A Global, 0.05-Degree Product of Solar-Induced Chlorophyll Fluorescence Derived from OCO-2, MODIS, and Reanalysis Data

Xing Li and Jingfeng Xiao *

Earth Systems Research Center, Institute for the Study of Earth, Oceans, and Space, University of New Hampshire, Durham, NH 03824, USA; zxwlxty@163.com
* Correspondence: j.xiao@unh.edu; +1-603-862-1873

Received: 20 January 2019; Accepted: 27 February 2019; Published: 4 March 2019

Abstract: Solar-induced chlorophyll fluorescence (SIF) brings major advancements in measuring terrestrial photosynthesis. Several recent studies have evaluated the potential of SIF retrievals from the Orbiting Carbon Observatory-2 (OCO-2) in estimating gross primary productivity (GPP) based on GPP data from eddy covariance (EC) flux towers. However, the spatially and temporally sparse nature of OCO-2 data makes it challenging to use these data for many applications from the ecosystem to the global scale. Here, we developed a new global ‘OCO-2’ SIF data set (GOSIF) with high spatial and temporal resolutions (i.e., 0.05°, 8-day) over the period 2000–2017 based on a data-driven approach. The predictive SIF model was developed based on discrete OCO-2 SIF soundings, remote sensing data from the Moderate Resolution Imaging Spectroradiometer (MODIS), and meteorological reanalysis data. Our model performed well in estimating SIF (R² = 0.79, root mean squared error (RMSE) = 0.07 W m⁻² μm⁻¹ sr⁻¹). The model was then used to estimate SIF for each 0.05° × 0.05° grid cell and each 8-day interval for the study period. The resulting GOSIF product has reasonable seasonal cycles, and captures the similar seasonality as both the coarse-resolution OCO-2 SIF (1°), directly aggregated from the discrete OCO-2 soundings, and tower-based GPP. Our SIF estimates are highly correlated with GPP from 91 EC flux sites (R² = 0.73, p < 0.001). They capture the expected spatial and temporal patterns and also have remarkable ability to highlight the crop areas with the highest daily productivity across the globe. Our product also allows us to examine the long-term trends in SIF globally. Compared with the coarse-resolution SIF that was directly aggregated from OCO-2 soundings, GOSIF has finer spatial resolution, globally continuous coverage, and a much longer record. Our GOSIF product is valuable for assessing terrestrial photosynthesis and ecosystem function, and benchmarking terrestrial biosphere and Earth system models.

Keywords: solar-induced chlorophyll fluorescence; Orbiting Carbon Observatory-2; Moderate Resolution Imaging Spectroradiometer; gross primary productivity; photosynthesis; machine learning; data-driven approach; carbon cycle; trend; benchmarking; FLUXNET
Figure 1. The spatial distribution and land cover types of the 91 eddy covariance (EC) flux tower sites from the FLUXNET 2015 Tier 1 dataset used in this study.

Figure 2. Relationship between solar-induced chlorophyll fluorescence (SIF) from our global Orbiting Carbon Observatory-2 SIF (GOSIF) product and gross primary productivity (GPP) from the FLUXNET 2015 Tier 1 dataset across biomes. The R^2 for each biome is as follows: Evergreen needleleaf forests (0.75), evergreen broadleaf forests (0.51), deciduous broadleaf forests (0.85), mixed forests (0.77), open shrublands (0.76), woody savannas (0.84), savannas (0.67), grasslands (0.77), wetlands (0.82), and croplands (0.62). The p value for each biome is less than 0.001.
Table S1. The statistical measures for model development and validation. Model 1 is based on surface reflectance of Moderate Resolution Imaging Spectroradiometer (MODIS) bands 1–7, Model 2 is based on MODIS bands 1–7 and meteorological data (photosynthetically active radiation or PAR, vapor pressure deficit or VPD, and temperature), and Model 3 is based on enhanced vegetation index (EVI) and meteorological data (PAR, VPD, and temperature). The inclusion of meteorological data could improve the estimation of SIF, and the use of EVI, PAR, VPD, and temperature (Model 2) had a slightly higher performance than the use of MODIS bands 1–7 (Model 1) and an identical performance with the use of MODIS bands 1–7 and three meteorological variables (Model 3).

<table>
<thead>
<tr>
<th></th>
<th>Fitting</th>
<th></th>
<th>Cross-validation</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Average Error</td>
<td>Relative Error</td>
<td>R</td>
<td>RMSE</td>
</tr>
<tr>
<td>Model 1</td>
<td>0.05</td>
<td>0.46</td>
<td>0.86</td>
<td>0.07</td>
</tr>
<tr>
<td>Model 2</td>
<td>0.04</td>
<td>0.40</td>
<td>0.90</td>
<td>0.06</td>
</tr>
<tr>
<td>Model 3</td>
<td>0.04</td>
<td>0.43</td>
<td>0.88</td>
<td>0.06</td>
</tr>
</tbody>
</table>
Table 2. FLUXNET Tier-1 sites used for evaluating GOSIF in this study. Site descriptions include site code (Column 1), site name (Column 2), Biome type (Column 3), years of data available (Column 4), latitude (Column 5), longitude (Column 6), R^2 (SIF versus FLUXNET GPP), and references (Column 8) for each flux site. We used the average of night-time (GPP\textsubscript{NT_VUT_REF}) and day-time (GPP\textsubscript{DT_VUT_REF}) estimates to evaluate the GOSIF. GPP\textsubscript{NT_VUT_REF}: GPP from the nighttime (NT) partitioning method, using the Variable Ustar Threshold filtering method, reference selected from GPP versions using model efficiency (MEF). DT indicates the daytime partitioning method.

<table>
<thead>
<tr>
<th>Site-code</th>
<th>Site-Name</th>
<th>Biome</th>
<th>Year</th>
<th>Lat</th>
<th>Lon</th>
<th>R^2</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>AR-Slu</td>
<td>San Luis</td>
<td>MF</td>
<td>2009–2011</td>
<td>−33.4648</td>
<td>−66.4598</td>
<td>0.65</td>
<td></td>
</tr>
<tr>
<td>AU-Ade</td>
<td>Adelaide River</td>
<td>WSA</td>
<td>2007–2009</td>
<td>−13.0769</td>
<td>131.1178</td>
<td>0.74</td>
<td></td>
</tr>
<tr>
<td>AU-ASM</td>
<td>Alice Springs</td>
<td>ENF</td>
<td>2010–2013</td>
<td>−22.2830</td>
<td>133.2490</td>
<td>0.79</td>
<td></td>
</tr>
<tr>
<td>AU-Cpr</td>
<td>Calperum</td>
<td>SAV</td>
<td>2010–2014</td>
<td>−34.0021</td>
<td>140.5891</td>
<td>0.78</td>
<td>[1]</td>
</tr>
<tr>
<td>AU-Das</td>
<td>Daly River Cleared</td>
<td>SAV</td>
<td>2008–2014</td>
<td>−14.1593</td>
<td>131.3880</td>
<td>0.69</td>
<td>[1]</td>
</tr>
<tr>
<td>AU-Emr</td>
<td>Emerald</td>
<td>GRA</td>
<td>2011–2013</td>
<td>−23.8587</td>
<td>148.4746</td>
<td>0.58</td>
<td>[3]</td>
</tr>
<tr>
<td>AU-Gin</td>
<td>Gingin</td>
<td>WSA</td>
<td>2011–2014</td>
<td>−31.3764</td>
<td>115.7138</td>
<td>0.62</td>
<td>[1]</td>
</tr>
<tr>
<td>AU-RDF</td>
<td>Red Dirt Melon Farm, Northern Territory</td>
<td>WSA</td>
<td>2011–2013</td>
<td>−14.5636</td>
<td>132.4776</td>
<td>0.38</td>
<td></td>
</tr>
<tr>
<td>AU-Rig</td>
<td>Riggs Creek</td>
<td>CRO</td>
<td>2011–2014</td>
<td>−36.6499</td>
<td>145.5759</td>
<td>0.80</td>
<td></td>
</tr>
<tr>
<td>AU-Stp</td>
<td>Sturt Plains</td>
<td>GRA</td>
<td>2008–2014</td>
<td>−17.1508</td>
<td>133.3503</td>
<td>0.80</td>
<td>[4]</td>
</tr>
<tr>
<td>AU-Wac</td>
<td>Wallaby Creek</td>
<td>EBF</td>
<td>2005–2008</td>
<td>−37.4259</td>
<td>145.1878</td>
<td>0.45</td>
<td></td>
</tr>
<tr>
<td>AU-Wom</td>
<td>Wombat</td>
<td>EBF</td>
<td>2010–2012</td>
<td>−37.4222</td>
<td>144.9444</td>
<td>0.82</td>
<td></td>
</tr>
<tr>
<td>AU-ync</td>
<td>Jaxa</td>
<td>GRA</td>
<td>2012–2014</td>
<td>−34.9893</td>
<td>146.2907</td>
<td>0.87</td>
<td></td>
</tr>
<tr>
<td>BE-Vie</td>
<td>Vielsalm</td>
<td>MF</td>
<td>2000–2014</td>
<td>50.3051</td>
<td>5.9981</td>
<td>0.92</td>
<td>[7]</td>
</tr>
<tr>
<td>BR-Sa3</td>
<td>Santarem-Km83-Logged Forest</td>
<td>EBF</td>
<td>2000–2004</td>
<td>−3.0180</td>
<td>−54.9714</td>
<td>0.16</td>
<td>[8]</td>
</tr>
<tr>
<td>CA-Man</td>
<td>Manitoba - Northern Old Black Spruce</td>
<td>ENF</td>
<td>2000–2014</td>
<td>55.8800</td>
<td>−98.4810</td>
<td>0.85</td>
<td></td>
</tr>
<tr>
<td>CA-NS2</td>
<td>UCI-1930 burn site</td>
<td>ENF</td>
<td>2001–2005</td>
<td>55.9058</td>
<td>−98.5247</td>
<td>0.87</td>
<td></td>
</tr>
<tr>
<td>CA-NS3</td>
<td>UCI-1964 burn site</td>
<td>ENF</td>
<td>2001–2005</td>
<td>55.9117</td>
<td>−98.3822</td>
<td>0.86</td>
<td>[9]</td>
</tr>
<tr>
<td>CA-NS4</td>
<td>UCI-1964 burn site wet</td>
<td>ENF</td>
<td>2002–2005</td>
<td>55.9144</td>
<td>−98.3806</td>
<td>0.94</td>
<td>[10]</td>
</tr>
<tr>
<td>CA-NS5</td>
<td>UCI-1981 burn site</td>
<td>ENF</td>
<td>2001–2005</td>
<td>55.8631</td>
<td>−98.4850</td>
<td>0.93</td>
<td></td>
</tr>
<tr>
<td>CA-SF1</td>
<td>Saskatchewan - Western Boreal, forest burned in 1977</td>
<td>ENF</td>
<td>2003–2006</td>
<td>54.4850</td>
<td>−105.8176</td>
<td>0.67</td>
<td>[12]</td>
</tr>
<tr>
<td>Country</td>
<td>Site Name</td>
<td>Type</td>
<td>Dates</td>
<td>Latitude</td>
<td>Longitude</td>
<td>Temporal</td>
<td>Reference</td>
</tr>
<tr>
<td>---------</td>
<td>-----------</td>
<td>------</td>
<td>-------</td>
<td>----------</td>
<td>-----------</td>
<td>----------</td>
<td>-----------</td>
</tr>
<tr>
<td>CH-Cha</td>
<td>Chamauro</td>
<td>GRA</td>
<td>2005-2014</td>
<td>47.2102</td>
<td>8.4104</td>
<td>0.74</td>
<td>[13]</td>
</tr>
<tr>
<td>CH-Dav</td>
<td>Davos</td>
<td>ENF</td>
<td>2000-2014</td>
<td>46.8153</td>
<td>9.8559</td>
<td>0.55</td>
<td></td>
</tr>
<tr>
<td>CN-Du2</td>
<td>Duolun_grassland (D01)</td>
<td>GRA</td>
<td>2006-2008</td>
<td>42.0467</td>
<td>116.2836</td>
<td>0.77</td>
<td>[14]</td>
</tr>
<tr>
<td>CN-Ha2</td>
<td>Haibei Shrubland</td>
<td>WET</td>
<td>2003-2005</td>
<td>37.6086</td>
<td>101.3269</td>
<td>0.95</td>
<td>[15]</td>
</tr>
<tr>
<td>CN-Ham</td>
<td>Haibei Alpine Tibet site</td>
<td>GRA</td>
<td>2002-2004</td>
<td>37.3700</td>
<td>101.1800</td>
<td>0.91</td>
<td>[16]</td>
</tr>
<tr>
<td>CN-Qia</td>
<td>Qianyangzhou</td>
<td>ENF</td>
<td>2003-2005</td>
<td>26.7414</td>
<td>111.0586</td>
<td>0.81</td>
<td>[17]</td>
</tr>
<tr>
<td>CN-Sw2</td>
<td>Siziwang Grazed (SZWG)</td>
<td>GRA</td>
<td>2010-2012</td>
<td>41.7902</td>
<td>111.8971</td>
<td>0.00</td>
<td>[18]</td>
</tr>
<tr>
<td>CZ-BK1</td>
<td>Bily Kriz forest</td>
<td>CRO</td>
<td>2004-2008</td>
<td>49.5021</td>
<td>18.5369</td>
<td>0.65</td>
<td>[19]</td>
</tr>
<tr>
<td>DE-Geb</td>
<td>Gebesee</td>
<td>DBF</td>
<td>2000-2012</td>
<td>51.1001</td>
<td>10.9143</td>
<td>0.65</td>
<td></td>
</tr>
<tr>
<td>DE-Hai</td>
<td>Hainich</td>
<td>CRO</td>
<td>2004-2014</td>
<td>50.8929</td>
<td>13.5225</td>
<td>0.64</td>
<td>[20]</td>
</tr>
<tr>
<td>DE-Kli</td>
<td>Klingenber</td>
<td>ENF</td>
<td>2009-2013</td>
<td>49.0996</td>
<td>13.3047</td>
<td>0.91</td>
<td>[21]</td>
</tr>
<tr>
<td>DE-Obe</td>
<td>Oberbärenburg</td>
<td>ENF</td>
<td>2008-2014</td>
<td>50.7836</td>
<td>13.7196</td>
<td>0.82</td>
<td></td>
</tr>
<tr>
<td>DE-RUR</td>
<td>Rollesbroich</td>
<td>GRA</td>
<td>2011-2014</td>
<td>50.6219</td>
<td>6.3041</td>
<td>0.80</td>
<td>[23]</td>
</tr>
<tr>
<td>DE-Spw</td>
<td>Spreewald</td>
<td>WET</td>
<td>2010-2014</td>
<td>51.8923</td>
<td>13.5669</td>
<td>0.86</td>
<td>[108]</td>
</tr>
<tr>
<td>DK-Tha</td>
<td>Tharandt</td>
<td>ENF</td>
<td>2000-2014</td>
<td>50.9636</td>
<td>13.5669</td>
<td>0.86</td>
<td></td>
</tr>
<tr>
<td>DK-ZaF</td>
<td>Zackenberg Fen</td>
<td>WET</td>
<td>2008-2011</td>
<td>74.4814</td>
<td>−20.5545</td>
<td>0.65</td>
<td></td>
</tr>
<tr>
<td>FI-Hyy</td>
<td>Hyytiala</td>
<td>ENF</td>
<td>2000-2014</td>
<td>61.8475</td>
<td>24.2590</td>
<td>0.90</td>
<td>[24, 25]</td>
</tr>
<tr>
<td>FR-Fon</td>
<td>Fontainebleau-Barbeau</td>
<td>DBF</td>
<td>2005-2014</td>
<td>48.4764</td>
<td>2.7801</td>
<td>0.67</td>
<td>[26]</td>
</tr>
<tr>
<td>FR-Gri</td>
<td>Grignon</td>
<td>CRO</td>
<td>2004-2013</td>
<td>48.8442</td>
<td>1.9519</td>
<td>0.48</td>
<td>[27]</td>
</tr>
<tr>
<td>FR-Lbr</td>
<td>Le Bray</td>
<td>ENF</td>
<td>2000-2008</td>
<td>44.7171</td>
<td>−0.7693</td>
<td>0.72</td>
<td></td>
</tr>
<tr>
<td>FR-Pue</td>
<td>Puechabon</td>
<td>DBF</td>
<td>2000-2014</td>
<td>43.7414</td>
<td>3.5958</td>
<td>0.39</td>
<td>[28]</td>
</tr>
<tr>
<td>GF-Guy</td>
<td>Guyaflux (French Guiana)</td>
<td>EBF</td>
<td>2004-2014</td>
<td>5.2788</td>
<td>−52.9249</td>
<td>0.00</td>
<td>[29]</td>
</tr>
<tr>
<td>IT-CA2</td>
<td>Castel d’Asso2</td>
<td>CRO</td>
<td>2011-2014</td>
<td>42.3772</td>
<td>12.0260</td>
<td>0.49</td>
<td>[30]</td>
</tr>
<tr>
<td>IT-Col</td>
<td>Collelongo</td>
<td>DBF</td>
<td>2000-2014</td>
<td>41.8494</td>
<td>13.5881</td>
<td>0.90</td>
<td></td>
</tr>
<tr>
<td>IT-Cpz</td>
<td>Castelporziano</td>
<td>EBF</td>
<td>2000-2009</td>
<td>41.7052</td>
<td>12.3761</td>
<td>0.61</td>
<td></td>
</tr>
<tr>
<td>IT-Lav</td>
<td>Lavarone</td>
<td>ENF</td>
<td>2003-2014</td>
<td>45.9562</td>
<td>11.2813</td>
<td>0.68</td>
<td>[31]</td>
</tr>
<tr>
<td>IT-Ren</td>
<td>Renon</td>
<td>ENF</td>
<td>2002-2013</td>
<td>46.5869</td>
<td>11.4337</td>
<td>0.90</td>
<td>[32]</td>
</tr>
<tr>
<td>JP-MBF</td>
<td>Moshiri Birch Forest Site</td>
<td>DBF</td>
<td>2003-2005</td>
<td>44.3869</td>
<td>142.3186</td>
<td>0.93</td>
<td></td>
</tr>
<tr>
<td>JP-SMF</td>
<td>Seto Mixed Forest Site</td>
<td>MF</td>
<td>2002-2006</td>
<td>35.2500</td>
<td>137.0667</td>
<td>0.85</td>
<td></td>
</tr>
<tr>
<td>NL-Loo</td>
<td>Loobos</td>
<td>ENF</td>
<td>2000-2013</td>
<td>52.1666</td>
<td>5.7436</td>
<td>0.89</td>
<td>[33]</td>
</tr>
<tr>
<td>RU-Che</td>
<td>Cherski</td>
<td>WET</td>
<td>2002-2005</td>
<td>68.6130</td>
<td>161.3414</td>
<td>0.75</td>
<td>[34]</td>
</tr>
<tr>
<td>RU-Cok</td>
<td>Chokurdakh</td>
<td>OSH</td>
<td>2003-2014</td>
<td>70.8291</td>
<td>147.4943</td>
<td>0.68</td>
<td>[35]</td>
</tr>
<tr>
<td>Site Code</td>
<td>Site Name</td>
<td>Type</td>
<td>Start Year</td>
<td>End Year</td>
<td>Latitude</td>
<td>Longitude</td>
<td>Area (ha)</td>
</tr>
<tr>
<td>----------</td>
<td>---</td>
<td>------</td>
<td>------------</td>
<td>----------</td>
<td>----------</td>
<td>-----------</td>
<td>-----------</td>
</tr>
<tr>
<td>RU-Fyo</td>
<td>Fyodorovskoye</td>
<td>ENF</td>
<td>2000–2014</td>
<td>56.4615</td>
<td>32.9221</td>
<td>0.85</td>
<td>[36]</td>
</tr>
<tr>
<td>RU-Ha1</td>
<td>Hakasia steppe</td>
<td>GRA</td>
<td>2002–2004</td>
<td>54.7252</td>
<td>90.0022</td>
<td>0.92</td>
<td></td>
</tr>
<tr>
<td>SD-Dem</td>
<td>Demokeya</td>
<td>SAV</td>
<td>2005–2009</td>
<td>13.2829</td>
<td>30.4783</td>
<td>0.54</td>
<td>[37]</td>
</tr>
<tr>
<td>SN-Dhr</td>
<td>Dahra</td>
<td>SAV</td>
<td>2010–2013</td>
<td>15.4028</td>
<td>−15.4322</td>
<td>0.87</td>
<td></td>
</tr>
<tr>
<td>US-ARM2</td>
<td>ARM USDA UNL OSU Woodward Switchgrass 2</td>
<td>GRA</td>
<td>2009–2012</td>
<td>36.6358</td>
<td>−99.5975</td>
<td>0.51</td>
<td>[38]</td>
</tr>
<tr>
<td>US-Blo</td>
<td>Blodgett Forest</td>
<td>ENF</td>
<td>2000–2007</td>
<td>38.8953</td>
<td>−120.6328</td>
<td>0.72</td>
<td>[40]</td>
</tr>
<tr>
<td>US-Cop</td>
<td>Corral Pocket</td>
<td>GRA</td>
<td>2001–2007</td>
<td>38.0900</td>
<td>−109.3900</td>
<td>0.19</td>
<td></td>
</tr>
<tr>
<td>US-GLE</td>
<td>GLEES</td>
<td>ENF</td>
<td>2005–2014</td>
<td>41.3644</td>
<td>−106.2394</td>
<td>0.83</td>
<td></td>
</tr>
<tr>
<td>US-Ha1</td>
<td>Harvard Forest EMS Tower (HFR1)</td>
<td>DBF</td>
<td>2000–2012</td>
<td>42.5378</td>
<td>−72.1715</td>
<td>0.94</td>
<td>[41]</td>
</tr>
<tr>
<td>US-Ne1</td>
<td>Mead - irrigated continuous maize site</td>
<td>CRO</td>
<td>2001–2013</td>
<td>41.1651</td>
<td>−96.4766</td>
<td>0.83</td>
<td>[43]</td>
</tr>
<tr>
<td>US-Ne2</td>
<td>Mead - irrigated maize-soybean rotation site</td>
<td>CRO</td>
<td>2001–2013</td>
<td>41.1649</td>
<td>−96.4701</td>
<td>0.77</td>
<td>[44]</td>
</tr>
<tr>
<td>US-Ne3</td>
<td>Mead - rainfed maize-soybean rotation site</td>
<td>CRO</td>
<td>2001–2013</td>
<td>41.1797</td>
<td>−96.4396</td>
<td>0.77</td>
<td></td>
</tr>
<tr>
<td>US-NR1</td>
<td>Niwot Ridge Forest (LTER NWT1)</td>
<td>ENF</td>
<td>2000–2014</td>
<td>40.0329</td>
<td>−105.5464</td>
<td>0.84</td>
<td>[45]</td>
</tr>
<tr>
<td>US-Pfa</td>
<td>Park Falls/WLEF</td>
<td>MF</td>
<td>2000–2014</td>
<td>45.9459</td>
<td>−90.2723</td>
<td>0.91</td>
<td>[46]</td>
</tr>
<tr>
<td>US-Prr</td>
<td>Poker Flat Research Range Black Spruce Forest</td>
<td>ENF</td>
<td>2010–2013</td>
<td>65.1237</td>
<td>−147.4876</td>
<td>0.84</td>
<td></td>
</tr>
<tr>
<td>US-SRG</td>
<td>Santa Rita Grassland</td>
<td>GRA</td>
<td>2008–2014</td>
<td>31.7894</td>
<td>−110.8277</td>
<td>0.79</td>
<td>[47]</td>
</tr>
<tr>
<td>US-SRM</td>
<td>Santa Rita Mesquite</td>
<td>WSA</td>
<td>2004–2014</td>
<td>31.8214</td>
<td>−110.8661</td>
<td>0.83</td>
<td>[48]</td>
</tr>
<tr>
<td>US-Svy</td>
<td>Sylvania Wilderness Area</td>
<td>MF</td>
<td>2001–2014</td>
<td>46.2420</td>
<td>−89.3477</td>
<td>0.95</td>
<td>[49]</td>
</tr>
<tr>
<td>US-Ton</td>
<td>Tonzi Ranch</td>
<td>WSA</td>
<td>2001–2014</td>
<td>38.4316</td>
<td>−120.9660</td>
<td>0.79</td>
<td>[50]</td>
</tr>
<tr>
<td>US-Tw1</td>
<td>Twitchell Wetland West Pond</td>
<td>WET</td>
<td>2012–2014</td>
<td>38.1074</td>
<td>−121.6469</td>
<td>0.77</td>
<td></td>
</tr>
<tr>
<td>US-Twt</td>
<td>Twitchell Island</td>
<td>CRO</td>
<td>2009–2014</td>
<td>38.1055</td>
<td>−121.6521</td>
<td>0.76</td>
<td>[51]</td>
</tr>
<tr>
<td>US-Var</td>
<td>Vaira Ranch- Ione</td>
<td>GRA</td>
<td>2000–2014</td>
<td>38.4067</td>
<td>−120.9507</td>
<td>0.59</td>
<td>[52]</td>
</tr>
<tr>
<td>US-Wcr</td>
<td>Willow Creek</td>
<td>DBF</td>
<td>2000–2014</td>
<td>45.8059</td>
<td>−90.0799</td>
<td>0.95</td>
<td>[53]</td>
</tr>
<tr>
<td>US-whs</td>
<td>Walnut Gulch Lucky Hills Shrub</td>
<td>OSH</td>
<td>2007–2014</td>
<td>31.7438</td>
<td>−110.0522</td>
<td>0.77</td>
<td>[54]</td>
</tr>
<tr>
<td>US-Wi3</td>
<td>Mature hardwood (MHW)</td>
<td>DBF</td>
<td>2002–2004</td>
<td>46.6347</td>
<td>−91.0987</td>
<td>0.96</td>
<td></td>
</tr>
<tr>
<td>US-Wi4</td>
<td>Mature red pine (MRP)</td>
<td>DBF</td>
<td>2002–2005</td>
<td>46.7393</td>
<td>−91.1663</td>
<td>0.81</td>
<td></td>
</tr>
<tr>
<td>ZA-Kru</td>
<td>Skukuza</td>
<td>SAV</td>
<td>2000–2010</td>
<td>−25.0197</td>
<td>31.4969</td>
<td>0.63</td>
<td>[56]</td>
</tr>
</tbody>
</table>
References

23. Post, H.; H.-J. Hendricks Franssen; A. Graf; M. Schmidt; H. Vereecken. Uncertainty analysis of eddy covariance CO2 flux measurements for different EC tower distances using an extended two-tower
approach. Biogeosciences. 2015, 12, 1205-1221.

© 2019 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).