MIRBI NDVI
Global Training 

Data

Random 
Forest 

Training

Sensitive Features

SR of 6 
bands

BAI

Annual Landsat LSR
Collection
(This year)

Annual Landsat LSR
Collection

(Previous year)

MODIS VCF Product
(Two years)

QA 
Mask

Reflectance 
Stack

Reflectance 
Stack

Random Decision 
Forests

Stack of
Probability, 
NDVI, NBR 

Stack of
NDVI, NBR 

Min NBR

Max NDVI

NDVI

NBR

Seeds Filters

Max Vegetation
Tree 

Domination

Probability Filter

 Candidate 
Seeds

Per-pixel Burned 
Probability

Region Growing

Merge 
Connected Seeds

Remove Small 
Components

Max 
Probability

Annual Burned 
Area Map

SAVI NDMI

GEMI

NDVI Filter

NBR Filter

Temporal Filter

Figure 3. Workflow for annual burned area mapping using Google Earth Engine. LSR, Land Surface
Reflectance.

2.5.1. Model Training

The Random Forest (RF) algorithm provided by GEE was applied to train a decision forest
classifier, and the global training data consisted of 6735 burned and 6146 unburned samples, which
were manually collected from 120 Landsat scenes generated by stratified random sampling (in
Sections 2.2 and 2.3). The random forest classifier with a higher number of decision trees usually
provides better results, but also causes higher cost in computation time. Since the input features of the
algorithm include the Surface Reflectance (SR) in 6 bands of the Landsat-8 image, as well as 8 spectral
indices that have high sensitivity to the burned surface, we limited the number of decision trees in the
forest to 100 for a trade-off between accuracy and efficiency. Additionally, we chose “probability” mode
for GEE’s RF algorithm, in which the output is the probability that the classification is correct, and the
probability would be further utilized to perform region growing in the step of burned area shaping.
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2.5.2. Per-Pixel Processing

In this step, Landsat surface reflectance collections from GEE, which consist of all the
available Landsat scenes, were employed for dense time-series processing. At each pixel, the
geometrically-aligned dense time-series Landsat image scenes provided a reflectance stack of 6 bands,
which was then split into two stacks by date filters, i.e., a stack of the current year and that of the
previous year.

For the reflectance stack of the current year, 8 spectral indices were computed at each time period,
and then, the trained decision forest classifier in Section 2.5.1 produced a stack of burned probability
using the 8 spectral indices and the reflectance of 6 bands. The maximum value of a probability
stack indicates the probability that the pixel had ever appeared like a burned scar during the whole
year. Four quantities were noted for each pixel, i.e., the date on which the maximum probability was
observed (t1), as well as the burned probability (pmax), NDVI value (NDVI1), and NBR value (NBR1)
on that date. However, a single image is usually not adequate to spectrally separate the burned areas
from confused surfaces caused by shadows, flooding, snow melt, agricultural harvesting, etc. [47];
the burned scars that occurred in previous years, but had not yet recovered (particularly in boreal
forests) should also be excluded from the annual BA map of the current year. In this sense, we also
were concerned with the summary statistics of current year and previous year: NDVI2, the maximum
NDVI value within the couple of years (current year and previous year); t2, the date of NDVI2; and
NBR2, the minimum NBR value within the previous year. Then, most of the unreasonable tree-covered
burned-like pixels would be excluded unless they met all the following constraints.

1. NDVI2 > TNDVI , the maximum NDVI value within the couple of years should be greater than
a threshold TNDVI . We choose NDVI as it has been found to be a good identifier of vigorous
vegetation, and this constraint is used to exclude areas that appeared as burned, but in fact were
just lacking vegetation.

2. NDVI2 − NDVI1 > TdNDVI , the difference between the maximum NDVI and the NDVI when
the pixel was most like a burned scar should be greater than a threshold TdNDVI . This constraint
ensures evidence of vegetation decrease when the burn happened.

3. NBR2 − NBR1 > TdNBR, the NBR value of a burned pixel should be less than the minimum NBR
of the previous year, and the threshold TdNBR is the minimum acceptable decline of NBR. This
constraint is useful to exclude false detections with periodic variation of NBR and NDVI, such as
mountain shadows, burned-like soil in deciduous season, snow melting, and flooding.

4. t1 > t2 or t2 − t1 > TDAY, the date when the vegetation becomes greenest should be earlier than
the burning date or the lagged days should be greater than a threshold TDAY. For a tree-covered
surface, it usually takes a long time for the vegetation to recover more flourishing than the
previous year, thus the burn-like pixels with t1 <= t2 are likely attributed to a false alarm.
However, as the recovering of burned trees can be fast in tropic regions, high post-fire regrowth
within a reasonable amount of days is also acceptable.

We named the first two constraints as “NDVI filter” and the third and fourth ones as “NBR
filter” and “temporal filter”, respectively. In this work, the thresholds in the above constraints were
chosen empirically, TNDVI = 0.2, TdNDVI = 0.2, TDAY = 100 (days), and TdNBR = 0.1. Determining a
globally optimal NDVI threshold is not easy or even impossible for various types and conditions of
the vegetation, and we chose a low threshold TNDVI = 0.2 [48], not expecting to exclude directly all
confused surfaces never covered by vegetation. Actually, the second constraint would also help to
exclude non-vegetation with high NDVI, because the decline of NDVI, in the absence of vegetation
variation, commonly would not meet the constraint. The change of NBR in pre-fire and post-fire images,
defined as delta NBR or dNBR, has proven to be a good indicator of burn severity and vegetation
regrowth (the higher the severity, the greater the dNBR) [49,50]. It was suggested that a dNBR greater
than 0.1 commonly indicates a burn of low severity [23]; thus, we chose TdNBR = 0.1. Lastly, in the
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temporal filter, a fixed time for all kinds of trees to recover spectrally is also not available, and we just
approximately chose an average time, 100 days.

However, for herbaceous vegetation, we should use only the first two constraints, as grassland
usually recovers very quickly and can be burned year after year. Accordingly, the annual MODIS
Vegetation Continuous Fields (VCF) 250-m Collection 5.1 (MOD44B) product [34] of the current and
previous year, which contains the tree-cover percent layer and non-tree vegetation layer, were utilized
to determine whether the pixel was dominated by trees or by herbaceous vegetation. Passing the filters
of NDVI, NBR, and temporal context, those pixels with an annual burned probability greater than or
equal to 0.95 (“probability filter”) were selected as seeds for region growing.

In addition, the global training samples in Section 2.3 were used to test the sensitivity of thresholds
in the four constraints. By applying the per-pixel processing in Section 2.5.2, we got the values of
NDVI2 and NDVI2 − NDVI1 in all the burned and unburned samples and the values of NBR2 −
NBR1 and t2 − t1 in the burned and unburned samples located in tree-dominated regions, and their
histograms are illustrated in Figure 4a–d. Then, parameter tuning was performed to check the
percentages of missing burned samples and confused unburned samples when applying various
values of TNDVI (0–0.4), TdNDVI (0–0.4), TdNBR (−0.1–0.3), and TDAY (0–150), as shown in Figure 4e–h.
Generally, more burned samples were missed and less unburned were included when TNDVI , TdNDVI ,
TdNBR, and TDAY increased, and the selected thresholds should balance the omission and commission
errors. According to Figure 4, less than 3% of burned samples were missed, but around 10%, 30%, 70%,
and 10% of unburned samples can be excluded, respectively, by choosing TNDVI = 0.2, TdNDVI = 0.2,
TdNBR = 0.1, and TDAY = 100.
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Figure 4. Threshold testing for the filters. (a–d) show the histograms of NDVI2, NDVI2 − NDVI1,
NBR2 − NBR1, and t2 − t1 in burned and unburned samples, respectively; (e–h) show the percentages
of missing burned areas and confused unburned areas when applying various values of TNDVI , TdNDVI ,
TdNBR, and TDAY , respectively.

2.5.3. Burned Area Shaping

In this step, a region-growing process was employed to shape the burned areas. Region growing
has been proven to be necessary for BA mapping in many studies [12,13,18], because spectral-based
methods sometimes give ambiguous evidence (i.e., spectral overlapping between burned areas and
unrelated phenomena with similar spectral characteristics, such as cloud shadows, ephemeral water, or
dark soils [12]), and accepting all positive evidence can lead to confusion errors. Although candidate
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seeds were chosen with high confidence, false seed pixels were still frequently included in confused
surfaces, e.g., shadows and borders of lakes. Different from the candidate seeds in the actual burned
scars, those falsely-introduced seed pixels always distributed sparsely. Consequently, we aggregated the
seed pixels into connected components using a kernel of 8-connected neighbors. By ignoring small fires
with area less than 1 ha [51], those fragmentary components (smaller than 11 pixels), which included
most false seed pixels, were removed. Finally, an iterative procedure of region growing was performed
around each seed pixel. For each iteration, the 8-connected neighbors of the seed pixels were aggregated
as burned pixels (new seeds) if their burned probabilities were greater than or equal to 0.5, and the
iteration stopped when no more pixels could be aggregated as burned pixels. Figure 5 shows an example
of region growing. One can see that only some pixels showing strong magenta color in the burned
scars were chosen as seeds, while those showing light magenta color were labeled as candidates for
region growing, including some actual burned pixels, as well as some false detections (right-middle in
Figure 5b). However, after the processes of small seeds’ removal and region growing, the false detections
were excluded, while those candidates near the seeds were aggregated to the final BA map.

(a) (b)

(c) (d)
Figure 5. Example of region growing for burned area detection. (a) is the Landsat-8 image displayed in
false color composition (red: SWIR2 band, green: NIR band, and blue: green band); (b) is the map of
burned probability generated by the proposed method; (c) is the candidate seeds of burned area; (d)
shows the final burned area map after region growing.

2.6. Comparison with the Fire_cci Product

As 30-m resolution global burned area products are currently not available, we made a comparison
between GABAM 2015 and the Fire_cci Version 5.0 products (spatial resolution was approximately
250 m) [11], which are based on MODIS satellite imagery. The monthly Fire_cci pixel BA products
of 2015 were composited as an annual pixel BA product by labeling the pixels as burned ones once
their values in the Julian day (the date of the first detection) layer were valid (from 1–366) in any of
the 12 monthly products. Additionally, in order to perform regression analysis between two products
of different spatial resolution, we also produced an annual grid composition of BA within 2015 from
the composited annual pixel BA product by computing the proportion of burned pixels in each
0.25◦ × 0.25◦ grid. Note that the monthly grid BA products of Fire_cci were not used to composite the
annual grid product, because summing up the areas of BA for each grid in all monthly products might
result in repetitive counting at those pixels burned more than once within the year.
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2.7. Validation

2.7.1. Data Sources

Accuracy assessment was carried out according to the 80 validation sites that were created in
Section 2.2, and the reference data were selected in these sites from multiple data sources, including
fire perimeter datasets and satellite images. As described in Section 2.1, LC8 images were employed
to generate reference data independently for most of the validation sites except those located in the
United States (U.S.), South America, and China. In the U.S., the MTBS perimeters of 2015 were used
as the supplemental reference data of LC8 images, and in South America and China, CB4 and GF1
satellite images were used to create perimeters of burned area, respectively. Note that the size of the
validation site varied by the type of data source, i.e., a WRS-II frame (about 185 km × 185 km) for
Landsat images, a scene for CB4 images (about 120 km × 120 km), and a box of 100 km × 100 km for
GF1 images. Using Landsat frames or image scenes as a unit of the validation site is convenient for
data downloading and processing; we chose a smaller box for GF1 to improve the data availability
considering the extent of GF1 frames or scenes not being fixed due to the long orbital return period.

2.7.2. Reference Data Generation

In each validation site, all the available image scenes (LC8, CB4, or GF1) acquired in 2015 were
used. LC8 images were orthorectified surface reflectance products; CB4 images were ortho products;
and GF1 images were not geometrically rectified. The procedure of generating reference BA can be
summarized as the following steps.

1. Preprocessing

All the images utilized to generate BA reference data were spatially aligned with a mean squared
error of less than 1 pixel. The ortho-rectified LC8 and CB4 images met the requirement of
geometric accuracy, yet the GF1 images did not. Accordingly, an automated method [52] was
applied to orthorectify the time-series GF1 images, taking the LC8 panchromatic images (spatial
resolution was 15 m) as geo-references.

2. BA detection

BA perimeters were generated from the time-series images via a semi-automatic approach. Firstly,
image pairs (pre- and post-fire) were manually selected from the time-series image by checking
whether any new burned scars appeared in the newer images. For LC8 images, SWIR2, NIR, and
green bands were composited in a Red, Green, Blue (RGB) combination; for CB4 and GF1 images,
red, NIR, and green bands were composited in an RGB combination. The identification of BA
might be difficult for CB4 and GF1 images due to the lack of shortwave infrared bands; thus, the
Fire_cci BA product was used to verify the BA identification. Secondly, burned and unburned
samples were manually collected from each selected image pair. The burned samples included
only the newly-burned scars, which appeared burned in the newer image, but unburned in the
older image; the unburned samples consisted of unburned pixels, partially recovered BA pixels,
and also pixels covered by cloud or cloud shadows in either images. Afterwards, the Support
Vector Machines (SVM) classifier in ENVITM (provided by Harris Geospatial in Broomfield, CO,
United States) software was used to classify each image pair into burned and unburned pixels,
and the detected burned pixels in all the image pairs were integrated to create a composited
annual BA map. Note that the sensitive features in Section 2.4 were utilized in SVM for each
LC8 image pair; but for CB4 and GF1 images, the features used for classification consisted of the
Digital Number (DN) values in four bands of an image pair (in total, 8 DN values), as most of the
burned-sensitive spectral indices cannot be derived from the RGB-NIR bands. Finally, the BA
perimeters of 2015 were generated from the annual BA composition using the vectorization tool
in ArcGISTM (provided by Environmental Systems Research Institute in Redlands, CA, United
States) software.
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3. Reviewing and manually revision

The result of the supervised classifier (SVM) and automated vectorization algorithm might not be
perfect; thus, BA perimeters were further edited visually by experienced experts, via overlapping
the vector layer of BA perimeters with the satellite image layers.

Additionally, in the U.S., the MTBS perimeters of 2015 were directly used as the main reference
data, supplemented by the interpreted results of LC8 time-series images, which could help to avoid
missing small fires.

2.7.3. Assessment

In this work, a cross-tabulation (Table 6) between the pixels assigned by in our BA product and
in the reference data was computed to produce the confusion matrix [53], which was then applied
to derive three statistics, i.e., commission error, omission error, and overall accuracy, to assess the
accuracy of our BA product.

• Commission error (Ec): X12/(X11 + X12), the ratio between the false BA positives (detected
burned areas that were not in fact burned) and the total area classified as burned by GABAM 2015.

• Omission error (Eo): X21/(X11 + X21), the ratio between the false BA negatives (actual burned
areas not detected) and the total area classified as burned by the reference data.

• Overall accuracy (Ao): (X11 + X22)/(X11 + X12 + X21 + X22), the ratio between the area classified
correctly and the total area to evaluate.

Table 6. Cross-tabulation between Global annual Burned Area Map (GABAM) 2015 and the reference data.

Reference Data (pixel)

Burned Unburned Total

GABAM 2015 (pixel)
Burned X11 X12 X11 + X12
Unburned X21 X22 X21 + X22
Total X11 + X21 X12 + X22 X11 + X12 + X21 + X22

To assess the dispersion of accuracy among the validation sites, the standard errors of the above
three statistics were used:

sEc =

√
n

∑
t=1

(Ec
t − Ec)2/(n − 1)

sEo =

√
n

∑
t=1

(Eo
t − Eo)2/(n − 1)

sEo =

√
n

∑
t=1

(Ao
t − Ao)2/(n − 1)

(1)

where n is the number of validation sites to be evaluated; Ec
t, Eo

t, and Ao
t are the Ec, Eo, and Ac at

validation site t; Ec, Eo, and Ao are the average Ec, Eo, and Ac at the n sites.
Additionally, taking into account the stratified sampling design, a stratified combined ratio

estimator [38,54] was also used to assess the global accuracy:

R̂ =

H

∑
h=1

Shyh

H

∑
h=1

Shxh

(2)
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where H is the number of strata; Sh is the area of stratum h; xh and yh are the sample means of xt

and yt at stratum h ; xt = Xt
11 + Xt

12 + Xt
21 + Xt

22, yt = Xt
11 + Xt

22, and Xt
11, Xt

12, Xt
21, Xt

22 are from the
cross-tabulation at validation site t.

Note that the area of a stratum was calculated by summing up all the areas of pixels within the
stratum at a specific resolution in the geographic coordinate system. The area of an image pixel, whose
longitude and latitude are expressed in radians, λ and φ, can be approximately calculated:

Aλ,φ = R2
earth × rrad × [sin(φ + rrad)− sin φ] (3)

where Rearth = 6,371,007.2 m is the Earth’s authalic radius [55] and rrad is the spatial resolution of the
image expressed in radians. In this study, we used rrad = 4.3633 × 10−6 (approximately 30 m).

3. Results and Analysis

3.1. Product Description

Employing the proposed approach, we produced GABAM 2015, which was projected in a
geographic (Lat/Long) projection at 0.00025◦ (approximately 30 m) resolution, with the WGS84
horizontal datum and the EGM96 vertical datum. The result consisted of 10 × 10 degree tiles spanning
the range 180 W–180 E and 80 N–60 S and can be freely downloaded from https://vapd.gitlab.io/
post/gabam2015/. To make the visualization of GABAM better, burned area density was used instead
of directly drawing the burned pixels on a global map, and it was defined as the proportion of burned
pixels in a 0.25◦ × 0.25◦ grid. An overview of global distribution of burned area density, derived from
the one-arc-second resolution GABAM 2015, is shown in Figure 8a, together with that of the Fire_cci
product in Section 3.2.

Figure 6 illustrates an examples of GABAM 2015 in Canada, and the annually-composited Landsat
reference images with minimum NBR values of 2015 and 2014 are also included. This region is located
in high latitude zones, and the burned scars may not completely recover within a year. Consequently,
when new burning occurs around the unrecovered burned scars, we must determine which burned
scars come from this year. Owing to the temporal filters, GABAM succeeded in clearing up such
confusion. From Figure 6b, one can see that the burned scars mainly consisted of two components,
separated by the river. Figure 6a, however, shows that burned scars on the right side of the river can
be observed in 2014; hence, the result of GABAM 2015 only remained the component on the left side.

(a) 2014 (b) 2015 (c) BA
Figure 6. Burned area map example in Canada. (a) is the annually-composited Landsat images of 2014
with the minimum NBR values; (b) is the annually-composited Landsat images of 2015; (c) shows the
detected burned scars occurred in 2015.

https://vapd.gitlab.io/post/gabam2015/
https://vapd.gitlab.io/post/gabam2015/
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3.2. Comparison with the Fire_cci Product

3.2.1. Visual Comparison

Figure 7 shows an example of the two annual pixel BA products, and it can be seen that both
products correctly detected the BAs in the Landsat image (Figure 7b), yet the BAs in Figure 7c occupied
more pixels than those in Figure 7d. Due to the limitation in spatial resolution of the input sensor of
the Fire_cci BA product, some of the mixed pixels (consisting of burned and unburned pixels) may be
classified as burned ones. On the other hand, the result of GABAM 2015 showed finer boundaries of
BAs, compared with that of the Fire_cci product.

(a) (b)

(c) (d)
Figure 7. Comparison between Fire_cci and GABAM in Saskatchewan, Canada. (a,b) are the Landsat-8
images before (24 June 2015) and after (26 July 2015) fire, respectively, displayed in false color
composition (red: SWIR2 band, green: NIR band, and blue: green band); (c) shows the burned
areas of the annually-composited Fire_cci product, and (d) shows the burned areas generated by the
proposed method.

3.2.2. Global Grid Map

Figure 8 illustrates the GABAM and Fire_cci annual grid composition of BA, consisting of the
percentage of burned pixels in each 0.25◦ × 0.25◦ grid. Figure 8a,b shows a similar global distributions
of BA density.
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(a) GABAM 2015

(b) Fire_cci 2015
Figure 8. Global distribution of burned area density (percentage of burned pixels in every 0.25◦ × 0.25◦

grid) of GABAM and Fire_cci product within 2015. (a) is the annual grid composition of BA of GABAM,
and (b) is that of the Fire_cci product.

3.2.3. Regression Analysis

Figure 9 shows the proportion of BA in 0.25◦ × 0.25◦ grids of different land cover categories in
Table 3, for the Fire_cci product (x-axis) and GABAM 2015 (y-axis), and regression analysis was also
performed between the two products, providing a regression line (expressed as the slope and the
intercept coefficient estimates) and the coefficient of determination (R2) for each land cover category
(Figure 9a–h) and for the global scale (Figure 9i). Moreover, as many points overlapped in the scatter
graphs, we also rendered the scatters with different colors according to the number of grid cells (1–10
or more) having the same proportion values.

According to Figure 9, the intercept values of the estimated regression lines were close to zero,
while the slopes were lower than one, showing that GABAM burned area was less than the Fire_cci
product [41]. Moreover, the distribution and color of scatters in Figure 9i also show that a large number
of grids were considered to have a higher burned proportion by the Fire_cci product than by GABAM.
The main reason for the inconsistency can be attributed to the difference in the spatial resolution
of data sources, and less pixels were commonly classified as BA in Landsat images, e.g., Figure 7.
Specifically, only a few 0.25◦ × 0.25◦ grids were occupied by more than 90% BA in GABAM, while
grids with a high proportion of BA were more common in the Fire_cci product.
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Figure 9. Scatter graphs and regression lines between GABAM and Fire_cci. (a–h) are the results in
different land cover categories; (i) shows the global result in all kinds of land covers. The color scheme
illustrates the number of grid cells having the same proportion values.

Considering the coefficients of determination of estimated regression lines, the two products
showed the highest linear relationship strengths in coniferous forest (R2 = 0.82), rangeland (R2 = 0.75),
and shrub (R2 = 0.62) and the lowest strengths in agriculture land (R2 = 0.31) and the “others”
category (R2 = 0.07). In the “others” category, which is considered to be not prone to fire, the two
products only included a few grids containing BA (with low burned proportions); thus, they were
not likely to be correlated; the low correlation in agriculture land is owed to the uncertainty of both
products, which will be further discussed in Section 4.

The quantity and color of scatters in Figure 9 indicate that most of burned areas were located in
rangeland, and the global relationship (Figure 9i) of the GABAM and Fire_cci product was mainly
determined by that in rangeland (Figure 9e), i.e., woody savannas, savannas, and grasslands.
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3.3. Validation

To assess the accuracy of GABAM 2015, confusion matrices were computed for each validation site
according to Table 6, and the global confusion matrix (Formula (4)) was then generated by averaging
all these confusion matrices. [

X11 X12

X21 X22

]
=

[
5, 473, 720 823, 170
2, 360, 096 43, 661, 559

]
(4)

The averaging commission error, omission error, and overall accuracy were finally derived from
the global confusion matrix as described in Section 2.7.3: Ec and Eo of GABAM 2015 were 13.17% and
30.13%, respectively, while Ao was 93.92%; and the standard errors of the three statistics, sEc , sEo , and
sAc , were 10.83%, 19.58%, and 7.77%, respectively. When taking the stratified sampling design into
account, the global accuracy estimator R̂ was 92.03%.

Generally, GABAM 2015 was expected to have a lower Ec, but a higher Eo. High omission error
might result from several reasons:

1. In the validation sites located in tropical zones, clear burned evidence was frequently missed by
the Landsat sensor due to the quick recovery of the vegetation surface. This point will be further
discussed in Section 4.

2. Some pixels located within a burned area, but not showing a strong burned appearance, might be
excluded by GABAM 2015 (e.g., Figure 7d), while they were considered as a part of a complete
burned scar in the reference data. Particularly, high Eo was found at those validation sites using
MTBS perimeters, e.g., the Ec and Eo of the validation site in Figure A5 were 1.45% and 67.97%.
Furthermore, this high omission error might result from the high commission error associated
with MTBS perimeters [56].

Table 7 shows the average accuracy of GABAM 2015 in various land cover categories, and more
details of the validation can be found in Appendix A, which includes five examples of validation sites
from various regions, with different data sources as reference data.

Table 7. Information of site validation examples.

Land Cover Type Ec (%) Eo (%) Ao (%) sEc (%) sEo (%) sAo (%)

Broadleaved Evergreen 8.64 10.95 90.99 9.14 16.52 6.78
Broadleaved Deciduous 23.59 34.85 99.03 12.33 19.16 7.22
Coniferous 7.41 18.27 99.77 11.47 16.15 6.00
Mixed Forest 8.73 34.33 98.36 9.30 24.19 8.41
Shrub 13.00 3.78 99.49 11.05 16.05 8.78
Rangeland 11.91 23.06 91.79 13.55 17.91 9.04
Agriculture 10.91 45.38 94.41 10.50 28.09 7.33

4. Discussion

Different from the satellite images of coarse spatial resolution, the temporal resolution of Landsat
images is not high enough to capture the short-term events on the Earth. Specifically, the general
revisit period of Landsat image is more than 10 days; hence, active fire will be observed by the
Landsat satellite with a probability less than 10% (considering the cloud coverage). In addition, the
gaps between Landsat images of adjacent time phases and the occurrence of cloud also increase the
uncertainty in analyzing the time-series patterns of the land surface. Without using the evidence of
active fire, it is not easy to identify the burned scars at the global scale with high confidence due to the
wide variety of vegetation types, phenological characteristics, burned-like land covers, and spectral
characteristics within a burned scar (char, scorched leaves, or grass, or even green leaves when the
fire is not very severe [13]). In this work, the MODIS Vegetation Continuous Fields (VCF) product
was applied to discriminate tree-dominated and grass-dominated regions, but the VCF product is
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neither precise in spatial resolution nor available before 2000, and moreover, two categories are far
from enough to separate different burning types. Actually, much prior knowledge can be utilized to
improve the accuracy of GABAM, if the globe is carefully divided into intensive regions according to
the fire behavior, land cover types, and climate. For instance, most biomass burning in the tropics is
limited to a burning season; around 10% of the savanna biome burns every year; burning cropland after
a harvest is extremely prevalent, and so on. Consequently, region-specific algorithms should be helpful
to improve the accuracy of high-resolution global annual burned area mapping. Furthermore, despite
the high correlation between GABAM and Fire_cci, the area of detected BA was generally smaller
in GABAM than that in Fire_cci, since some pixels located within a burned area, but not showing
a strong burned appearance, were not included in GABAM. This situation can be considered as an
underestimation of BA or omission error if only taking into account the connectivity and completeness
of burned patches; on the other hand, however, the detailed perimeter of BA from GABAM can be
useful for the statistics of the area of biomes actually burned, and therefore to improve the simulation
of carbon emissions from biomass burning. In its present form, however, GABAM suffers limitations
in the following aspects.

4.1. BA in Agriculture Land

It is difficult to detect BA in cropland with high confidence (low commission error and low
omission error) from satellite images:

• Many croplands have comparable spectral characteristics to burned areas when harvested
or ploughed.

• The temporal behavior of harvest or burning of cropland is similar to that of grassland fire, e.g.,
sudden decline and gradual recovery of NDVI, as well as periodic variation of NBR values year
after year.

• Different from the wildfires in rangeland and forest, most of the fires in croplands are
human-intended stubble burning, and they are commonly small and of a short duration, being
difficult to capture by satellite sensors. In this sense, the traditional burned area detection
algorithms, which are frequently used to generate BA products from the data source of a medium
resolution (e.g., MODIS, AVHRR, MERIS), are likely to have high omission error in croplands for
small cropland fire.

Figure 10 shows an example of cropland in Mykolayiv, Ukraine, including the Landsat-8
time-series (Figure 10a–i) and the burned scars mapped by Fire_cci (Figure 10j), GABAM (Figure 10k),
and reference data (Figure 10l). Small fire spots, showing a light orange color, can be visually observed
from Figure 10a,b,h, but burned scars surrounding these fire spots were not included in the Fire_cci
product. On the other hand, without fire evidence or field validation, it is also difficult to tell whether
the burned-like surfaces detected by GABAM were false alarms.

Due to these difficulties, discriminating true-burned areas from croplands is not a trivial task, and
cropland masks can be employed to remove potential confusions.

4.2. Omission of Observations

Using Landsat images as input data for GABAM, the number of valid observations is a limiting
factor for detecting fires, since the active- or post-fire evidence may be omitted or weakened due
to the temporal gaps caused by temporal resolution, as well as cloud contamination. Especially in
Tropical regions, where vegetation recovery is quite quick after fire, temporal gaps usually result
in high omission error. Figure 11 shows an example of omission error in South America. From the
CBERS-4 images (Figure 11o–r), a new burned scar, which occurred during 21 August–12 October,
can be identified at the center of image patch. However, all Landsat-8 images (Figure 11a–n) acquired
between the date interval from 21 September–24November were contaminated by cloud; thus, the
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region covering this burned scar in these images was masked by the QA band during the process of
BA detection.

(a) 17-02-2015 (b) 21-03-2015 (c) 24-05-2015 (d) 02-06-2015

(e) 09-06-2015 (f) 25-06-2015 (g) 22-09-2015 (h) 15-10-2015

(i) 31-10-2015 (j) BA from Fire_cci (k) BA from GABAM (l) Reference BA

Figure 10. Burned area map example of croplands in Mykolayiv, Ukraine. (a–i) show the Landsat-8
images displayed in false color composition (red: SWIR2 band, green: NIR band, and blue: green band);
(j–l) show the BA from Fire_cci product, GABAM 2015, and reference BA, respectively.

4.3. Validation

For satellite data product validation, a commonly-used method is to employ higher spatial
resolution satellite data. For example, in order to validate the MODIS-derived data product (1-km
spatial resolution), Landsat satellite data are commonly used. In this study, however, Landsat images
were used as the main reference source to validate the Landsat-derived burned area product. Although
the validation process was conducted by independent experienced experts with great caution, relying
on Landsat for both product generation and validation limits our ability to assess inaccuracies imposed
by the satellite sensor itself, such as radiometric calibration accuracy, spectral band settings, geolocation,
and mixed pixels [57]. Accordingly, extensive validation of GABAM is expected to be further performed
by professional users.
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(a) 16-05-2015 (LC8) (b) 01-06-2015 (LC8) (c) 17-06-2015 (LC8) (d) 03-07-2015 (LC8)

(e) 19-07-2015 (LC8) (f) 04-08-2015 (LC8) (g) 20-08-2015 (LC8) (h) 05-09-2015 (LC8)

(i) 21-09-2015 (LC8) (j) 07-10-2015 (LC8) (k) 23-10-2015 (LC8) (l) 08-11-2015 (LC8)

(m) 24-11-2015 (LC8) (n) 10-12-2015 (LC8) (o) 30-06-2015 (CB4) (p) 26-07-2015 (CB4)

(q) 21-08-2015 (CB4) (r) 12-10-2015 (CB4) (s) Detected BA (t) Reference BA

Figure 11. Example of the omission error of GABAM 2015. (a–n) are Landsat-8 image patches displayed
in false color composition (red: SWIR2 band, green: NIR band, and blue: green band); (o–r) are CBERS-4
image patches displayed in false color composition (red: NIR band, green: red band, and blue: green
band); (s,t) show the detected BA and reference BA.

5. Conclusions

An automated pipeline for generating 30-m resolution global-scale annual burned area maps
utilizing Google Earth Engine was proposed in this study. Different from the previous coarse resolution
global burned area products, GABAM 2015, a novel 30-m resolution global annual burned area map
of 2015, was derived from all available Landsat-8 images, and its commission error and omission
error were 13.17% and 30.13%, respectively, according to preliminary global validation. However,
completing a thorough validation of the GABAM product is beyond the scope of this study, and users
of the product are encouraged to make further validation since GABAM 2015 is publicly available.
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Comparison with the Fire_cci product showed a similar spatial distribution and strong correlation
between the burned areas from the two products, particularly in coniferous forests. The automated
pipeline makes it possible to efficiently generate GABAM from the huge catalog of Landsat images,
and our future effort will be concentrated on producing long time-series 30-m resolution GABAMs.

One of the limitations of GABAM is the uncertainty in agriculture land, where burned areas can
be confused with harvested or ploughed surfaces in spectral and temporal characteristics, without
the evidence of fire. In this case, a field survey or very high resolution images are required to achieve
promising results. Another limitation of GABAM is that it does not provide the date when the burned
area was first detected, because GABAM was generated using the maximum burned probability
over the dense time-series. Nevertheless, the approximate date when the burned area occurred can
be estimated if the algorithm in this paper is adapted to produce monthly or daily products. The
availability of adequate good quality observations remains another limiting factor for Landsat-based
BA detection, since the temporal gaps caused by relatively lower temporal resolution and cloud
contamination can result in omission errors, particularly in tropic regions. However, for more recent
global BA products generation, a combination of Landsat and Sentinel-2 datasets can be a good choice
to cope with the observation limit after fixing the inconsistency between these two datasets, as the
temporal resolution of combined datasets has become three days since 2016.
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Appendix A. Examples of Validation Sites

Figures A1–A5 show some examples of site validation, and Table A1 summarizes the information
of these validation sites, including the location, source of reference data, commission error, omission
error, and overall accuracy.

Table A1. Information of site validation examples. GF, Gaofen.

ID Location Reference data Ec (%) Eo (%) Ao (%) Figure

1 China GF1 7.23 10.56 91.75 Figure A1
2 South America CB4 13.95 33.25 94.88 Figure A2
3 Africa LC8 41.23 57.41 71.29 Figure A3
4 Australia LC8 0.77 20.88 90.22 Figure A4
5 U.S. LC8 & MTBS 1.45 67.97 95.87 Figure A5
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(a) 01-04-2015 (GF1) (b) 03-05-2015 (GF1) (c) 20-05-2015 (GF1)

(d) 16-07-2015 (GF1) (e) 15-10-2015 (GF1) (f) 08-11-2015 (GF1)

(g) 20-11-2015 (GF1) (h) BA (GF1) (i) Detected BA

Figure A1. Example of validation using GF-1 images. (a–g) show the GF-1 images used to generate
the reference map, displayed in false color composition (red: NIR band, green: red band, and blue:
green band); (h) is the reference BA map generated from GF-1 images; and (i) is the detected BA by the
proposed method with Commission Error (CE) and Omission Error (OE).
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(a) 01-06-2015 (CB4) (b) 06-07-2015 (CB4) (c) 01-08-2015 (CB4)

(d) 27-08-2015 (cb4) (e) 22-09-2015 (CB4) (f) 18-10-2015 (CB4)

(g) 09-12-2015 (CB4) (h) BA (CB4) (i) Detected BA

Figure A2. Example of validation using CBERS-4 images. (a–g) show the CBERS-4 images used to
generate the reference map, displayed in false color composition (red: NIR band, green: red band, and
blue: green band); (h) is the reference BA map generated from CBERS-4 images; and (i) is the detected
BA by the proposed method with CE and OE.
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(a) 19-12-2014 (LC8) (b) 04-01-2015 (LC8) (c) 20-01-2015 (LC8) (d) 05-02-2015 (LC8)

(e) 21-02-2015 (LC8) (f) 09-03-2015 (LC8) (g) 04-11-2015 (LC8) (h) 20-11-2015 (LC8)

(i) 06-12-2015 (LC8) (j) 22-12-2015 (LC8) (k) BA (LC8) (l) Detected BA

Figure A3. Example of validation using Landsat-8 images (path/row:193/054) in Africa. (a–j) show
the Landsat-8 images used to generate the reference map, displayed in false color composition (red:
SWIR2 band, green: NIR band, and blue: green band); (k) is the reference BA map generated from
Landsat-8 images; and (l) is the detected BA by proposed method with CE and OE.
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(a) 21-01-2015 (LC8) (b) 06-02-2015 (LC8) (c) 30-06-2015 (LC8)

(d) 20-10-2015 (LC8) (e) 21-11-2015 (LC8) (f) 23-12-2015 (LC8)

(g) BA (LC8) (h) Detected BA

Figure A4. Example of validation using Landsat-8 images (path/row: 104/074) in Australia. (a–f) show
the Landsat-8 images used to generate the reference map, displayed in false color composition (red:
SWIR2 band, green: NIR band, and blue: green band); (g) is the reference BA map generated from
Landsat-8 images; and (h) is the detected BA by proposed method with CE and OE.
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(a) 05-06-2015 (LC8) (b) 29-09-2015 (LC8)

(c) MTBS BA perimeters (d) Reference BA perimeters (e) Detected BA

Figure A5. Comparison between MTBS and detected BA. (a,b) are the Landsat-8 images (path/row:044/
026) displayed in false color composition (red: SWIR2 band, green: NIR band, and blue: green band);
(c) is the MTBS perimeters of 2015; (d) shows reference BA perimeters generated from Landsat-8 images
and MTBS perimeters of 2015; and (e) shows burned areas generated by the proposed method with CE
and OE.
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