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Abstract: Spectral unmixing extracts subpixel information by decomposing observed pixel spectra
into a collection of constituent spectra signatures and their associated fractions. Considering the
restriction of linear unmixing model, nonlinear unmixing algorithms find their applications in
complex scenes. Kernel-based algorithms serve as important candidates for nonlinear unmixing
as they do not require specific model assumption and have moderate computational complexity.
In this paper we focus on the linear mixture and nonlinear fluctuation model. We propose a two-step
kernel-based unmixing algorithm to address the case where a large spectral library is used as the
candidate endmembers or the sparse mixture case. The sparsity-inducing regularization is introduced
to perform the endmember selection and the candidate library is then pruned to provide more accurate
results. Experimental results with synthetic and real data, particularly those laboratory-created
labeled, show the effectiveness of the proposed algorithm compared with state-of-art methods.
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1. Introduction

Hyperspectral images integrate the spectrum representing radiant attributes of an observed scene
with homological images standing for spatial and geometric relations. Thanks to the high spectrum
resolution and rich spectral information, hyperspectral imaging has been widely used in applications
ranging from forest mapping and monitoring, land cover change detection, mineral exploration,
object identifying, etc.

Hyperspectral image analysis plays a key role in revealing information from high-dimensional
data. In the last decade, spectral unmixing has received considerable attention. It aims to decompose
the observed pixel spectra into a collection of constituent spectra signatures (called endmembers)
and estimate fractions associated with each component (called abundances) [1]. Spectral unmixing
is particularly useful to analyze pixels with low spatial or with photon interactions among materials.
Unmixing techniques have been extensively studied and most of them perform the endmember
extraction and abundance estimation either in an independent or simultaneous manner. Provided that
the pure pixels are present in the observed scene, methods such as pixel purity index algorithm (PPI) [2],
vertex component analysis (VCA) [3] and the N-FINDR algorithm [4] are proposed for extracting
endmembers. Meanwhile some algorithms consider to generate virtual endmembers and abundances
due to the absence of pure pixels, for example, the minimum volume simplex analysis (MVSA) [5],
the minimum volume constrained nonnegative matrix factorization [6]. To pursue interpretable and
tractable solutions, most algorithms are based on the linear mixture model (LMM). The LMM assumes
that an observed pixel is a combination of signature spectra weighted by the abundances and to be
physically meaningful, the problem is usually subject to two constraints: the abundance nonnegativity
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constraint (ANC) and the abundance sum-to-one constraint (ASC). The linear unmixing algorithms
can be classified as the least squares principle [7], statistical framework [8,9], sparse regression [10,11],
and independence component analysis (ICA) based algorithms [9,12,13].

Since the LMM may not be appropriate in some practical situations where the light is scattered by
multiple reflective or interacted materials [14], the nonlinear mixture model (NLMM) then provides an
alternative to overcome the limitation of the LMM. For instance, a specific class of nonlinear models
referred to as bilinear models has been studied in [15–19] for modeling the second-order reflectance
by introducing extra additional bilinear terms to LMM. The postnonlinear mixture model (PNMM)
has also been introduced in [20,21] that considers an appropriate nonlinear function mapping from
[0, 1]L into [0, 1]L [18]. In [22], based on nonlinear models, the authors proposed a parameter-free
unmixing algorithm where abundance fractions and a set of nonlinear parameters are under the specific
constraints which can be satisfied by minimizing the penalty function. The above algorithms are
presented based on certain models, and thus lack the flexibility. The neural networks based methods
can be regarded as model-free methods. In [23], the authors designed a multi-layer perceptron
neutral network combined with a Hopfield neural network to deal with nonlinear mixture. In [24] the
auto-associative neural network for abundance estimation was introduced for nonlinear unmixing
purposes consisting of dimension reduction stage and the mapping stage from feature to the abundance
percentages. Furthermore, in [25] the authors proposed an end-to-end unmixing method based on
the convolutional neural network to improve the accuracy where the spatial information is taken into
account. The kernel-based methods can also be regarded as the model-free methods.

The kernel-based methods serve as one of the most popular tools in addressing nonlinear learning
problems. These methods map the data to a feature space of higher dimension where the mapped
data can be represented with a linear model in this space [26]. It is important to note that finding the
explicit mapping is however bypassed via the kernel trick [27–31]. In [32,33], the authors proposed a
model consisting of a linear mixture and a nonlinear fluctuation. The nonlinear fluctuation function
characterizes the high-order interactions between endmembers and is restricted within a reproducing
kernel Hilbert space (RKHS). The so called K-Hype and SK-Hype algorithms are proposed therein.
In contrast to several other classes of algorithms, the kernel-based methods is independent of a
specific observation model and has the generalization ability in multiple scenes. Thus, sebsequent
models have been further studied in the literature. An `1-spatial regularization term is added to
the K-Hype problem in [34] to promote the piece-wise spatial continuity of the abundance maps.
In [35,36], the nonlinear fluctuation term is also called the residual term and the associated algorithm
is called the residual component analysis. Post-nonlinear models as well as some robust unmixing
models that consider such a fluctuation are presented in [37]. In [38], the authors extended this
method by accounting for band-dependent and neighboring nonlinear contributions using separable
kernels. Further, kernel-based nonnegative matrix factorization (NMF) techniques are studied to
simultaneously capture nonlinear dependence features and estimate the abundance.

The above kernel-based algorithms has its inherent limitations. On one hand, these algorithms
focus on the abundance estimation, and do not consider the extraction of the endmembers. On the
other hand, the structures of the K-hype type algorithms and its variations impose a regularization
with unclear physical interpretation on the abundance vector (as elaborated in Section 2) and the
fluctuation is independent of the abundance fractions. In this work, we propose a kernel-based sparse
nonlinear spectral unmixing. The nonlinear unmixing algorithm is designed to run with a large
number of candidate spectral signatures. A sparse regularization step and a dictionary pruning step
are conducted in a sequential manner: the former select endmembers with significant contributions;
and the latter then performs the abundance estimation with a more proper optimization problem using
the pruned endmember dictionary. The contributions of this work are summarized as follows:

1. A kernel based sparse nonlinear unmixing problem is formulated and a two-step solving strategy
is proposed. This strategy allows to use a spectral library for selecting the endmembers and
bypass the problem of endmember extraction in the nonlinear unmixing.



Remote Sens. 2019, 11, 529 3 of 17

2. A more reasonable formulation of the optimization problem is proposed for solving the linear
mixture/nonlinear fluctuation model. This formulation improves the K-Hype formulation in
several aspects and serves as a key component in the proposed sparse unmixing scheme.

3. The algorithm is tested using real data with ground-truth created in our laboratory. Lack of publicly
available data sets with ground truth imposes difficulties to compare unmixing algorithms. Most
of the existing works rely on the use of numerically produced synthetic data and real data without
ground truth. Using a labeled real data provides a more meaningful comparison results.

The remainder of this paper is organized as follows. Section 2 introduces the related work based
on kernel methods. The proposed basic kernel-based algorithm is described in Section 3. Section 4
describes experimental results with simulated hyperspectral data and real hyperspectral data sets.
Finally the conclusion is given in Section 5.

2. Kernel-Based Nonlinear Abundance Estimation

Notation. Scalars are denoted by italic letters. Vectors and matrices are denoted by boldface small
and capital letters respectively. Specifically, if each pixel of the hyperspectral image consists of a
reflectance vector in L contiguous spectral bands, then r = [r1, r2, . . . , rL]

> ∈ RL is an observed
pixel, M = [m1, m2, . . . , mL]

> ∈ RL×R is the endmember matrix which is a spectral library consisting
of spectral signatures mi with R numbers of endmembers, and mλ`

is the vector of R endmember
signatures at the `-th wavelength bands of M, α = [α1, x2, . . . , αR]

> ∈ RR is the abundance vector.
In this section, we first review the general unmixing model and the kernel-based linear

mixture/nonlinear fluctuation model proposed in [33]. A general mixing mechanism can be
formulated as

r = ψ(M, α) + n (1)

where ψ is an unknown function that defines the interactions between the endmembers in matrix M
parameterized by their associated abundance fractions α, and n is the modeling noise. Though general
enough, this strategy may fail if the function ψ cannot be adequately and finitely parameterized.
A semi-parametric model proposed in [33] is described by:

ψ(mλ`
) = m>λ`

α + ψnlin(mλ`
). (2)

This model is composed by a linear mixture term and a nonlinear fluctuation term defined
by ψnlin. Several useful nonlinear mixing model can be considered as a specific case of (2).
For instance, (2) reduces to a bilinear model if the second-order polynomial is used for ψnlin. Models
and algorithms of the residual component analysis follows the same principle [35–37]. Assume that
the endmember matrix M is known, and ψnlin(mλ`

) is a real-valued function of a reproducing kernel
Hilbert spaceH, endowed with the reproducing kernel κ, i.e.,

ψnlin(mλ`
) = 〈ψnlin, κ(·, mλ`

)〉H. (3)

Selecting a proper kernel is essential for describing the mixture. For instance, the second-order
homogeneous polynomial kernel

κ(mλk , mλ`
) = (m>λk

mλ`
)2 (4)

is able to represent the second-order interactions between endmembers; and the Gaussian kernel

κ(mλk , mλ`
) = exp

(
−
‖mλk −mλ`

‖2

2

)2

= exp
(
−
‖mλk‖

2 + ‖mλ`
‖2

2σ2

) ∞

∑
i=0

(m>λk
mλ`

)i

i! σ2i

(5)
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involves an infinity order of interactions since it can be expanded as the sum of polynomials of all
orders. Then [33] proposes to evaluate the abundances and the nonlinear function by solving the
following optimization problem:

α∗, ψ∗nlin = arg min
ψnlin∈H

1
2
(‖α‖2 + ‖ψnlin‖2

H) +
1

2µ

L

∑
`=1

e2
`

s.t. e` = r` −m>λ`
α− ψnlin(mλ`

)

α � 0 and 1>α = 1,

(6)

where µ is a positive parameter. The above problem minimizes the reconstruction error, as well as the
regularity of ψnlin and α is characterized by the squared `2-norm with the ANC and ASC. This convex
problem can be solved via its duality theory and leads to the so-called K-Hype algorithm. The `-th
element of this pixel is then reconstructed by

r∗` = m>λ`
α∗ + ψ∗nlin(mλ`

). (7)

where ∗ denotes the optimal estimates. K-Hype has been shown efficient in addressing several
nonlinear mixture scenarios. However, it has the following restrictions:

• R1: While the `2-regularization on ψnlin controls it regularity, the `2-regularization on α does not
possess a clear interpretation, as there is no reason to consider that an abundance vector is having
a small `2-norm.

• R2: Problem (6) aims to estimate the abundances with the known endmember matrix. Considering
to use a large spectral library as candidates, specific variants for extracting active endmembers
are needed.

Facts R1 and R2 motivate us to derive an improved model and the associated unmixing algorithms
by modfiying the `2-regularization and considering an endmember selection strategy.

3. Kernel-Based Nonlinear Unmixing Problem

In this section, we derive a new sparse kernel-based nonlinear unmixing algorithm with the
data model (2). We shall first consider R1 by removing the `2-regularization of the abundances and
devise the associated algorithm. Thereafter, we consider R2 by proposing a sparse unmixing technique
consisting of an `1-regularization step and a dictionary prunning step.

3.1. Nonlinear Unmixing with the Regularity Constraint on ψnlin.

Under the assumption that the endmember matrix M is known, we estimate the abundance
vector α and to infer the nonlinear function ψnlin ∈ H by solving the following functional optimization
problem, that is,

α∗, ψ∗nlin = arg min
ψnlin∈H

1
2
‖ψnlin‖2

H +
1

2µ

L

∑
l=1

e2
`

s.t. e` = r` −m>λ`
α− ψnlin(mλ`

)

α � 0 and 1>α = 1.

(8)

In contrast to (6), the `2-norm regularization of α is discarded, then the optimal α∗ can not be
explicitly expressed with the dual variables as in ([33] Equation (18)). In this case, resorting to the
semi-parametric Representation Theorem [39] leads to the following expression for the nonlinear
function ψnlin:

ψnlin =
L

∑
`=1

β` κ(· , mλ`
). (9)
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By substituting (9) to (8), we get the following problem in a quadratic form with respect to
parameters α and β:

min
α,β

1
2

β>Kβ +
1

2µ

∥∥r−Mα− Kβ
∥∥2

2

=
1
2

[
β

α

]>[
K + 1

µ K>K 1
µ K>M

1
µ M>K 1

µ M>M

][
β

α

]
+

[
− 1

µ K>r
− 1

µ M>r

]>[
β

α

]
s.t. α � 0 and 1>α = 1,

(10)

where K is a Gram matrix with (k, `)-th entry being κ(mλk , mλ`
). Then the abundance vector can be

evaluated by solving the problem (10) under the ASC and ANC via a quadratic programming solver.

3.2. Kernel-Based Sparse Nonlinear Unmixing with Dictionary Pruning

In this subsection, we consider a kernel-based model with pruning dictionary via a two-step
method. It is possible to use a large spectral library as a dictionary, and then select a few elements as
the endmembers that contribute to the mixture. This way also provides a solution to the simultaneous
endmember extraction and abundance estimation for the nonlinear unmixing.

3.3. Problem Formulation

We first consider to add `1-norm regularization to (8) and to promote the sparsity of estimated
abundances. The optimization problem is then formulated as

α†, ψ†
nlin = arg min

ψnlin∈H

1
2
‖ψnlin‖2

H +
1

2µ

L

∑
l=1

e2
` + λ‖α‖1

s.t. e` = r` −m>λ`
α− ψnlin(mλ`

)

α � 0.

(11)

Note that the ASC is ignored since it is contradictory to the `1-norm regularization. In order to
solve (11), we introduce an auxiliary variable ζ and reformulate the problem to an equivalent form:

α†, ζ†, ψ†
nlin = arg min

Ψnlin∈H

1
2
‖ψnlin‖2

H +
1

2µ

L

∑
l=1

e2
` + λ‖ζ‖1 + IR+(ζ)

s.t. e` = r` −m>λ`
α− ψnlin(mλ`

)

α = ζ,

(12)

where the IR+(·) is the indicator function such that IR+(·) is 0 if its argument belongs to the
nonnegative orthant and +∞ otherwise. This new variable ζ allows us to decouple the non-smooth
`1-norm regularization functional from the constrained problem. As studied in [40], the split-Bregman
iteration algorithm is an efficient method to deal with a broad class of `1-regularized problems.
By applying this framework to (12), the following formulation is obtained:

α(k+1), ψ
(k+1)
nlin , ζ(k+1)

= argmin
α,ψnlin∈H,ζ

1
2
‖ψnlin‖2

H+
1

2µ

L

∑
`=1

[
r` −m>λ`

α− ψnlin(mλl
)
]2

+ λ‖ζ‖1 + IR+ (ζ) +
ρ

2

∥∥∥α− ζ + ξ(k)
∥∥∥2

2
(13)

and
ξ(k+1) = ξ(k) +

(
α(k+1) − ζ(k+1)). (14)
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Because of the way that we have split the components of the cost function, we can now perform the above
minimization efficiently by iteratively minimizing with respect to α and ψnlin, and ζ separately. The two steps that
we have to perform are as follows:

1. Optimization with respect to α and ψnlin: Discarding irrelevant variables, the optimization problem (13)
reduces to

min
α,ψnlin∈H

1
2
‖ψnlin‖2

H +
1

2µ

L

∑
`=1

e2
` +

ρ

2

∥∥∥α−ζ(k)+ξ(k)
∥∥∥2

2
(15)

s.t. e` = r` −m>λ`
α− ψnlin(mλ`

).

By introducing the Lagrange multipliers {β}L
`=1, the Lagrange function associated with the problem (15)

can be written as

L1 =
1
2
‖ψnlin‖2

H +
1

2µ

L

∑
`=1

e2
` +

ρ

2

∥∥∥α− ζ(k) + ξ(k)
∥∥∥2

2
+

L

∑
`=1

β`

(
r` −m>λ`

α− ψnlin(mλ`
)− e`

)
. (16)

The conditions for optimality of L1 with respect to the primal variables are given by

α =
1
ρ

M>β + ζ(k) − ξ(k)

ψn =
L

∑
`=1

β` κ(· , mλ`
)

e` = µ β`, for ` = 1, · · · , L,

(17)

where β = [β1, · · · , βL]
>. By substituting (17) into (16), this results in a quadratic form with respect to the

Lagrange multiplier and we get the following dual problem:

max
β
− 1

2
β>
(

K + µI +
1
ρ

MM>
)

β +

(
1
ρ

Mξ(k) −Mζ(k) + r
)>

β. (18)

This is a quadratic program and the updated value β(k+1) is readily obtained by

β(k+1) =

(
K + µI +

1
ρ

MM>
)−1
×
(

1
ρ

Mξ(k) −Mζ(k) + r
)

. (19)

Clearly, matrix K + µI + 1
ρ MM> is positive-definite and invertible.

2. Optimization with respect to ζ: Discarding irrelevant variables, the problem reduced to

min
ζ

λ‖ζ‖1 + IR+ (ζ) +
ρ

2

∥∥∥α(k+1) − ζ + ξ(k)
∥∥∥2

2
. (20)

Its solution can be expressed by the well-known soft threshold function

ζ(k+1) = S
(

α(k+1) + ξ(k)
)+

(21)

where S(·, ·) denotes the component-wise application of the soft threshold function, given by

S(x, y) = sign(x)max(|x| − y, 0), (22)

and (·)+ projects the argument to the nonnegative orthant by setting a negative value to 0.

These iterations are repeated until convergence. The stopping criteria as in [41] can be used where the primal
and dual residuals must be smaller than some tolerance thresholds. We denote the optimal solution obtained
from this step by α†, as this quantity will be used in the later part.
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3.4. Dictionary Pruning

By solving the above problem, the abundance vector is obtained from a relatively large original dictionary.
We then propose to refine the estimation and prune the large spectral library to a smaller one by discarding the
endmembers with zero fractions. Therefore, in this second step, we reformulate the optimization problem using
this pruned dictionary as follows:

α∗, ψ∗nlin =

argmin
ψnlin∈H

1
2
‖ψnlin‖2

H +
1

2µ

L

∑
`=1

[
r` − x>(mλ`

� supp(α†))− ψnlin(mλ`
� supp(α†))]2 + λ‖α‖1

s.t. α � 0,

(23)

where supp(α†) ∈ {0, 1} is a vector that denotes the support of the abundance estimated by the first step and �
denotes the Hadamard product. The Hadamard product between the endmember information and the support
set discards the inactive ones defined in α†. Note that a large number of endmembers interact in ψnlin with the
model in Section 3.3, and only a small active part is involved after pruning the dictionary, which is reasonable for
providing a better model. Problem (23) can be approached in a similar way as in Section 3.3.

4. Experiments

In this section, experiments are conducted to validate the proposed unmixing algorithms and compare them
with several state-of-the-art methods. The algorithms are tested on synthetic data, real data captured created in
our laboratory with ground-truth, and the well-known Airborne Visible/Infrared Imaging Spectrometer (AVIRIS)
Cuprite image over the Cuprite mining region in NV, USA. Note that testing unmixing algorithms using real data
with ground-truth would produce more meaningful results.

4.1. Experiments with Synthetic Data

4.1.1. Simulation Settings

Two synthetic datasets are generated for the experiments. In the first scene (denoted by S1), a large spectral
library is considered, since the sparse unmixing algorithm aims to select proper endmembmers from this library.
A pruned-version endmember library [42] is used with 342 candidates whose reflectance values are measured
for 224 spectral bands distributed uniformly in the interval 0.4−2.5 µm. A total of 1000 pixels are generated for
each mixture setting. In each pixel, three endmembers in the library are randomly activated, with their associated
abundance vectors being generated in the simplex defined by non-negative and sum-to-one constraints.

In the second scene (denoted by S2), nine endmembers are selected from the above library to generate a
50-by-50 image with N = 2500 pixels, using the upper-left region of ([11] Figure 2) for the associated abundances.
These mixtures in this scene involved only nine endmembers, however, very few endmembers are activated in
each pixel as shown in Figure 1.
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Figure 1. Ground-truth abundance maps associated to nine endmembers used in S2.
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Both of these two scenes are generated with the general bilinear model (GBM) defined by:

r = Mα +
R−1

∑
i=1

R

∑
j=i+1

γi,jαiαjmi �mj + n,

and the PNMM defined by

r = (Mx)τ + n. (24)

In these experiments, the parameter γi,j is simply set to 1 and τ is set to 0.7, same as [33]. Finally, all data are
corrupted with an additive white Gaussian noise with two levels of SNR, namely, 30 dB and 15 dB respectively.

4.1.2. Comparative Simulations

Several algorithms are conducted in order to compare their unmixing performance. Their tuning parameters
are set during preliminary experiments on independent data, via a simple search over the grids defined hereafter.

• The FCLS algorithm [7]: This classical algorithm relies on the linear model and seeks the optimal solution of
a least-square problem subject to the ASC and ANC.

• The sparse unmixing by variable splitting and augmented Lagrangian (SUnSAL) [10]: This algorithms fits
the observed (mixed) hyperspectral vectors with sparse linear mixtures of spectral signatures from a large
dictionary available a priori. The parameter λSUnSAL controls the trade-off between the fitting and sparsity.

• The K-Hype algorithm [33]: This algorithm is based on the scalar RKHS model. The parameter µK−Hype
controls the trade-off between the fitting and the functional regularity.

• The nonlinear neighbor and band dependent unmixing (NDU) [38]: This method extends the K-Hype by
accounting for band-dependent and neighboring nonlinear contributions with vector-valued kernel function.
The separable (Sp.) structure is considered due to the high computational complexity. This algorithm is
characterized by the trade-off parameter λNDU, fitting parameter µNDU and penalty parameter ρNDU.

• The improved incremental KNMF (IIKNMF) [31]: This method extends KNMF by introducing partition
matrix theory and considering the relationships among dividing blocks. The incremental KNMF (IKNMF) is
proposed to reduce the computing requirements for large-scale data and IIKNMF aims to further improve
the abundance results. The parameter k controls the number of blocks. For each experiment of IIKNMF,
5 independent runs are carried out and the results are averaged.

The root mean square error between the true values αn and the estimates α̂n defined by

RMSE =

√√√√ 1
NR

N

∑
n=1

∥∥αn − α̂n
∥∥2 (25)

is used to evaluate the performance of the abundance estimation. All the kernel-based methods are tested with a
Gaussian (G) given by

κ(mλ`
, mλp ) = exp

(
−
‖mλ`

−mλp‖2

2σ2

)
, (26)

and a second order homogeneous polynomial (P) kernel given by

κ(mλ`
, mλp ) = (m>λ`

mλp )
2, (27)

respectively. The bandwidth σ of the Gaussian kernel in the algorithms K-Hype, NDU, IIKNMF and the proposed
algorithm is varied within {1, 2, 3, ..., 10}. In these algorithms, the tuning parameters λSunSAL, λNDC and λ of the
sparse regularization are tested in the range {1, 0.5, 0.1, 0.05, 0.01, 0.005, 0.001, 0.0005}, and parameters µ, µK−Hype
and µNDU for the fitting term are tested in the range {1000, 500, 100, 20, 10, 5, 2, 1, 0.5, 0.2, 0.1, 0.05, 0.01, 0.005}.
The penalty parameter ρNDU in NDU and ρ in the proposed method are both set to 1. All the parameters used in
the experiments of S1 and S2 are reported in Appendix Section (Tables A1 and A2 respectively). In the experiment
with S1, the results of IIKNMF are not given, since its computational time is beyond acceptance with a very large
endmember library. Besides selecting the Gaussian kernel parameter from the candidate values, we also use an
automatic parameter setting strategy, where we set σ = max`,k

{
d(mλ`

, mλk
)
}

, so that the kernel width covers the
variability range of the input. Associated performance of this setting is denoted by “(auto)” in the results.
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4.1.3. Results

The obtained RMSEs for S1 and S2 are reported in Tables 1 and 2. Generally, under the low SNR (15 dB), the
compared algorithms have similar performance. Meanwhile all of the algorithms show an increased accuracy as
the SNR increases. It is observed that NDU performs slightly better than our proposed algorithm in some settings
of S1, however its computational complexity is several times higher. In S2, it is observed that the proposed
algorithm outperforms the competing methods in most cases, and even in the low SNR setting, the proposed
algorithm significantly outperforms the others. We also observe that the automatic kernel parameter setting
strategy leads to results that are comparable to those from the pre-selected setting. The synthetic data can be
restrictive to provide a proper performance evaluation due to their inherent limitation. In the next section, we
shall validate the advantage of the proposed algorithm with labeled real data.

Table 1. RMSE comparison of S1.

SNR = 15 dB SNR = 30 dB
GBM PNMM GBM PNMM

FCLS 0.0296 ± 0.00055 0.0319 ± 0.00052 0.0224 ± 0.00046 0.0235 ± 0.00033
SUnSAL 0.0283 ± 0.00054 0.0321 ± 0.00054 0.0171 ± 0.00034 0.0214 ± 0.00034

K-Hype (G) 0.0295 ± 0.00037 0.0319 ± 0.00036 0.0214 ± 0.00040 0.0244 ± 0.00032
K-Hype (P) 0.0292 ± 0.00038 0.0322 ± 0.00036 0.0213 ± 0.00038 0.0254 ± 0.00032

NDU (G) 0.0278 ± 0.00054 0.0311 ± 0.00050 0.0153 ± 0.00030 0.0192 ± 0.00028
NDU (P) 0.0277 ± 0.00054 0.0309 ± 0.00052 0.0150 ± 0.00031 0.0193 ± 0.00028

Proposed (G) 0.0279 ± 0.00051 0.0315 ± 0.00051 0.0152 ± 0.00029 0.0210 ± 0.00032
Proposed (auto) (G) 0.0291 ± 0.00054 0.0315 ± 0.00051 0.0155 ± 0.00030 0.0210 ± 0.00032

Proposed (P) 0.0278 ± 0.00052 0.0315 ± 0.00051 0.0150 ± 0.00032 0.0210 ± 0.00032

Table 2. RMSE comparison of S2.

SNR = 15 dB SNR = 30 dB
GBM PNMM GBM PNMM

FCLS 0.0564 ± 0.0031 0.1185 ± 0.0082 0.0488 ± 0.0027 0.1139 ± 0.0070
SUnSAL 0.0523 ± 0.0035 0.0839 ± 0.0060 0.0288 ± 0.0008 0.0561 ± 0.0016

K-Hype (G) 0.0482 ± 0.0029 0.0726 ± 0.0051 0.0161 ± 0.0003 0.0338 ± 0.0011
K-Hype (P) 0.0945 ± 0.0070 0.1346 ± 0.0107 0.0533 ± 0.0026 0.1218 ± 0.0078

NDU (G) 0.0551 ± 0.0030 0.1107 ± 0.0090 0.0447 ± 0.0020 0.0888 ± 0.0070
NDU (P) 0.0524 ± 0.0025 0.1127 ± 0.0093 0.0355 ± 0.0011 0.0825 ± 0.0068

IIKNMF (G) 0.2396 ± 0.0488 0.2290 ± 0.0364 0.2418 ± 0.0472 0.2360 ± 0.0439
IIKNMF (P) 0.2155 ± 0.0324 0.2066 ± 0.0253 0.2241 ± 0.0349 0.2107 ± 0.0342
Proposed (G) 0.0529 ± 0.0039 0.0662 ± 0.0052 0.0278 ± 0.0008 0.0269 ± 0.0005

Proposed (auto) (G) 0.0536 ± 0.0037 0.0665 ± 0.0053 0.0233 ± 0.0005 0.0271 ± 0.0006
Proposed (P) 0.0515 ± 0.0037 0.0867 ± 0.0061 0.0159 ± 0.0003 0.0604 ± 0.0011

4.1.4. Sensitivity Analysis

We analyze the sensitivity of the proposed method with respect to the algorithm parameters λ and µ.
This test is conducted with S1 using both Gaussian and Polynomial kernels under SNR of 30 dB. The results
are shown in Figures 2 and 3. As can be seen within a reasonable range around the optimal parameter values,
the algorithm exhibits satisfactory RMSE.
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Figure 2. RMSE as a function of the regularization parameters for the proposed method with S1 using
Gaussian kernel.
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Figure 3. RMSE as a function of the regularization parameters for the proposed method with S1 using
Polynomial kernel.

4.2. Experiments with the Laboratory Created Real Data

4.2.1. Data Presentation

In order to perform quantitive evaluation of unmixing performance, we designed several experimental
scenes in our laboratory with the GaiaField (Sichuan Dualix Spectral Image Technology CO. Ltd., GaiaField-V10)
and GaiaSorter systems. Our GaiaField is a push-boom imaging spectrometer with a HSIA-OL50 lens, covering the
visible and NIR wavelengths ranging from 400 nm to 1000 nm. GaiaSorter sets an environment that isolates
external lights, and is endowed with a conveyer to move samples for the push-boom imaging. A dataset is created
by imaging these scenes with the hyperspectral camera in our laboratory, providing mixtures with 256 wavelength
bands. The experimental settings are strictly controlled so that pure material spectral signatures and material
compositions are known. See [43,44] for experiment and data description in detail.

In this subsection, uniform mixture #1, mixture #7 and two non-uniform mixtures cases of Scene-II in [44]
are used (In [44], to get the ground truth, the aligned high-resolution RGB images of S5 and S6 were captured,
and then the percentage of each colored sand in a low-resolution hyperspectral pixel could be analyzed with the
help of the associated RGB image). In this scene, quartz sand of different colors are mixed, and the diameter
of the granules is controlled to be approximately 0.03 mm (see Figure 4). Seven endmembers (four different
pure colored quartz sand and three other materials in the dataset) are included as candidate spectral signatures,
shown in Figure 5. The true abundances are provided either by priorly known fractions (uniform mixtures) or
analysis of aligned high-resolution images (mixtures with spatial patterns). One uniform mixture is formed by
mixing 50% blue sand and 50% white sand so that the true abundance vector α = [0.5, 0.5, 0, 0, 0, 0, 0]> (denoted by
S3). The other uniform mixture is formed by mixing the blue, red and green sand so that the true abundance
vector α = [1/3, 0, 1/3, 1/3, 0, 0, 0]> (denoted by S4). S5 and S6 respectively denote the two mixtures with spatial
patterns formed by mixing two and three types of sand. As this scene mimics the intimate mixture model,
the Gaussian kernel is used for this high-order nonlinear case.
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Figure 4. Laboratory created data for unmixing performance evaluation (RGB images). Subfigures
(a–d): pure quartz sand of 0.03 mm of four colors, and they serve as pure materials for providing
endmembers. Subfigures (e,f): uniform mixtures of sand of two (e) and three colors (f). Subfigures
(g,h): mixtures with spatial patterns of sand of two (g) and three colors (h). Square regions of 60-by-60
pixels in the center of each subfigures are clipped out and used in experiments.
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Figure 5. Spectral signatures of seven materials extracted from the dataset. They form the endmember
matrix that is used in Section 4.2.

4.2.2. Results

The obtained RMSEs are reported in Table 3, with the algorithm parameters listed in Table A3. We observe
that the proposed algorithm achieves the lowest RMSEs, and the proposed algorithm with automatically set
bandwidth also leads to satisfactory performance. For data S5 and S6, abundance maps estimated by the
compared algorithms are shown in Figures 6 and 7. We see that most algorithms recovered the spatial pattern of
the abundance maps. However, the K-Hype algorithm produces a low contrast map for the first component in S5.
The proposed algorithm results in sharper abundance maps with lowest RMSEs. Experiments with these labeled
real data show the benefit of the proposed algorithm.

Table 3. RMSE comparison of S3, S4, S5, S6.

Model LMM NLMM

Algorithm FCLS SUnSAL K-Hype (G) NDU (G) IIKNMF (G) Proposed (G) Proposed (auto) (G)

RMSE

S3 0.1192 ± 0.0054 0.1410 ± 0.0072 0.1445 ± 0.0053 0.1235 ± 0.0093 0.2213 ± 0.0646 0.1124 ± 0.0044 0.1138 ± 0.0045
S4 0.0891 ± 0.0041 0.1020 ± 0.0049 0.0662 ± 0.0042 0.1032 ± 0.0112 0.1709 ± 0.0184 0.0573 ± 0.0025 0.0585 ± 0.0025
S5 0.1619 ± 0.0279 0.1733 ± 0.0318 0.1802 ± 0.0229 0.1617 ± 0.0280 0.2502 ± 0.0753 0.1576 ± 0.0275 0.1585 ± 0.0283
S6 0.1799 ± 0.0250 0.1817 ± 0.0252 0.1895 ± 0.0249 0.1789 ± 0.0249 0.2398 ± 0.0598 0.1699 ± 0.0242 0.1703 ± 0.0244
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Figure 6. Abundances maps of S5. From left to right columns: ground-truth, estimated abundances
of FCLS, SUnSAL, K-Hype (G), NDU (G), IIKNMF (G), proposed (G). From top to bottom rows:
distributions of red quartz sand and green quartz sand.
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Figure 7. Abundances maps of S6. From left to columns: ground-truth, estimated abundances of FCLS,
SUnSAL, K-Hype (G), NDU (G), IIKNMF (G), proposed (G). From top to bottom rows: distributions of
blue quartz sand, red quartz sand and green quartz sand.

4.3. Experiment with AVIRIS Cuprite Data

This section illustrates the performance of the proposed algorithms and other algorithms when applied
to real remote sensing hyperspectral data. The scene that is used for our experiment is the well-known image
captured on the Cuprite mining district (NV, USA) by AVIRIS. A sub-image of 250× 191 pixels is chosen to
evaluate the algorithms. This area of interest has 188 spectral bands. This scene is denoted by S7. The same twelve
spectra signatures as in [33] are used for the endmember matrix, as shown in Figure 8. Results from most existing
works illustrate that only few materials are active in each pixel, thus sparse unmixing is potentially beneficial for
analyzing this scene.
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Figure 8. AVIRIS Cuprite data (denoted by S7) used in the experiment. (a) The false color image
illustrated with bands {30, 40, 80} of the sub-image of the AVIRIS Cuprite data set. (b) Twelve
endmembers used for unmixing.

Note that this real data is extensively used in the literature, however no ground-truth information is available
for an objective performance evaluation. The quality of these algorithms can be defined by the Reconstruction
Error (RE) which is defined as

RE =

√√√√ 1
NL

N

∑
n=1
‖rn − r̂n‖2. (28)

In general, RE can be used to provide a quantitative information of the unmixing performance. However,
as pointed in [33], without the ground-truth information on the abundances for the real data, the reconstruction
quality measured by RE is not necessarily proportional to the quality of the abundance estimation, and therefore
it can only be considered as complementary information. In this experiment, the selected parameters are given in
Table A4 and the RE comparison by the linear and nonlinear models is reported in Table 4. Figure 9 illustrates the
maps of the reconstruction error. These tables and figures clearly indicate that nonlinear unmixing algorithms
lead to significantly lower REs compared to linear algorithms, especially at several particular spatial regions.
The proposed algorithm exhibits a comparable RE compared to K-Hype with Gaussian kernel, recalling that it is
common that a regularization term increases the data fitting cost. Figure 10 shows the abundance maps of selected
materials estimated by these algorithms. The proposed algorithm provides a sharper map with several particular
locations emphasized.

Table 4. RE comparison of S7.

Model LMM NLMM

Algorithm FCLS SUnSAL K-Hype (G) NDU(G) IIKNMF (G) Proposed (G) K-Hype (P) NDU(P) IIKNMF (P) Proposed (P)
RE 0.0056 0.0050 0.0027 0.0282 0.0164 0.0028 0.0021 0.0282 0.0519 0.0034

5. Conclusions

In this work a new nonlinear sparse unmixing method is proposed. Under the assumption that the model
consists of a linear mixture and a nonlinear fluctuation defined in an RHKS, the unmixing is conducted by
the kernel-based method with a sparsity promoting term and the dictionary pruning technique. Experiments
with both synthetic and real data were conducted to illustrate the performance of the proposed algorithm and
compared algorithms. The proposed method outperformed the competing ones in most cases. Particularly,
quantitive abundance estimation errors were reported with laboratory created real data, and highlighted the
advantage of the proposed algorithm. Although the NDU performed slightly better in one synthetic data setting,
it had higher computation complexity. In future work the automatic kernel parameter learning can be considered
to increase the flexibility of the algorithm.
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Figure 9. Maps of reconstruction error. From left to right: FCLS, SUnSAL, K-Hype (G), NDU (G),
IIKNMF (G), Proposed (G).
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Figure 10. Abundances maps of selected materials of S7. From left to right: FCLS, SUnSAL, K-Hype
(G), NDU (G), IIKNMF (G), Proposed (G). From top to bottom: the 1st endmember, the 6th endmember,
the 10th endmember.
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Appendix A

The optimal parameters used in the experiments are provided in Tables A1 to A4.
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Table A1. The selected algorithm parameters for S1.

SNR = 15 dB SNR = 30 dB
GBM PNMM GBM PNMM

SUnSAL λ = 0.1 λ = 0.05 λ = 0.005 λ = 0.005
K-Hype (G) µ = 0.2, σ = 10 µ = 0.2, σ = 10 µ = 0.005, σ = 10 µ = 0.01, σ = 10
K-Hype (P) µ = 0.2 µ = 0.2 µ = 0.01 µ = 0.01

NDU (G) λ = 0.1, µ = 100 , σ = 10 λ = 0.1, µ = 1 , σ = 10 λ = 0.01, µ = 0.1, σ = 10 λ = 0.01, µ = 0.2, σ = 10
NDU (P) λ = 0.1, µ = 100 λ = 0.1, µ = 1 λ = 0.01 , µ = 0.05 λ = 0.01, µ = 0.1

Proposed (G) λ = 0.005, µ = 20 , σ = 2 λ = 0.001, µ = 100, σ = 10 λ = 0.001, µ = 1, σ = 2 λ = 0.001, µ = 2, σ = 10
Proposed (auto) (G) λ = 0.5, µ = 5 , σ = 6.62 λ = 0.001, µ = 100, σ = 6.62 λ = 0.001, µ = 1, σ = 6.62 λ = 0.001, µ = 2, σ = 6.62

Proposed (P) λ = 0.005, µ = 10 λ = 0.001, µ = 100 λ = 0.01, µ = 0.2 λ = 0.001, µ = 2

Table A2. The selected algorithm parameters for S2.

SNR = 15 dB SNR = 30 dB
GBM PNMM GBM PNMM

SUnSAL λ = 0.05 λ = 0.1 λ = 0.0005 λ = 0.05
K-Hype (G) µ = 0.01, σ = 10 µ = 0.01, σ = 10 µ = 0.005, σ = 10 µ = 0.005, σ = 10
K-Hype (P) µ = 0.1 µ = 0.1 µ = 0.005 µ = 0.2

NDU (G) λ = 0.1, µ = 100, σ = 1 λ = 0.001, µ = 0.001, σ = 10 λ = 0.005, µ = 0.005, σ = 2 λ = 0.005 , µ = 0.005, σ = 10
NDU (P) λ = 0.1, µ = 10 λ = 0.05, µ = 0.2 λ = 0.1 , µ = 1 λ = 0.01, µ = 0.01

IIKNMF (G) k = 100, σ = 10 k = 100, σ = 10 k = 100 , σ = 10 k = 100, σ = 10
IIKNMF (P) k = 100 k = 100 k = 100 k = 100
Proposed (G) λ = 0.05, µ = 1, σ = 1 λ = 0.05, µ = 2, σ = 2 λ = 0.1, µ = 0.1, σ = 2 λ = 0.05, µ = 0.1, σ = 1

Proposed (auto) (G) λ = 0.05, µ = 1, σ = 1.27 λ = 0.05, µ = 2, σ = 1.27 λ = 0.1, µ = 0.1, σ = 1.27 λ = 0.05, µ = 0.2, σ = 1.27
Proposed (P) λ = 0.05, µ = 1 λ = 0.1, µ = 1 λ = 0.05, µ = 0.2 λ = 0.05, µ = 1

Table A3. The parameters in algorithms of S3, S4, S5, S6.

SUnSAL K-Hype NDU IIKNMF Proposed Proposde (auto)

S3 λ = 1 µ = 1, δ = 10 µ = 200, λ = 0.001, δ = 10 k = 200, δ = 10 µ = 500, λ = 0.01, δ = 1 µ = 500, λ = 0.01, δ = 1.54
S4 λ = 0.001 µ = 0.05, δ = 10 µ = 1000, λ = 0.001, δ = 1 k = 200, δ = 10 µ = 10, λ = 0.001, δ = 1 µ = 10, λ = 0.001, δ = 1.54
S5 λ = 0.001 µ = 0.05, δ = 10 µ = 200, λ = 0.001, δ = 10 k = 200, δ = 10 µ = 2, λ = 0.001, δ = 10 µ = 5, λ = 0.001, δ = 1.54
S6 λ = 0.01 µ = 0.2, δ = 10 µ = 1000, λ = 0.001, δ = 10 k = 200, δ = 10 µ = 10, λ = 0.001, δ = 10 µ = 10, λ = 0.001, δ = 1.54

Table A4. Parameters used in algorithms of S7.

SUnSAL K-Hype NDU IIKNMF Proposed

LMM λ = 0.001 − − − −
G − µ = 0.0001, σ = 10 µ = 0.01,σ = 2, λ = 0.001 k = 400, σ = 2 µ = 0.0001, σ = 1, λ = 0.001
P − µ = 0.0001 µ = 0.01, λ = 0.001 k = 400 µ = 0.001, λ = 0.001
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