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Abstract: Spectral features cannot effectively reflect the differences among the ground objects and
distinguish their boundaries in hyperspectral image (HSI) classification. Multi-scale feature extraction
can solve this problem and improve the accuracy of HSI classification. The Gaussian pyramid can
effectively decompose HSI into multi-scale structures, and efficiently extract features of different scales
by stepwise filtering and downsampling. Therefore, this paper proposed a Gaussian pyramid based
multi-scale feature extraction (MSFE) classification method for HSI. First, the HSI is decomposed into
several Gaussian pyramids to extract multi-scale features. Second, we construct probability maps
in each layer of the Gaussian pyramid and employ edge-preserving filtering (EPF) algorithms to
further optimize the details. Finally, the final classification map is acquired by a majority voting
method. Compared with other spectral-spatial classification methods, the proposed method can not
only extract the characteristics of different scales, but also can better preserve detailed structures and
the edge regions of the image. Experiments performed on three real hyperspectral datasets show that
the proposed method can achieve competitive classification accuracy.

Keywords: hyperspectral image classification; gaussian pyramid; multi-scale feature extraction

1. Introduction

Hyperspectral remote sensing technology can acquire spectral images of continuous bands
to achieve accurate identification of surface objects. Therefore, it has been widely used in
many applications, such as environmental monitoring [1–3], national defense [4], and precision
agriculture [5,6]. Moreover, a very important application of hyperspectral remote sensing is the
classification of hyperspectral images (HSIs) [7–12].

Numerous techniques have been developed for HSI classification. As one of the typical classifiers,
the support vector machine (SVM) [13–15] has been proven to be effective for hyperspectral imagery.
By learning an optimal decision hyperplane, SVM can effectively separate training samples in
the high dimensional feature space [16]. In addition, other HSI classification methods have been
proposed, such as multinomial logistic regression (MLR) [17–19], neural networks [20–22], kernel-based
techniques [23,24], and active learning [25,26]. A detailed discussion about advanced spectral
classifiers and their performance can be found in [27]. In addition, sparse representation (SR) [28,29]
has been proven to be a useful tool for HSI classification providing a compact representation in a
dictionary as a combination of linear atoms. The sparse representation has been extended to HSI
classification in [30,31].
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However, HSIs not only contain rich ground image information, but also have abundant
spectral information. These methods only consider spectral information, ignoring the spatial
correlation of neighboring pixels. Therefore, various spatial-spectral classification methods have been
developed [32–34]. For example, Kang et al. proposed a spectral-spatial classification method based on
edge-preserving filtering (EPF) [35]. EPF has been a research hotspot in image processing and computer
vision in recent years, which not only has the function of image smoothing, but also can import spatial
structure information into the input image. Moreover, a novel spectral-spatial classification for
HSIs is proposed [36], which attempts to utilize the within-class similarity between the training and
test samples, while reducing the between-class interference. A composite kernel approach can also
effectively combine the spectral-spatial information of each pixel [37,38]. Considering that different
scales regions contain complementary but interconnected information for classification, Fang et al.
proposed a multiscale adaptive sparse representation (MASR) model [39]. The MASR makes full use
of multiple scales spatial information through an adaptive sparse strategy. In other works, effective
feature extraction algorithms [40,41] and multifeature fusion [42,43] techniques have been developed in
which the spectral-spatial characteristics of different materials in the image scene are more effectively
represented. Peng et al. proposed a region kernel to measure the region-to-region distance similarity
for HSI classification [44]. The region kernel is designed to be a linear combination of multiscale box
kernels, which can handle the HSI regions with arbitrary shape and size. These methods consider the
spatial context information of the pixel and surrounding pixels while using the spectral information
of the ground object for classification. Therefore, they can effectively reduce the influence of the
phenomenon of the same object with different spectrum and different objects with the same spectrum
on the classification accuracy. Meanwhile, the classification accuracy can also be greatly improved.

Based on the above works, many researchers have made further explorations on the extraction
of spatial-spectral features. Therefore, different kinds of multi-scale feature extraction methods
were proposed to improve the accuracy of HSIs classification. For instance, Zhao et al. proposed
a deep learning framework for extracting deep learning features using multi-scale convolutional
auto-encoder [45]. In addition, morphological and neurological methods were used to extract the
spectral–spatial features to classify the hyperspectral images of urban areas [46]. By further studying
the multi-scale feature extraction method [47,48], we found that the spectral features between pairs of
pixels exhibit different spectral separability in multi-scale structures. Therefore, this paper proposed
a multi-scale feature extraction (MSFE) method for HSI classification. In the proposed method, the
Gaussian pyramid decomposition is employed to decompose the original HSI into a multi-scale
structure. Then, we use the EPF method for image smoothing in each layer of the Gaussian pyramid.
Finally, in order to get better classification results, we use the majority voting method to determine
the label of the pixel. Experiments on three well-known HSI datasets demonstrate that the proposed
method can obtained high classification accuracy.

The remainder of this paper is structured as follows: First, Section 2 introduces the proposed
MSFE methods. Experimental results and analysis are reported in Section 3. Finally, conclusions are
discussed in Section 4.

2. Proposed MSFE for HSI Classification

2.1. Proposed Classification Framework

For the purpose of improving the separability of the hyperspectral features of different features,
we choose Gaussian pyramid for multi-scale feature extraction. Figure 1 shows the schematic diagram
of the proposed classification method, which consists of the following major steps: First, the HSI is
decomposed into several Gaussian pyramids to extract multi-scale features. Second, we construct and
optimize probability maps in each layer of the Gaussian pyramid. Finally, the final classification map
is acquired by the majority voting method.
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Figure 1. Schematic diagram of the proposed classification method . Support vector machine (SVM),
edge-preserving filtering (EPF), Gaussian pyramid.

2.2. Feature Extraction Based on Gaussian Pyramid Decomposition

Gaussian pyramid decomposition [49] is a series of low-pass sampling filters for images.
The filtered image has a lower resolution and sampling density than the previous image. The Gaussian
pyramids can be used to scale images on a single scale for multi-scale analysis of images. In this paper,
the Gaussian pyramid decomposition operation is performed on the original HSI. Let the original
image, O1, be used as the first layer of the Gaussian pyramid. Then, O1 is convolved with a Gaussian
kernel and downsampled (or even delete rows and columns). The resulting image, O2, is generated
after O1 is low-pass filtered and downsampled. Specifically, in the down-sampling process, when the
pixels in rows and columns of an image are removed, the gray value of the pixel on the spatial position
(m,n) in the l-th layer of the image can be calculated by an iterative algorithm as follows:

O1 (m, n) =
c

∑
u=−c

c

∑
v=−c

F (u, v) ∗Ol−1 (2m− 1− u, 2n− 1− v) (1)

where * is the convolution operation. l ∈ {2, 3, · · · , L} and L is the total number of layers in the
Gaussian pyramid. The F(u, v) is a (2c + 1)× (2c + 1) Gaussian window that can be defined as:

F (u, v) =
1

2πτ2 e−(u2+v2)/2τ2
(2)

where τ is the variance of the Gaussian filter. The Gaussian pyramid is composed of a series of images
{O1, O2, · · · , OL} which are generated from the above convolution and down-sampling operations.

Except for the first layer, the nearest neighbor interpolation method is used to normalize each
layer of the gaussian pyramid until the space size becomes the same as the first layer. In this way,
multi-scale features will be combined for the subsequent processing step. The normalized Gaussian
pyramid, E, can be calculated as follows:

E = NGP(O, L, τ) (3)

where L (which is the total number of the layers in the Gaussian pyramid) is determined by the size of
the HSI, and O represents the input data.

2.3. Probability Maps Construction and Optimization

The probability maps are constructed and optimized in each layer of the normalized Gaussian
pyramid. The initial classification result, C, can be obtained by SVM classifiers in each layer of the
normalized Gaussian pyramid. The initial classification result, C, can be expressed in the form of
a probability map, in which each pixel i is assigned to a label Ci. The initial probability map in the
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lth layer can be represented as probability maps i.e., P = (P1,P2, · · · , Pc), where Pi,c ∈ [0, 1] is the
probability that a pixel, i, belongs to the cth class. Then, the probability Pi,c is denoted as

Pi,c =
{

1 i f Ci=c
0 otherwise (4)

The pixel-wise classification based on SVM does not consider the spatial information of HSIs.
All probability values are either zero or one. The initial probability maps contain many noisy elements,
and they are not aligned with real object boundaries. Therefore, we employ the EPF to optimize the
initial probability maps. Specifically, the optimized probabilities can be denoted as a weighted average
of their neighborhood probabilities

P̃i,c = ∑
m

Wi,m(M)Pm,c (5)

where i and m represent the ith and mth pixels, respectively. The filtering weight, W, is chosen to
preserves edges of a specified guidance image, M.

Therefore, the filtering weight, W, and the guidance image, M, can be solved by the following two
steps. First, the filtering weight is obtained by the guided filtering method in EPF [35]. The guided filter
is a filtering algorithm based on a local linear model. Assuming that M is the guidance image, Q is the
filtering output, and s is the filtering size, then, in a local window, w, with a size of (2s+1)× (2s+1),
Q can always be expressed as a linear transformation of M as follows:

Qi = am Mi + bm, ∀i ∈ wm (6)

where the am and bm are the linear transformation parameters. Take the derivative of both sides of this
equation and we get∇Q ≈ a∇M; that is, when M has an edge structure at a certain position, the same
position of Q will lead to the similar edge structure. To determine the coefficients (am, bm), the energy
function can be denoted as follows:

E (am, bm) = ∑
i∈wm

(
(am Mi + bm −Oi)

2 + ζa2
m

)
(7)

where ζ (which is a regularization parameter) determines the degree of the blurring for the guided
filter. By solving the energy function, the final filtering result is obtained by combining the edge
information of M with the pixel information of the input image O. In addition, the output image and
guide image must satisfy the local linear model. Q needs to be close to the input image, O. The local
linear model in Equation (6) can also be expressed as a weighted sum form (5). The filtering weight
Wi,m(M) for the guided filter can be represented as follows:

Wi,m (M) =
1

|ω|2 ∑
k∈ωi,k∈ωm

(
1 +

(Mi − µk) (Mm − µk)

σ2
k + ζ

)
(8)

where ωi and ωm are local windows with pixel i and pixel m, respectively. µk and σa represent the
mean and variance of the guided image, M, in ωk. |ω| represents the number of pixels in ωk. If Mi and
Mm are on the same side of the edge, the sign of (Mi − µk) (Mm − µk) in (8) is positive. Conversely,
if Mi and Mm are on different sides, the sign of the term is negative. In other words, the filtering weight
on the same side of the edge is higher; otherwise, it is lower. Based on this principle, the probability
values corresponding to the pixels on the same side of the edge in the guidance image are usually
similar to the filtering output.

Second, we employ the gray-scale guidance image as the guidance image for EPF. The original HSI
is firstly decomposed by principal component analysis (PCA) [50]. The first principal component with
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the largest variance is used as the guidance image of the EPF. This can give an optimal representation
of the HSI in the mean square and retain as much significant information as possible.

After filtering the probability maps, the label of pixel i can be simply selected in a probability
maximization manner. The purpose is to use the SVM supervised classifier to convert the probability
map into the initial classification result map. Therefore, each layer of the Gaussian pyramid obtains an
initial classification map. Finally, the final classification map is obtained by the majority voting method
as follows:

Ci = arg max
t

ci,t (9)

where ci,t means that pixel i is marked with label c for t times in each initial classification map of the
Gaussian pyramids.

3. Experimental Results

3.1. Data Set

(1) The Indian Pines image was captured in 1992, by the Airborne Visible/Infrared Imaging
Spectrometer (AVIRIS) sensor. It captures the agricultural Indian Pine test site of North-western
Indiana. The size of the image is 145× 145× 220. The spatial resolution of this image is 20 m per pixel,
and the spectral coverage ranges from 0.4 to 2.5 µm. In the experiment, 20 water absorption bands
(nos. 104–108, 150–163, and 220) were discarded. Figure 2a–c shows the false-color composite and the
corresponding reference data of the Indian Pines image.
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Figure 2. Indian Pines image: (a) three-band color composite, (b) reference data, (c) class names,
Classification maps (Indian Pines) obtained by (d) the SVM method (48.63%), (e) the extended
morphological profiles (EMP) method (61.42%), (f) the EPF method (63.76%), (g) the image fusion and
recursive filtering (IFRF) method (68.97%), (h) the joint sparse representation (JSR) method (68.57%),
(i) the superpixel-based classification via multiple kernels (SCMK) method (59.32%), (j) the MASR
method (69.62%), and (k) the multi-scale feature extraction (MSFE) method (73.92%).
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(2) The University of Pavia image which was captured over an urban area surrounding the
University of Pavia, Italy. This data set was recorded by Reflective Optics System Imaging Spectrometer
(ROSIS). The size of the image is 610× 340× 115. The spatial resolution of this image is 1.3 m per pixel,
and the spectral coverage is ranging from 0.43 to 0.86 µm. In the experiment, 12 water absorption
bands were discarded. Figure 3a–c demonstrates the false-color composite of the University of Pavia
image and the corresponding reference data.
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Figure 3. University of Pavia image: (a) three-band color composite, (b) reference data, (c) class names,
Classification maps (University of Pavia) obtained by (d) the SVM method (55.69%), (e) the EMP
method (67.93%), (f) the EPF method (61.32%), (g) the IFRF method (66.82%), (h) the JSR method
(63.69%), (i) the SCMK method (77.36%), (j) the MASR method (61.57%), and (k) the MSFE method
(81.35%).

(3) The Salinas image was also captured by the AVIRIS sensor over Salinas Valley, California.
The size of the image is 512× 217× 224. The geometric resolution of this image is 3.7 m per pixel.
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Similar to the Indian Pines image, 20 water absorption bands (nos. 108–112, 154–167, and 224) were
discarded. The false-color composite and the corresponding reference data of the Salinas image are
shown in Figure 4a–c.

(a) (b) (c)

(d) (e) (f) (g)

(h) (i) (j) (k)

Figure 4. Salinas image: (a) Three-band color composite, (b) Reference data, (c) Class names,
Classification maps (Salinas) obtained by (d) the SVM method (79.56%), (e) the EMP method (85.32%),
(f) the EPF method (85.44%), (g) the IFRF method (88.91%), (h) the JSR method (83.61%), (i) the SCMK
method (88.40%), (j) the MASR method (87.47%), and (k) the MSFE method (92.08%).

3.2. Comparisons with Other Approaches

In the experiments, three quality indexes, i.e., overall accuracy (OA), average accuracy (AA), and
Kappa coefficient are used to impersonally evaluate classification results. In this section, the proposed
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MSFE method is compared with the SVM [13], extended morphological profiles (EMP) [51], EPF [35],
image fusion and recursive filtering (IFRF) [34], joint sparse representation (JSR) [30], superpixel-based
classification via multiple kernels (SCMK) [52], and MASR [39] methods. The implementation of other
comparisons methods is through the default parameters given by the authors. Here, the SVM algorithm
utilizes the library for support vector machines with a Gaussian kernels. The EMP exploits the spatial
information, which can improve the estimation. The EPF not only has the function of image smoothing,
but also can incorporate spatial structure information into the input image. The IFRF method is
to divide the hyperspectral image into multiple subsets of adjacent hyperspectral bands and then,
by averaging, the bands in each subset. Finally, the fusion band is processed using transform domain
recursive filtering to obtain the resulting features for classification. The JSR utilizes a joint sparsity
model in which hyperspectral pixels are concentrated near test pixels. The SCMK effectively utilize the
spectral information and spatial structure of superpixels through multiple kernels. The MASR makes
effective use of multi-scale spatial information based on adaptive sparse strategy. The experiments
of all methods are repeated ten times and samples were randomly selected in each experiments for
the purpose of obtaining the average accuracy and standard deviation. The details of the number of
training samples and test samples are displayed in Tables 1–3. The classification maps of different
classification methods are shown in Figures 2–4, and corresponding OA values are also shown. As can
be seen, the proposed method achieves the highest classification accuracy.

For the Indian Pines data set, only six labeled samples are randomly chosen as training samples,
and the remaining are used as test samples, which can be clearly observed in Table 1. In particular, the
number in parentheses represents the standard deviation of the number of trainings. The corresponding
reference data and the classification maps for different methods are shown in Figure 2. It can be seen
that the classification performance of the SVM is not very good compared with other comparison
methods (e.g., EMP, EPF, IFRF, JSR, SCMK, MASR, and MSFE). It can be explained by the fact that
SVM uses only spectral information, thus, being more susceptible to the occurrence of noise when
estimating the pixels. Although the classification accuracy of the EMP method has improved, there is
still a large amount of classification noise. It does take into account spatial information, but can better
utilize the spectral information. Other methods (e.g., EPF, IFRF, JSR, SCMK, and MASR) employed
spatial-spectral features and their classification accuracies are further enhanced. But they cannot well
preserve the edge details. The proposed method can achieve an overall accuracy of 73.92%, which
demonstrates its advantage. In addition, for the Corn_N class the proposed method was 29.12% more
accurate than SVM classification. We can see that the proposed method, not only effectively extracts
the multi-scale features, but also generates a smoother appearance in homogeneous regions, being
superior to other methods. However, the data from Tables 1–3 can be analyzed. When the number of
classified samples is very small, this method is not in line with expectations.

For the University of Pavia and Salinas data sets, six labeled samples are also chosen randomly
as training samples, and the remaining are used as test samples, which are shown in Tables 2 and 3.
Similarly, the numbers in parentheses represent the standard deviation of the number of trainings.
The corresponding reference data and the classification accuracies for different methods are shown in
Figures 3 and 4, respectively. For the two experimental results, it can be seen that the classification
accuracy of the proposed method is always better than other comparison methods in terms of OA,
AA, and Kappa. As shown in Table 2, it can observed that the classification accuracy of the proposed
method reaches 81.35%, and obtained higher accuracies than other methods for the classes of Meadows,
Gravel, and Bare soil. In addition, similar classification performance was obtained in the Salinas data
set experiment. For example, the OA for SVM is just 79.56%, and the OA for the proposed MSFE
method reached 92.08%. Moreover, the AA and Kappa are also increased rapidly. The classification
results can effectively prove the superiority of the proposed method. These two strategies, feature
extraction at different scales and further use of spatial context information in the image to optimize the
probability of pixel-by-pixel spectral classification estimation, play an important role in improving
classification performance.
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Table 1. Classification Accuracy (in percentage) Obtained by the SVM, EMP, EPF, IFRF, JSR, SCMK, MASR, and MSFE Methods. Class-specific accuracy values are
in percentage.

The number of training samples for each class is six for the Indian Pines data set (in %).

Class Training/Test SVM EMP EPF IFRF JSR SCMK MASR MSFE
Alfalfa 6/40 23.33(7.93) 92.50(5.00) 59.25(15.51) 50.89(31.41) 99.25(1.68) 95.5(3.87) 98.00(2.58) 69.40(28.66)

Corn_N 6/1422 45.91(8.96) 40.62(10.34) 66.58(18.03) 65.66(14.58) 47.69(12.44) 41.74(8.53) 48.69(10.87) 75.03(20.58)
Corn_M 6/824 31.66(8.06) 55.97(21.01) 60.84(23.18) 56.01(11.74) 57.32(9.09) 45.22(9.25) 57.68(13.88) 62.80(26.62)

Corn 6/231 21.44(6.68) 59.05(10.94) 44.80(29.70) 50.34(11.66) 83.33(7.61) 73.03(17.64) 86.06(16.50) 76.55(14.12)
Grass_M 6/477 56.15(12.69) 68.43(17.50) 75.92(17.32) 73.55(11.49) 84.74(6.24) 66.08(13.02) 77.74(19.79) 62.46(32.18)
Grass_T 6/724 76.79(4.03) 88.51(11.48) 90.04(6.15) 86.36(6.77) 85.87(4.32) 73.73(11.82) 94.53(3.98) 63.39(3.98)
Grass_p 6/22 24.85(11.15) 93.64(2.49) 56.14(35.63) 34.19(11.70) 98.18(3.83) 96.36(10.00) 100.0(0.00) 47.42(29.74)
Hay_W 6/472 95.93(2.18) 91.57(8.14) 99.38(1.22) 100.0(0.00) 95.95(3.89) 96.61(3.93) 91.10(9.60) 71.26(26.60)

Oats 6/14 11.91(8.56) 97.14(6.39) 39.45(24.67) 29.58(23.10) 95.00(11.69) 100.0(0.00) 100.0(0.00) 53.30(30.07)
Soybean_N 6/966 39.90(6.59) 61.68(12.95) 46.95(13.10) 61.62(13.70) 74.76(15.74) 54.80(9.23) 77.04(10.62) 66.78(19.53)
Soybean_M 6/2449 59.89(6.49) 48.33(11.74) 70.41(7.26) 85.45(7.57) 55.49(12.92) 52.29(10.97) 60.71(12.64) 70.46(29.13)
Soybean_C 6/587 23.80(9.34) 40.44(6.75) 38.56(9.40) 56.44(8.14) 59.25(9.20) 37.63(7.56) 61.07(8.75) 75.45(20.65)

Wheat 6/199 80.40(7.22) 97.89(0.22) 96.76(5.59) 66.18(18.77) 96.23(3.52) 76.78(13.11) 99.65(0.67) 58.16(28.75)
Woods 6/1259 86.90(8.86) 72.10(9.99) 91.37(9.09) 96.80(3.07) 90.75(5.91) 75.14(7.88) 82.12(10.44) 77.49(13.71)

Buildings 6/380 27.74(8.03) 78.79(1.24) 72.41(22.41) 80.60(10.73) 57.79(10.62) 80.13(14.29) 61.24(11.13) 54.00(34.78)
Stone 6/87 84.60(24.08) 88.97(5.05) 78.55(12.81) 90.13(20.06) 94.71(6.06) 86.67(11.34) 99.89(0.36) 66.06(25.63)

OA 48.63(3.46) 61.42(4.11) 63.76(2.75) 68.97(5.52) 68.57(2.30) 59.32(3.12) 69.62(3.68) 73.92(3.80)
AA 49.45(2.86) 74.64(2.86) 68.04(3.60) 67.56(3.37) 79.77(1.15) 71.98(2.20) 80.97(2.67) 64.92(4.42)

Kappa 42.58(3.76) 56.83(4.51) 59.17(3.09) 65.27(6.19) 64.68(2.36) 54.55(3.19) 65.77(3.96) 70.77(4.12)
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Table 2. Classification Accuracy (in percentage) Obtained by the SVM, EMP, EPF, IFRF, JSR, SCMK, MASR, and MSFE Methods. Class-specific accuracy values are in
percentage.

The number of training samples for each class is six for the University of Pavia data set (in %).

Class Training/Test SVM EMP EPF IFRF JSR SCMK MASR MSFE
Asphalt 6/6625 91.85(10.00) 80.53(11.37) 93.81(5.79) 57.79(14.95) 24.47(9.67) 88.62(5.22) 29.65(6.68) 77.31(10.89)

Meadows 6/18,643 79.18(5.26) 53.07(13.71) 84.52(6.61) 92.02(4.66) 69.92(14.54) 69.39(13.34) 62.46(11.91) 95.78(1.79)
Gravel 6/2093 31.38(8.19) 72.37(17.43) 42.16(15.92) 44.79(14.98) 72.17(8.88) 78.18(8.48) 79.53(10.11) 81.09(8.14)
Trees 6/3058 56.84(14.68) 94.68(3.74) 50.74(18.57) 60.89(19.07) 76.68(11.15) 84.37(4.29) 90.08(6.48) 58.61(12.57)

Metal sheets 6/1339 91.01(5.27) 95.13(13.93) 92.21(7.78) 99.76(0.47) 95.15(4.77) 96.43(8.18) 100.0(0.00) 67.57(9.17)
Bare soil 6/5023 26.71(5.81) 60.09(19.12) 33.23(10.34) 66.26(16.07) 63.30(11.12) 77.40(12.52) 59.70(19.54) 82.04(9.16)
Bitumen 6/1324 33.50(7.14) 98.36(0.71) 44.85(17.18) 48.62(11.21) 88.86(6.26) 86.47(10.25) 98.16(1.26) 72.35(17.40)

Bricks 6/3676 65.44(12.08) 77.57(17.97) 65.39(11.62) 47.36(7.71) 78.52(11.66) 80.52(7.60) 62.60(13.19) 76.16(18.71)
Shadows 6/941 99.75(0.35) 99.35(1.64) 97.85(2.12) 48.86(19.09) 19.01(7.65) 90.38(9.88) 35.99(9.45) 82.77(12.59)

OA 55.69(5.57) 67.93(8.52) 61.32(7.60) 66.82(6.79) 63.69(4.99) 77.36(4.80) 61.57(5.44) 81.35(3.31)
AA 63.96(4.14) 81.24(5.15) 67.20(4.07) 62.93(5.60) 65.34(1.20) 83.75(3.46) 68.69(3.17) 77.07(3.18)

kappa 46.71(5.54) 60.60(8.05) 52.96(8.03) 58.39(7.81) 54.60(4.90) 71.45(5.70) 52.39(5.78) 76.06(3.89)
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Table 3. Classification Accuracy (in percentage) Obtained by the SVM, EMP, EPF, IFRF, JSR, SCMK, MASR, and MSFE Methods. Class-specific accuracy values are
in percentage.

The number of training samples for each class is six for the Salinas data set (in %).

Class Training/Test SVM EMP EPF IFRF JSR SCMK MASR MSFE
Weeds_1 6/2003 97.24(3.88) 98.44(2.99) 99.61(1.23) 77.95(8.74) 99.99(0.05) 97.99(5.49) 100.0(0.00) 90.80(6.42)
Weeds_2 6/3720 98.60(0.79) 96.76(4.01) 99.91(0.17) 91.55(11.95) 99.78(0.21) 97.87(2,85) 99.57(0.35) 96.30(2.78)
Fallow 6/1970 79.69(14.43) 92.05(8.70) 88.03(7.09) 99.70(0.29) 96.05(4.47) 100.0(0.00) 90.97(12.44) 93.03(4.58)
Fallow_P 6/1388 97.16(0.48) 99.03(0.83) 97.44(0.64) 78.13(0.72) 70.10(9.96) 94.01(7.06) 98.70(0.75) 68.03(10.82)
Fallow_S 6/2672 97.00(3.14) 93.94(4.45) 99.57(0.52) 97.51(3.40) 79.37(8.12) 97.34(1.17) 98.95(0.99) 95.63(3.10)
Stubble 6/3953 99.96(0.07) 93.70(4.61) 99.97(0.04) 100.0(0.00) 99.26(0.69) 99.75(0.01) 99.95(0.08) 97.42(1.77)
Celery 6/3573 95.11(2.48) 97.37(5.65) 97.54(2.15) 82.68(7.58) 95.71(4.35) 99.64(0.78) 99.74(0.80) 98.78(1.68)
Graps 6/11,265 65.11(8.55) 65.39(12.89) 74.75(10.42) 93.70(8.86) 59.06(16.80) 67.23(8.85) 63.24(3.82) 93.47(3.00)

Soil 6/6197 98.15(1.27) 97.67(1.91) 99.31(0.22) 99.62(0.43) 98.48(4.60) 99.93(0.16) 99.49(0.43) 99.59(0.14)
Corn 6/3272 67.83(15.65) 90.97(4.38) 88.72(5.95) 98.87(1.43) 86.02(0.68) 86.73(9.16) 88.61(8.87) 94.61(2.42)

Lettuce_4wk 6/1062 75.88(18.84) 94.16(1.60) 94.59(5.13) 98.54(0.07) 86.51(5.83) 97.66(1.76) 99.98(0.04) 86.10(6.42)
Lettuce_5wk 6/1921 83.83(10.19) 99.92(0.16) 92.94(8.86) 89.95(2.91) 70.55(6.43) 89.24(9.90) 98,90(0.97) 98.65(1.44)
Lettuce_6wk 6/910 86.41(8.77) 98.37(0.71) 97.72(4.30) 93.02(6.23) 81.42(7.61) 92.12(12.82) 99.49(0.52) 93.70(4.80)
Lettuce_7wk 6/1064 87.90(7.56) 93.32(2.24) 88.31(17.70) 92.02(8.81) 83.94(6.90) 91.52(3.65) 96.82(3.07) 79.68(13.30)
Vinyard_U 6/7262 48.60(7.56) 65.22(17.88) 54.10(17.88) 70.72(0.88) 81.14(10.90) 80.68(8.58) 74.64(12.85) 84.94(5.98)
Vinyard_T 6/1801 90.98(8.53) 94.95(4.41) 97.72(6.25) 91.88(11.48) 97.83(2.49) 97.44(8.09) 95.92(3.21) 99.97(0.06)

OA 79.56(3.10) 85.32(2.96) 85.44(3.76) 88.91(1.43) 83.61(2.60) 88.40(1.99) 87.47(2.03) 92.08(1.50)
AA 85.58(2.93) 91.95(1.70) 91.89(2.54) 90.99(2.21) 86.57(0.99) 93.07(1.31) 94.06(1.13) 92.01(0.73)

Kappa 77.35(3.39) 83.71(3.25) 83.84(4.16) 87.72(1.61) 81.85(2.94) 87.14(2.20) 86.10(2.21) 91.21(1.66)
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3.3. Parameter Analysis

In this section, the analysis of three parameters of the proposed method, i.e., L (the number
of layers in the Gaussian pyramid), s (the filtering size), and ζ (blur degree) is performed. In these
experiments, the number of training and test samples for the Indian Pines, Pavia University, and
Salinas data sets are shown in Tables 1–3, respectively. The experiments are performed by using
MATLAB on a notebook computer.

First, the influence of the filtering size, s, and the blur degree, ζ, on the classification performance
are show in Figure 5 In the experiments on Indian Pines and Pavia University data sets, s varies from 1
to 9 and ζ varies from 0 to 1, while for the Salinas data set, s varies from 12 to 20 and ζ varies from
0 to 1. It can be seen that if s and ζ are too large, the OA of the method will decline greatly. That is,
too-large s and ζ will cause the image to be smoothed out considerably, and some small-scale targets
will be misclassified. When the s and ζ are too small, the performance of the method also decreased
significantly. The reason for this result is that edge preserving filtering is a local filtering process,
and the smaller the window, the smaller the range of spatial information considered in probability
optimization. s and ζ should take the appropriate value. Therefore, the parameters s and ζ setting as
(s = 7, ζ = 0.4), (s = 4, ζ = 0.1), and (s = 17, ζ = 0) for the Indian Pines, Pavia University, Salinas data
sets, respectively, in this paper can obtain the highest OA.

Then, the influence of L (which varies from 1 to 10) to the performance is shown in Figure 6. It can
be seen that the accuracy of the proposed method increases gradually as L increases. This means that
the proposed method can effectively extract the multi-scale characteristics of HSI for classification. For
the proposed method, L is separately set to 6, 9, and 5 as the default parameters for the three data sets,
respectively.
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Figure 5. Analysis of the effect of the parameters s (the filtering size) and ζ (blur degree). (a) Indian
Pines dataset. (b) University of Pavia dataset. (c) Salinas dataset.
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Figure 6. Analysis of the effect of the parameter L (the number of layers in the Gaussian pyramid).
(a) Indian Pines dataset. (b) University of Pavia dataset. (c) Salinas dataset.
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3.4. Classification Results with Different Numbers of Training Samples

The classification performance to eight methods with different training samples on the three data
sets is shown in Figure 7. In the three figures, the number of training samples for all methods increased
from 6 to 60. It can be observed that when the number of training samples changes, the proposed
method significantly improved the classification accuracies in comparison with other approaches.
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Figure 7. Classification results with varying number of training samples by SVM, EMP, EPF, IFRF,
JSR, SCMK, MASR, and the proposed method, MSFE. (a) Indian Pines dataset, (b) University of Pavia
dataset, (c) Salinas dataset.

4. Conclusions

In this paper, the MSFE method was presented for the classification of HSIs. This method contains
two important strategies: First, the Gaussian pyramid decomposition strategy was employed to
achieve multi-scale analysis of images. The proposed method can capture spatial texture features of
different scales, and thus targets of different scales can be classified more effectively. Second, by using
the EPF algorithm to optimize the probability map, the proposed method can produce a smoother
appearance in a homogeneous regions. Therefore, the details and the near-edge area of the image can
be better identified. Furthermore, experimental results demonstrate the proposed method outperforms
other classification methods in term of accuracy, especially when the number of training samples is
quite limited. In future work, multi-scale feature fusion will be integrated into the MSFE to further
improve classification accuracy. In addition, we can further solve the problem of classification accuracy
loss when the number of samples is small.

Author Contributions: B.T. and N.L. designed the proposed model and implemented the experiments. N.L.
and D.H. drafted the manuscript. P.G. contributed to the improvement of tho proposed model and edited the
manuscript. B.T. and L.F. provided overall guidance to the project, reviewed and edited the manuscript and
obtained funding to support this research.

Funding: This work was supported by the National Natural Science Foundation of China under Grant 51704115,
by the Hunan Provincial Natural Science Foundation 2019JJ50211 and 2019JJ50212, by the Hunan Provincial
Innovation Foundation For Postgraduate under Grant CX2018B771,by the Science and Technology Program of
Hunan Province under Grant 2016TP1021.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Chen, C.H.; Ho, P.G. Statistical pattern recognition in remote sensing. Pattern Recognit. 2008, 41, 2731–2741.
[CrossRef]

2. Fernandes, L.A.F.; Oliveira, M.M. Corrigendum to Real-time line detection through an improved hough
transform voting scheme. Pattern Recognit. 2008, 41, 299–314. [CrossRef]

3. Brook, A.; Dor, E.B. Quantitative detection of settled dust over green canopy using sparse unmixing of
airborne hyperspectral data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 884–897. [CrossRef]

4. Yuan, Y.; Wang, Q.; Zhu, G. Fast hyperspectral anomaly detection via high-order 2-D crossing filter. IEEE
Trans. Geosci. Remote Sens. 2015, 53, 620–630. [CrossRef]

http://dx.doi.org/10.1016/j.patcog.2008.04.013
http://dx.doi.org/10.1016/j.patcog.2007.04.003
http://dx.doi.org/10.1109/JSTARS.2015.2489207
http://dx.doi.org/10.1109/TGRS.2014.2326654


Remote Sens. 2019, 11, 534 14 of 16

5. Lee, M.A.; Huang, Y.; Yao, H.; Thomson, S.J. Determining the effects of storage on cotton and soybean
leaf samples for hyperspectral analysis. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 2562–2570.
[CrossRef]

6. Dalponte, M.; Orka, H.O.; Gobakken, T.; Gianelle, D.; Nasset, E. Tree species classification in boreal forests
with hyperspectral data. IEEE Trans. Geosci. Remote Sens. 2013, 51, 2632–2645. [CrossRef]

7. Tarabalka, Y.; Chanussot, J.; Benediktsson, J.A. Segmentation and classification of hyperspectral images
using watershed transformation. Pattern Recognit. 2010, 43, 2367–2379. [CrossRef]

8. Li, Y.; Xie, W.; Li, H. Hyperspectral image reconstruction by deep convolutional neural network for
classification. Pattern Recognit. 2017, 63, 371–383. [CrossRef]

9. He, N.; Fang, L.; Li, S.; Plaza, A.; Plaza, J. Remote sensing scene classification using multilayer stacked
covariance pooling. IEEE Trans. Geosci. Remote Sens. 2018, 56, 6899–6910. [CrossRef]

10. Tu, B.; Zhang, X.; Kang, X.; Zhang, G.; Li, S. Density Peak-based Noisy Label Detection for Hyperspectral
Image Classification. IEEE Trans. Geosci. Remote Sens. 2019, 57, 1573–1584. [CrossRef]

11. Tu, B.; Zhang, X.; Kang, X.; Wang, J.; Benediktsson, J.A. Spatial Density Peak Clustering for Hyperspectral
Image Classification with Noisy Labels. IEEE Trans. Geosci. Remote Sens. 2019. [CrossRef]

12. Ghamisi, P.; Yokoya, N.; Li, J.; Liao, W.; Liu, S.; Plaza, J.; Rasti, B.; Plaza, A. Advances in Hyperspectral Image
and Signal Processing: A Comprehensive Overview of the State of the Art. IEEE Geosci. Remote Sens. Mag.
2017, 5, 37–78. [CrossRef]

13. Gao L.; Li, J.; Khodadadzadeh, M.; Plaza, A.; Zhang, B.; He, Z.; Yan, H. Subspace-based support vector
machines for hyperspectral image Classification. IEEE Geosci. Remote Sens. Lett. 2015, 12, 349–353.

14. Bruzzone, L.; Chi, M.; Marconcini, M. A novel transductive SVM for semisupervised Classification of
remote-sensing images. IEEE Trans. Geosci. Remote Sens. 2006, 44, 3363–3373. [CrossRef]

15. Wang, X.Z.; He, Q.; Chen, D.G.; Yeung, D. A genetic algorithm for solving the inverse problem of support
vector machines. Neurocomputing 2005, 68, 225–238. [CrossRef]

16. Melgani, F.; Bruzzone, L. Classification of hyperspectral remote sensing images with support vector machines.
IEEE Trans. Geosci. Remote Sens. 2004, 42, 1778–1790. [CrossRef]

17. Li, J.; Bioucas-Dias, J.; Plaza, A. Spectral-spatial hyperspectral image segmentation using multinomal
subspace multinomial logistic regression and Markov random fields. IEEE Trans. Geosci. Remote Sens. 2012,
50, 809–823. [CrossRef]

18. Li, J.; Bioucas-Dias, J.; Plaza, A. Semi-supervised hyperspectral image segmentation using multinomial
logistic regression with active learning. IEEE Trans. Geosci. Remote Sens. 2010, 48, 4085–4098.

19. Li, J.; Bioucas-Dias, J.; Plaza, A. Semi-supervised hyperspectral image Classification using soft sparse
multinomial logistic regression. IEEE Geosci. Remote Sens. Lett. 2013, 10, 318–322.

20. Zhu, J.; Fang, L.; Ghamis, P. Deformable convolutional neural networks for hyperspectral image classification.
IEEE Geosci. Remote Sens. Lett. 2018, 15, 1254–1258. [CrossRef]

21. Ye, J. Adaptive control of nonlinear PID-based analog neural networks for a nonholonomic mobile robot.
Neurocomputing 2018, 71, 1561–1565. [CrossRef]

22. Fang, L.; Liu, G.; Li, S.; Ghamisi, P.; Benediktsson, J.A. Hyperspectral Image Classification with Squeeze
Multibias Network. IEEE Trans. Geosci. Remote Sens. 2019. [CrossRef]

23. Camps-Valls, G.; Bruzzone, L. Kernel-based methods for hyperspectral image classification. IEEE Trans.
Geosci. Remote Sens. 2005, 43, 1351–1362. [CrossRef]

24. Fauvel, M.; Chanussot, J.; Benediktsson, J.A. A spatial-spectral Kernel-based approach for the classification
of remote-sensing images. Pattern Recognit. 2012, 45, 381–392. [CrossRef]

25. Rajan, S.; Ghosh, J.; Crawford, M.M. An active learning approach to hyperspectral data classification.
IEEE Trans. Geosci. Remote Sens. 2008, 46, 1231–1242. [CrossRef]

26. Tuia, D.; Ratle, F.; Pacifici, F.; Kanevski, M.F.; Emery, W.J. Active learning methods for remote sensing image
classification. IEEE Trans. Geosci. Remote Sens. 2009, 47, 2218–2232. [CrossRef]

http://dx.doi.org/10.1109/JSTARS.2014.2330521
http://dx.doi.org/10.1109/TGRS.2012.2216272
http://dx.doi.org/10.1016/j.patcog.2010.01.016
http://dx.doi.org/10.1016/j.patcog.2016.10.019
http://dx.doi.org/10.1109/TGRS.2018.2845668
http://dx.doi.org/10.1109/TGRS.2018.2867444
http://dx.doi.org/10.1109/TGRS.2019.2896471
http://dx.doi.org/10.1109/MGRS.2017.2762087
http://dx.doi.org/10.1109/TGRS.2006.877950
http://dx.doi.org/10.1016/j.neucom.2005.05.006
http://dx.doi.org/10.1109/TGRS.2004.831865
http://dx.doi.org/10.1109/TGRS.2011.2162649
http://dx.doi.org/10.1109/LGRS.2018.2830403
http://dx.doi.org/10.1016/j.neucom.2007.04.014
http://dx.doi.org/10.1109/TGRS.2018.2865953
http://dx.doi.org/10.1109/TGRS.2005.846154
http://dx.doi.org/10.1016/j.patcog.2011.03.035
http://dx.doi.org/10.1109/TGRS.2007.910220
http://dx.doi.org/10.1109/TGRS.2008.2010404


Remote Sens. 2019, 11, 534 15 of 16

27. Ghamisi, P.; Plaza, J.; Chen, Y.; Li, J.; Plaza, A.J. Advanced Spectral Classifiers for Hyperspectral Images:
A review. IEEE Geosci. Remote Sens. Mag. 2017, 5, 8–32. [CrossRef]

28. Liu, L.; Chen, C.L.P.; You, X.; Tang, Y.Y.; Zhang, Y.; Li, S. Mixed noise removal via robust constrained sparse
representation. IEEE Trans. Circuits Syst. Video Technol. 2018, 28, 2177–2189. [CrossRef]

29. Han, J.; He, S.; Qian, X.; Wang, D.; Guo, L.; Liu, T. An object-oriented visual saliency detection framework
based on sparse coding representations. IEEE Trans. Circuits Syst. Video Technol. 2013, 23, 2009–2021.
[CrossRef]

30. Chen, Y.; Nasrabadi, N.M.; Tran, T.D. Hyperspectral image classification using dictionary-based sparse
representation. IEEE Trans. Geosci. Remote Sens. 2011, 49, 3973–3985. [CrossRef]

31. Chen, Y.; Nasrabadi, N.M.; Tran, T.D. Hyperspectral image classification via kernel sparse representation.
IEEE Trans. Geosci. Remote Sens. 2013, 51, 217–231. [CrossRef]

32. Tu, B.; Zhang, X.; Wang, J.; Zhang, G.; Ou, X. Spectral–Spatial Hyperspectral Image Classification via
Non-local Means Filtering Feature Extraction. Sens. Imaging 2018, 19, 1–11. [CrossRef]

33. Tu, B.; Yang, X.; Li, N.; Ou, X.; He, W. Hyperspectral Image Classification via Superpixel Correlation
Coefficient Representation. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 4113–4127. [CrossRef]

34. Kang, X.; Li, S.; Benediktsson, J.A. Feature extraction of hyperspectral images with image fusion and
recursive filtering. IEEE Geosci. Remote Sens. Lett. 2014, 52, 3742–3752. [CrossRef]

35. Kang, X.; Li, S.; Benediktsson, J.A. Spectral-spatial hyperspectral image classification with edge-preserving
filtering. IEEE Trans. Geosci. Remote Sens. 2014, 52, 2666–2677. [CrossRef]

36. Tu, B.; Zhang, X.; Kang, X.; Zhang, G.; Wang, J.; Wu, J. Hyperspectral image classification via fusing
Correlation Coefficient and Joint Sparse Representation. IEEE Geosci. Remote Sens. Lett. 2018, 15, 340–344.
[CrossRef]

37. Camps-Valls, G.; Gomez-Chova, L.; Munoz-Mari, J.; Vila-Frances, J.; Calpe-Maravilla, J. Composite kernels
for hyperspectral image classification fication. IEEE Trans. Geosci. Remote Sens. Lett. 2006, 3, 93–97. [CrossRef]

38. Li, J.; Marpu, P.R.; Plaza, A.; Bioucas-Dias, J.M.; Benediktsson, J.A. Generalized composite kernel framework
for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 2013, 51, 4816–4829. [CrossRef]

39. Fang, L.; Li, S.; Kang, X.; Benediktsson, J.A. Spectral-spatial hyperspectral image classification via multiscale
adaptive spare representation. IEEE Trans. Geosci. Remote Sens. 2014, 52, 7738–7749. [CrossRef]

40. Xia, J.; Chanussot, J.; Du, P.; He, X. Spectral-spatial classification for hyperspectral data using rotation forests
with local feature extraction and Markov random fields. IEEE Trans. Geosci. Remote Sens. 2015, 53, 2532–2546.
[CrossRef]

41. Zhang, L.; Tao, D.; Huang, X. On combining multiple features for hyperspectral remote sensing image
classification. IEEE Trans. Geosci. Remote Sens. 2012, 50, 879–893. [CrossRef]

42. Li, W.; Chen, C.; Su, H.; Du, Q. Local binary patterns and extreme learning machine for hyperspectral
imagery classification. IEEE Trans. Geosci. Remote Sens. 2015, 53, 3681–3693. [CrossRef]

43. Yang, Y.; Song, J.; Huang, Z.; Ma, Z.; Alexander, G. Hauptmann multi-feature fusion via hierarchical
regression for multimedia analysis. IEEE Trans. Multimed. 2013, 15, 572–581. [CrossRef]

44. Peng, J.; Zhou, Y.; Chen, C. Region-kernel-based support vector machines for hyperspectral image
classification. IEEE Trans. Geosci. Remote Sens. 2015, 53, 4810–4824. [CrossRef]

45. Zhao, W.; Guo, Z.; Yue, J.; Zhang, X.; Luo, L. On combining multiscale deep learning features for the
classification of hyperspectral remote sensing imagery. Int. J. Remote Sens. 2015, 36, 3368–3379. [CrossRef]

46. Benediktsson, J.A.; Pesaresi, M.; Amason, K. Classification and feature extraction for remote sensing images
from urban areas based on morphological transformations. Trans. Geosci. Remote Sens. 2003, 41, 1940–1949.
[CrossRef]

47. He, N.; Paoletti, E.M.; Haut, J.M.; Li, S.; Plaza, A.; Plaza, J. Feature Extraction With Multiscale Covariance
Maps for Hyperspectral Image Classification. IEEE Trans. Geosci. Remote Sens. 2019, 57, 755–769. [CrossRef]

48. Mirzapour, F.; Ghassemian, H. Multiscale Gaussian Derivative Functions for Hyperspectral Image Feature
Extraction. IEEE Geosci. Remote Sens. Lett. 2016, 13, 525–529. [CrossRef]

49. Li, S.; Hao, Q.; Kang, X.; Benediktsson, J.A. Gaussian pyramid based multiscale feature fusion for
hyperspectral image classification. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 3312–3324.
[CrossRef]

50. Prasad, S.; Bruce, L.M. Limitations of pincipal components analysis for hyperspectral target recognition.
IEEE Geosci. Remote Sens. Lett. 2008, 5, 625–629. [CrossRef]

http://dx.doi.org/10.1109/MGRS.2016.2616418
http://dx.doi.org/10.1109/TCSVT.2017.2722232
http://dx.doi.org/10.1109/TCSVT.2013.2242594
http://dx.doi.org/10.1109/TGRS.2011.2129595
http://dx.doi.org/10.1109/TGRS.2012.2201730
http://dx.doi.org/10.1007/s11220-018-0196-9
http://dx.doi.org/10.1109/JSTARS.2018.2866901
http://dx.doi.org/10.1109/TGRS.2013.2275613
http://dx.doi.org/10.1109/TGRS.2013.2264508
http://dx.doi.org/10.1109/LGRS.2017.2787338
http://dx.doi.org/10.1109/LGRS.2005.857031
http://dx.doi.org/10.1109/TGRS.2012.2230268
http://dx.doi.org/10.1109/TGRS.2014.2318058
http://dx.doi.org/10.1109/TGRS.2014.2361618
http://dx.doi.org/10.1109/TGRS.2011.2162339
http://dx.doi.org/10.1109/TGRS.2014.2381602
http://dx.doi.org/10.1109/TMM.2012.2234731
http://dx.doi.org/10.1109/TGRS.2015.2410991
http://dx.doi.org/10.1080/2150704X.2015.1062157
http://dx.doi.org/10.1109/TGRS.2003.814625
http://dx.doi.org/10.1109/TGRS.2018.2860464
http://dx.doi.org/10.1109/LGRS.2016.2521763
http://dx.doi.org/10.1109/JSTARS.2018.2856741
http://dx.doi.org/10.1109/LGRS.2008.2001282


Remote Sens. 2019, 11, 534 16 of 16

51. Benediktsson, J.A.; Palmason, J.A.; Sveninsson, J.R. Classification of hyperespectral data from urban ares
based on extended morphological profiles. IEEE Trans. Geosci. Remote Sens. 2005, 43, 480–491. [CrossRef]

52. Fang, L.; Li, S.; Duan, W.; Ren, J.; Benediktsson, J.A. Classification of hyperspectral images by exploiting
spectral–spatial information of superpixel via multiple kernels. IEEE Trans. Geosci. Remote Sens. 2015, 53,
6663–6674. [CrossRef]

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/TGRS.2004.842478
http://dx.doi.org/10.1109/TGRS.2015.2445767
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Proposed MSFE for HSI Classification
	Proposed Classification Framework 
	Feature Extraction Based on Gaussian Pyramid Decomposition
	Probability Maps Construction and Optimization

	Experimental Results
	Data Set
	Comparisons with Other Approaches
	Parameter Analysis
	Classification Results with Different Numbers of Training Samples

	Conclusions
	References

