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Abstract: The measurement of tree height has long been an important tree attribute for the purpose
of calculating tree growth, volume, and biomass, which in turn deliver important ecological and
economical information to decision makers. Tree height has traditionally been measured by indirect
field-based techniques, however these methods are rarely contested. With recent advances in
Unmanned Aerial Vehicle (UAV) remote sensing technologies, the possibility to acquire accurate tree
heights semi-automatically has become a reality. In this study, photogrammetric and field-based tree
height measurements of a Scots Pine stand were validated using destructive methods. The intensive
forest monitoring site implemented for the study was configured with permanent ground control
points (GCPs) measured with a Total Station (TS). Field-based tree height measurements resulted
in a similar level of error to that of the photogrammetric measurements, with root mean square
error (RMSE) values of 0.304 m (1.82%) and 0.34 m (2.07%), respectively (n = 34). A conflicting
bias was, however, discovered where field measurements tended to overestimate tree heights
and photogrammetric measurements were underestimated. The photogrammetric tree height
measurements of all trees (n = 285) were validated against the field-based measurements and resulted
in a RMSE of 0.479 m (2.78%). Additionally, two separate photogrammetric tree height datasets were
compared (n = 251), and a very low amount of error was observed with a RMSE of 0.138 m (0.79%),
suggesting a high potential for repeatability. This study shows that UAV photogrammetric tree height
measurements are a viable option for intensive forest monitoring plots and that the possibility to
acquire within-season tree growth measurements merits further study. Additionally, it was shown
that negative and positive biases evident in field-based and UAV-based photogrammetric tree height
measurements could potentially lead to misinterpretation of results when field-based measurements
are used as validation.

Keywords: tree height; UAV; intensive forest monitoring; photogrammetry; precision forestry

1. Introduction

Tree height is an important parameter required to quantify timber resources and is essential
in evaluating the economic and ecological value of a forest stand. In particular, height plays an
important role in the calculation of individual and total stand volumes [1], assessing the overall
productive capacity of a site [2] and determining the social status of an individual tree’s ability to
access resources [3]. Furthermore, tree height is critical in the estimation of forest biomass and carbon
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stocks [4], which are factors of increasing relevance for the mitigation of climate change through forest
activities [5–7].

As a typical measurement parameter for forest inventory and monitoring programs, tree height
(h) is measured in the field by means of the direct or indirect measurement of the distance between
the base (ground-level) and the tip (apical meristem) of a tree [8–10]. The direct measurement of tree
heights can be accomplished with telescopic measuring poles, however the measurement accuracy and
precision is limited to heights of up to 23 m and the method is slow and cumbersome [1]. Alternatively,
direct measurements can be carried out with destructive methods, where trees are required to be
harvested and the length determined along the ground with a measuring tape. Indirect measurement,
on the other hand, would be that of non-destructive geometric or trigonometric methods [2] carried
out via field measurements with a hypsometer [11], laser device [12], or Total Station (TS) [4]. Indirect
tree measurement is also possible using remote sensing techniques, as in traditional photogrammetric
measurements derived from analog aerial imagery [13,14], digital aerial photogrammetry (DAP) [15,16],
active sensor remote sensing techniques, such as Light Detection and Ranging (LiDAR) [4,17–19], or
Interferometric Synthetic Aperture Radar (InSAR) [20,21].

Recent developments in remote sensing technologies, such as LiDAR and Digital Photogrammetry,
opened up new possibilities in not only the estimation of individual tree heights, but also in the
estimation of tree crown diameter [12,22]. Tree height and crown diameter can be further utilized to
estimate individual tree characteristics, such as stem diameter and volume [22,23]. Such technological
advances in forestry-related remote sensing are partly attributable to the arrival of relatively new
terms, such as “Precision Forestry” [24–29]. Based on reliable and accurate data, precision forestry
delivers detailed information on the structural [30] and ecological aspects of forests at a high spatial
and temporal resolution, even at the individual tree level [26]. Remote sensing platforms are being
implemented to obtain such data from various satellite, aerial, and terrestrial platforms, which make
use of active and passive sensors [25,31]. LiDAR-based active sensor systems, such as Airborne Laser
Scanning (ALS), are of great interest due to the possibility to acquire highly detailed 3D information
on the structural aspects of forests [17].

Typically, the interest in more detailed 3D forest information has mostly been driven by the
prospect of profitability [26] within the forest industry, however, for research purposes, the prospect of
obtaining highly accurate and timely forest structural data is also of interest [32]. Forest inventories
and monitoring on the national and international level are nonetheless often limited to public funding,
which can restrict the accessibility to costlier methods of remote sensing, such as for ALS. Digital Aerial
Photogrammetry (DAP), in particular Unmanned Aerial Vehicle Photogrammetry (UAVP), however,
offers a cost-effective alternative to ALS, where passive consumer grade sensors can be mounted on a
civilian UAV [33]. A typical UAV mounted with passive sensors can be acquired and operated at a
fraction of the cost of ALS with similar results and accuracy [34].

Numerous studies involving the extraction of individual tree heights through ALS and DAP have
been carried out with promising results [11,12,35–41]. One aspect common among all of these studies
is that they implement indirect field-based tree measurements for validation. Indirect field-based
measurements can, however, also potentially be subjected to error propagation [10,42–44]. To the
authors’ knowledge, there are few studies that implement direct measurements for the verification
of ALS and DAP tree height estimations, as this would require destructive methods that can prove
costly or impractical. Sibona et al. [45], however, assessed tree height estimation using ALS and
field-based survey methods by implementing 100 harvested trees for validation. Results showed
that the ALS-derived tree heights were closer to the direct tree measurements than traditional
field-based measurements. In a recent study conducted by Wang et al. [46], the authors implement a
non-destructive statistical method, which showed that field measurements tend to overestimate tree
heights for codominant trees when correlated with ALS and Terrestrial Laser Scanning (TLS).

In this study, we explored the possibility of enhancing or even replacing field-based tree
height measurements for long-term forest monitoring plots. Using the Britz Research Station
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as a case study, our aim was as follows: (i) determine the accuracy of traditional field-based
tree height measurements against destructive direct measurements; (ii) determine the accuracy of
UAV-based photogrammetrically derived tree heights against direct measurements; (iii) compare
photogrammetric tree heights against field-based measurements; and (iv) assess the repeatability of
temporal photogrammetric tree heights.

2. Materials and Methods

2.1. Study Site

The study site is located within the Schorfheide Biosphere reserve near the village of Britz,
Brandenburg (52.87◦N 13.83◦S, 42 m above sea level), approximately 50 km north-east of Berlin,
Germany. The Britz research station was originally established in 1972 by the Institute for Forest Sciences
Eberswalde for the purpose of conducting forest hydrological research with the use of large-scale
lysimeters [47]. Currently, the Britz Research Station is under management of the Thünen Institute for
Forest Ecosystems and consists of nine plots of varying species and structure with intact lysimeters
(see Figure 1).

Figure 1. Overview of the Britz Research Station. Plots 1 and 2: European Beech (Fagus sylvatica). Plot
3: European Larch (Larix decidua) with a Beech understory. Plot 4: Sessile Oak (Quercus petraea). Plot
5: Scots Pine (Pinus sylverstris) with a Beech understory. Plot 6: Scots Pine with an Oak understory.
Plots 7 and 8: Douglas Fir (Pseudotsuga menziessi). Plot 9: Scots Pine with a sparse understory of Beech
and Oak.

The dominating tree species for plots 1 to 3 and 5 to 9 were planted as 2-year-old seedlings in 1974.
For this study, the 0.24 ha monoculture Scots Pine stand (plot 9) was chosen and consisted of 289 trees
before selective harvesting took place in late March, 2018. Ten of the trees are equipped with analog
and digital dendrometers for continuous diameter at breast height (dbh) measurement and one tree is
capable of sending its daily dendrometric measurements to a twitter feed (https://treewatch.net/).
Five trees are marked for long-term phenological analysis and three trees are artificially watered to
field capacity twice a week during the growth season (see Figure 2).

https://treewatch.net/
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Figure 2. Overview of the 289 trees of the Scots Pine monoculture.

2.2. Field Measurements

Each individual tree height of the entire stand was measured indirectly prior to felling with
a Vertex IV hypsometer (Haglöf, www.haglof.se), which is an instrument capable of measuring
angles and distances by means of ultrasound and calculates tree heights based on the trigonometric
principle [8]. Tree height field measurements were carried out by an experienced forest inventory
specialist from the German Forest Inventory (Bundeswaldinventur) in February, 2018, before harvesting
procedures. Direct measurements were carried out in late March, 2018 (see Figure 3), after selective
felling, where the length of each tree was measured as the length on the ground from the base of the
cut to the apical bud. The stump height was added to the length of the harvested tree while taking the
undercut in to consideration.

2.3. Ground Control Points and Tree Stem Positions

Due to residual positional errors caused by the multipath effect under a dense forest canopy,
fixed Real Time Kinematic (RTK) Global Navigation Satellite System (GNSS) (Topcon GR-3) positioning
was unattainable for the purpose of Ground Control Point (GCP) measurement. Alternatively, GCPs
were measured with a Sokkia Set 510 TS, which is essentially an electronic theodolite capable of
electronic distance measurement. Three GCPs were recorded on an open field adjacent to the study
plot (see Figure 1), where a fixed RTK GNSS signal was possible. The TS was then positioned on a GCP
and the azimuth was calibrated using a second GCP. The third GCP was used as a control. Following
the TS setup process, each of the 9 GCPs for the study plot were measured with the TS. Special care

www.haglof.se
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was taken in insuring the visibility between the TS and the target prism in relation with the aerial nadir
visibility of GCPs through small gaps in the canopy. This procedure was best carried out during the
winter months when ground vegetation and lower story deciduous trees are not affecting visibility.
Concurrent with the GCP measurements, the individual tree stem positions were also recorded with
the TS. Four different GCP positions were required to measure tree stems due to limitations in visibility.

Figure 3. Unmanned Aerial Vehicle (UAV) image processing workflow in relation to the image
acquisition and field data collection campaigns. SfM: structure from motion; CHM: Canopy Height
Model; GCP: ground control point; RTK: Real Time Kinematic; GNSS: Global Navigation Satellite
System; TS: Total Station.

2.4. Remotely Sensed Data Acquisition

Aerial UAV imagery was acquired using a 36-megapixel full format Sony A7r RGB camera with
a fixed lens (35 mm Zeiss Sonnar 2.8). The camera was focused manually at a hyper focal distance
and fixed permanently to inhibit variations in focal length. Camera settings were as follows: Shutter
speed: 1/650; F-stop: f8; ISO: Auto (100–800); Format: RAW; Intervalometer: 2 s. The sensor was
mounted onboard an OctoXL 6S12 Octocopter (see Figure 4) from Mikrokopter (HiSystems GmbH) and
flown autonomously with a predetermined flight plan. The flight plan was comprised of seven flight
lines (at nadir) calculated in accordance to a focal length of 35.3 mm, 7360 × 4912 sensor size (pixel),
80% frontal- and side-overlap, and a flying height of 75 m. The theoretical Ground Surface Distance
(GSD) was estimated at 1 cm. Images were triggered with an internal intervalometer calculated to
shoot every two seconds and were deemed essential in order to eliminate any misfiring or latency in
waypoint-activated triggering [48]. The same flight plan was flown for the pre-harvest mission on
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February 13th, 2018, and the post-harvest mission on April 29th, 2018 (see Figure 3). Each mission
was flown within ± 60 min of solar noon and at an average maximum wind speed of 2.25 m/s for the
pre-harvest mission and 3.83 m/s after harvesting. The maximum average wind speed was determined
from onsite wind speed measurements at a height of 18 m.

Figure 4. OctoXL 6S12 Octocopter mounted with a fixed lens Sony A7r RGB camera.

2.5. Processing and Tree Height Extraction

The original raw images (Sony ARW) for both datasets were indirectly georeferenced [49] by
synchronizing the image time stamps with the Octocopters log file. Images were preprocessed in
order to match exposure histograms and corrected for Vignetting before being converted to 8-bit
Tagged Image File Format (TIFF). Point clouds and orthomosaics were generated using the Structure
from Motion (SfM) software Pix4Dmapper version 4.1.25 (Pix4D, Lausanne, Switzerland). At least 5
calibrated images were manually marked for each GCP and initial processing settings were set to full
image scale with geometrically verified matching activated. The point clouds were processed at an
optimal point density with the image scale set at half image size.

Point clouds and derivatives were processed with FUSION/LDV [50], rLiDAR, and lidR packages
in the R software package [51–53]. A Digital Terrain Model (DTM) raster was created by interpolating
(nearest neighbor) a combination of the tree positions and GCPs and implemented to calculate the
Canopy Height Models (CHMs). The DTM and CHMs were created at a resolution of 0.5 m and
0.3 m, respectively. Treetops were detected using the local maximum algorithm and allocated an ID in
reference to the TS tree positions. Missed or falsely detected trees were found by manually adjusting
TS tree positions with the aid of the Orthomosaic and CHM (Figure 5), and by creating a 0.1 m buffer
to capture the maximum pixel values. Typically, we have found that at least 80% of trees will be
automatically detected, which is in accordance with Mohan et al. [54]. Simply creating buffers around
the TS positions to extract tree heights was not possible due an offset of the apical meristem to the
stem position, especially evident with codominant trees. Figure 3 shows the full processing workflow
in relation to the image acquisition and field data collection campaigns.
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Figure 5. The majority of the treetops (>80%) were detected with the local maxima algorithm.
Non-detected trees required positional adjustments dependent on the highest pixel values in proximity
to the tree stem positions and visual assessment of the tree crowns in the Orthomosaic. (a) The Canopy
Height Model (CHM) before harvesting with automatically detected and adjusted tree tops. (b) Treetop
positions shown over the Orthomosaic before harvesting. (c) CHM after harvesting with noticeable
gaps in the canopy. (d) Orthomosaic after harvesting.

2.6. Statistical Analysis

The statistical analysis in this study was carried out with the R software package [51] and based
upon the validation of the tree heights derived from the two photogrammetric datasets acquired before
and after harvesting, as well as a validation of the field-based indirect measurements. The direct
measurements of the felled trees were used as validation for the indirect field measurements, as well
as the photogrammetric dataset before harvesting. The indirect field measurements were implemented
as validation for all tree heights of the photogrammetric dataset prior to harvesting, as well as the
photogrammetric dataset containing the remaining trees after harvesting.

The datasets to be validated were assessed by quantifying the total error, systematic error, and
random error [42], as well as calculating the coefficient of determination R-squared [55]. We adopted
the method from Larjavaara et al. [42] and used the terms systematic error (bias) and random error in
order to clarify the difference between precision (lower random error) and accuracy (lower systematic
error). Total error was determined by calculating the root mean squared error (RMSE):

RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)
2 (1)

RMSE [%] =
RMSE

y
∗ 100, (2)
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where yi = predicted values, ŷi = observed values, y = mean of observed n values, n = total number
of samples [42,56–58]. The mean error (ME) is synonymous with the systematic error and calculated
as follows:

ME =
1
n

n

∑
i=1

(yi − ŷi), (3)

ME [%] =
ME

y
∗ 100. (4)

The sample standard deviation of error (SDE) depicts the random error and is calculated
as follows:

SDE =

√
1

n − 1

n

∑
i=1

(yi − ŷi − ME)2 (5)

SDE [%] =
SDE

y
∗ 100. (6)

R-squared was determined by calculating a linear model and provides a measure of how well the
data is fitted to the regression line.

3. Results

3.1. Processing Results and Statistical Analysis

The two resulting CHMs were named PPCpre and PPCpost and represent the photogrammetrically
calculated tree heights before and after harvesting. Table 1 displays some of the statistical parameters
of the resulting point clouds and orthomosaics. Important to note is that the RMSE values shown in
Table 1 represent only the relative accuracy with regard to the GCPs and calibrated images, rather than
absolute geolocation accuracy. Furthermore, a decrease in point density for the PPCpost dataset is most
probably due to absent trees in the point cloud after harvesting.

Table 1. Overview of the resulting statistical parameters for the photogrammetric products before and
after harvesting. RMSE: root mean square error; GSD: ground sampling distance.

Mission Calibrated Images RMSE GSD (cm/pixel) Points Point Density (m3)

February 13, 2018
(PPCpre) 143 0.009 0.90 27,576,865 2,731.39

April 29, 2018
(PPCpost)

161 0.01 1.02 27,171,260 1,727.18

The four main datasets for the study were labeled (see Table 2) and adjusted for sample size
in terms of the harvested trees (n = 34), all trees of the stand prior to harvesting (n = 285), and the
remaining trees after harvesting (n = 251). Each dataset was tested for normal distribution and an
overview of descriptive statistics are displayed in Table 3. Figure 6 shows the distribution of all datasets
as boxplots.

Table 2. The four main datasets for analysis. Fieldall: all of the field-based measurements carried out
before harvesting; UAVP: Unmanned Aerial Vehicle Photogrammetry; PPCpre: UAVP tree heights
acquired before harvesting; Direct: direct measurements of trees during harvesting; PPCpost: UAVP
tree heights acquired after harvesting.

Description n Acquisition Date

Fieldall Field-based indirect measurements 285 February, 2018
PPCpre UAVP mission before harvesting 285 February, 2018
Direct Direct measurements of harvested trees 34 March, 2018

PPCpost UAVP mission after harvesting 251 April, 2018
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Table 3. Overview of the statistical results of the tree height datasets (in meters) adjusted for sample
size for analysis. Direct: direct measurements of trees during harvesting; Fieldharv: field-based
measurements carried out before harvesting of only the harvested trees; PPCpre_harv: Unmanned
Aerial Vehicle Photogrammetry (UAVP) tree heights acquired before harvesting of only harvested
trees; Fieldall: all of the field-based measurements carried out before harvesting; PPCpre: UAVP tree
heights acquired before harvesting; Fieldall_rem: field-based measurements carried out before harvesting
adjusted for sample size; PPCpre_rem: UAVP tree heights acquired before harvesting adjusted to post
harvest sample size; PPCpost: UAVP tree heights acquired after harvesting.

Min
(m)

1st Quartial
(m)

Median
(m)

Mean
(m)

3rd Quartial
(m)

Max
(m) N Original

Dataset

Direct 12.12 15.74 16.60 16.58 17.53 19.60 34 -
Fieldharv 12.50 15.85 16.85 16.72 17.95 19.50 34 Fieldall
PPCpre_harv 13.00 15.54 16.37 16.44 17.43 19.20 34 PPCpre
Fieldall 11.10 16.40 17.60 17.58 18.80 21.90 285 -
PPCpre 10.37 16.07 17.25 17.22 18.43 21.12 285 -

Fieldall_rem 11.10 16.45 17.80 17.70 19.00 21.90 251 Fieldall
PPCpre_rem 10.37 16.15 17.34 17.32 18.54 21.12 251 PPCpre
PPCpost 10.45 16.10 17.36 17.33 18.62 21.09 251 -

Figure 6. Boxplots grouped by sample size showing the distribution of tree heights among all of
the datasets.

The validation of indirect field measurements against the direct measurements was labeled
Fieldharv_Direct and the validation of the photogrammetric point cloud derived tree heights against
the direct measurements was labelled PPCpre_harv_Direct. Both comparisons implemented the 34 felled
trees as samples. The photogrammetric tree height dataset prior to harvesting (PPCpre_Fieldall) was
compared to the indirect field measurements for the entire stand (n = 285), as well as with an adjusted
sample size (n = 251) excluding the harvested trees (PPCpre_rem_Fieldall_rem). This was done to enable
a comparison of the photogrammetric datasets before and after harvesting (PPCpre_rem_Fieldall_rem
and PPCpost_Fieldall_rem). Finally, both photogrammetric tree height datasets containing the remaining
251 trees before and after thinning were compared to each other (PPCpre_rem_PPCpost). The overall
statistical results are in Table 4.
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Table 4. Overall statistical results of the compared tree height datasets.

Dataset
Comparison

Total Error Systematic Error (Bias) Random Error Correlation Total

RMSE
(m)

RMSE
(%)

ME
(m)

ME
(%)

SDE
(m)

SDE
(%) R2 p-Value n

Fieldharv_Direct 0.304 1.82 0.144 0.86 0.271 1.62 0.975 2.2 × 10−16 34
PPCpre_harv_Direct 0.34 2.07 −0.134 −0.81 0.317 1.93 0.971 2.2 × 10−16 34

PPCpre_Fieldall 0.479 2.78 −0.365 −2.12 0.311 1.81 0.967 2.2 × 10−16 285
PPCpre_rem_Fieldall_rem 0.486 2.81 −0.377 −2.18 0.308 1.78 0.967 2.2 × 10−16 251
PPCpost_Fieldall_rem 0.477 2.75 −0.369 −2.13 0.302 1.74 0.968 2.2 × 10−16 251
PPCpre_rem_PPCpost 0.138 0.794 0.008 0.04 0.138 0.79 0.993 2.2 × 10−16 251

3.2. Validation with Direct Measurements

The direct destructive measurement method of the felled trees was assumed the most accurate
measurement possible within the framework of this study and was used as a control for the field
measurements, as well as the photogrammetric dataset prior to harvesting. When compared to
the direct measurements (Direct), the indirect field measurements (Fieldharv) resulted in a RMSE
of 0.304 m (1.82%) and a systematic error of 0.144 m (0.86%), showing an overestimation of tree
heights. In comparison with the direct measurements (Direct), the photogrammetric measurements
(PPCpre_harv) fared slightly worse than the field measurements with a RMSE of 0.34 m (2.07%) and a
systematic error of −0.134 m (−0.81%), suggesting an underestimation of tree heights. In terms of
random error, the field measurements showed a lower standard deviation error with 0.271 m (1.72%),
as opposed to 0.317 m (1.93%) for the photogrammetric dataset. Both regression lines were determined
significant (p < 0.001), however, the Fieldharv data displayed a better goodness of fit, particularly with
the tallest trees (see Figure 7).

Figure 7. (a) Indirect field measurements against the direct measurements (Fieldharv_Direct).
(b) Photogrammetric tree heights against the direct measurements (PPCpre_harv_Direct).

3.3. Validation with Indirect Measurements

When compared to the indirect field measurements (Fieldall), the photogrammetric tree heights
fared similarly in terms of total error and bias. PPCpre resulted with a RMSE of 0.479 m (2.78%) against
Fieldall, as well as a bias of −0.365 m (−2.21%) and random error of 0.311 m (1.81%). Figure 8 shows an
underestimation of the photogrammetric tree heights (n = 285) in comparison to the field measurements.



Remote Sens. 2019, 11, 758 11 of 18

Figure 8. Photogrammetric tree height dataset prior to harvesting (PPCpre_Fieldall) compared to the
indirect field measurements for the entire stand.

The photogrammetric datasets PPCpre_rem and PPCpost before and after harvesting (n = 251)
resulted in a RMSE of 0.486 m (2.81%) and 0.477 m (2.75%), respectively. Photogrammetric tree
heights were also underestimated when compared to field measurements with a bias of −0.377 m
(−2.18%) for PPCpre_rem and −0.369 m (−2.13%) for PPCpost. As with Figure 8, Figure 9 also shows an
underestimation of the photogrammetric tree heights (n = 251) in comparison to the field measurements.
Important to note here is that the distribution of points below the regression line could also be partially
attributable to an overestimation of field-based measurements, as shown in Figure 7a.

Figure 9. Comparison of the photogrammetric datasets before (a) (PPCpre_rem_Fieldall_rem) and after
(b) harvesting (PPCpost_Fieldall_rem) with adjusted sample size (n = 251), excluding the harvested trees.

3.4. Comparison of Photogrammetric Datasets

Comparing both photogrammetric datasets (see Figure 10) resulted in a very low RMSE of
0.138 m (0.794%). Systemic and Random error were also very low at 0.008 m (0.04%) and 0.138 m
(0.79%), respectively. Additionally, the comparison showed a very high correlation between the two
photogrammetric datasets (R2 = 0.993).
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Figure 10. Comparison of both photogrammetric tree height datasets containing the remaining 251
trees before and after thinning (PPCpre_rem_PPCpost).

4. Discussion

Since the arrival of various modern remote sensing technologies, such as ALS and UAVP, point
cloud and raster-derived tree heights have been typically validated against indirect field-based
measurements [11,12,35–41]. Field-based tree height measurements should, however, be validated
themselves, as the measurement methods implemented alongside the experience and training of
technicians could vary, thus increasing uncertainty [42]. Furthermore, measurement errors in tree
height can result in an increase in volume prediction error when volume functions involving dbh and h
are implemented [59].

In this study, we showed that field-based measurements (RMSE = 0.30 m, 1.82%), when measured
by an experienced technician, can result in a similar RMSE as photogrammetric measurements
(RMSE = 0.34 m, 2.07%) in an even-aged Scots Pine stand. Interestingly, both measurement methods
showed similar amounts of bias, however in opposing directions. The field-based measurements
were overestimated with a positive bias of 0.144 m, and the photogrammetric tree heights were
underestimated with a negative bias of −0.134 m. Systemic error in opposing directions could be
attributable to the total error of the photogrammetric datasets (PPCpre, PPCpre_rem, PPCpost) when
compared to the field measurements (approximate RMSE = 0.48 m). This shows that unknown
opposing biases can convolute results when uncertainty exists within validation data. According to the
instruction manual of the German Federal Carbon Inventory (Kohlenstoffinventur 2017), error tolerance
for tree height measurement is set at ±5% for coniferous trees and ±10% for deciduous trees and a
maximum error cut-off of ±2 m for both tree types [60]. This leaves the photogrammetrically derived
tree heights from this study well within the error tolerance for a typical forest inventory when direct
and indirect measurements are used as validation. Important to note here is that the level of error
within a forest inventory in terms of tree height is traditionally controlled by a designated technician,
however, uncertainty in bias could also exist here. On the other hand, this study shows that when
direct measurements are unavailable, field-based measurements can be used with a certain level of
reliably for the validation of UAVP, ALS, and TLS tree measurement techniques, which is also in line
with the findings of Luoma et al. [61]. Further research is, however, required for the significance of the
bias found in this study on single tree and area-based volume predictions.

In terms of the added time and cost involved with measuring GCPs and individual tree stem
positions with the TS, though not cost-effective for interim study areas, could however prove feasible
for long-term intensive monitoring plots. Permanent GCPs, as well as tree positions, are not only useful
for constructing a reliable DTM for multi-temporal tree height extraction, but also for accurate crown
positioning required for phenological observations. Additionally, individual tree positions remain
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valid throughout an individual tree’s life span, enabling the possibility for long-term time-series
analysis with various sensors and remote sensing platforms. GCPs could also be implemented for
longer periods depending on the durability of permanent ground markings, particularly during
thinning procedures. Furthermore, such sites could be implemented for the testing and calibration
of remote sensing technologies for the purpose of assessment [62–66], as well as sensor fusion and
upscaling [67–69].

The trees selected for harvesting were chosen with the criteria of facilitating the further
development of selected “future” trees, which are trees typically chosen for their vitality and planned as
final crop trees. For this reason, the selected trees for harvesting were less dominant than neighboring
future trees and were often part of the lower portions of the canopy. Such positioned trees are
often more challenging for photogrammetric tree height extraction, particularly in mixed stands,
and can typically result in overestimation due to occlusion from the branches of the more dominant
neighboring trees [15,70]. Overestimation was, however, not the case in this study, as underestimation
of the photogrammetric tree heights was more evident. Underestimation of the photogrammetric
tree heights could have been attributable to the direct measurements of trees when measured on the
ground after felling. Most trees, while standing, will have at least a slight leaning angle, as discovered
when comparing the highest pixel values in the CHM to the tree stem positions. Tree angle can also
increase with less dominant trees, as they will often resort to growing in the direction of openings
in the canopy. When such a tree is extended out on a horizontal surface, the length of the tree could
vary to the standing height, as the leaning angle is somewhat eliminated. This could explain the
underestimation of the photogrammetric tree height measurements caused from the extension of the
tree length on the ground during direct measurements. Corrections for underestimation in such cases
could be solved with a correction calculation [60] based on the leaning angle of a tree, which could
be derived from the planar distance of the tree top to the stem position, as well as tree height. With
regards to the overestimation of field-based measurements, this was also reported by Wang et al. [46],
particularly for codominant trees.

The comparison of both photogrammetric datasets (PPCpre_rem_PPCpost) was carried out in
order to determine the repeatability of tree height measurements among various flight missions.
The results show a RMSE of 0.138 m between separate flight missions, suggesting a very high
precision. Repeatability at this level shows a promising possibility to measure within-season tree
height growth [35] and could merit further study. In terms of long-term intensive forest monitoring
plots, such as the Britz Research Station or Level II of International Cooperative Programme (ICP)
Forests [32], within-season growth could be a logical enhancement to match highly accurate continuous
tree measurement devices, such as electronic dendrometers [71] and sap flow sensors [72]. The question
herein lies whether a precision of approximately 0.14 m between photogrammetric datasets is viable
for within-season growth measurement when the typical annual growth for a Scots’ Pine could be
estimated roughly at approximately 0.3 m. As mentioned above, the maximum allowance of error by
a typical forest inventory is ±2 m. Such a margin of potential tree height error makes it difficult to
model tree growth under a span of 10 years [1]. Less than 10 years could result in unusable results
(i.e., possible negative growth values), despite the field-based measurement accuracy determined
in this study (RMSE = 0.304 m). The reason for this is probably not due to the lack of precision of
field-based measurements. Luoma et al. [61] found there was no statistically significant difference
within the measurement of tree heights among four technicians. The problem lies rather, according
to Wang et al. [46], in the fact that field-based tree heights are more sensitive to stand conditions, for
example in trees that are over 20 m, as well as the uncertainty in determining the tree tops of deciduous
trees. Additionally, there are also the challenges in carrying out field-based measurements on uneven
and sloping terrain.

The precision of UAVP-based tree heights on intensive monitoring plots established through
the methods described in this paper could be the missing link in establishing tree growth models
under 10 years. Within-season measurements would be an ideal outcome for reasons introduced
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above, however probably only possible for sites stocked with younger trees or fast-growing trees, for
example in species with the genus Populus or Salix. Measurements on a yearly basis, however, should
be theoretically possible and further testing is required. UAVP does, however, have issues of occlusion
of the ground floor and lower parts of the canopy, as well as tree height underestimation, as shown in
this study. Occlusion and underestimation can also be relevant for ALS and TLS technologies [46,73].
Furthermore, automated algorithms implemented for tree height estimation can show significant
differences, especially in structural divers and dense forest stands [73].

With regards to UAVP actually replacing field-based measurements, this is still somewhat of
a challenge, especially for typical forest inventories due to the difficulties of georeferencing images
in forested areas. In terms of intensive forest monitoring plots, in particular at research stations
(Level III—core plots), the methodology introduced in this study shows that UAVP could prove
an invaluable addition to on-site continuous measurements of not just the highly temporal and
rapid acquisition of tree heights but also the measurement of tree crown diameter, as well as the
quantification of phenological observations. Such measurements could also be carried out in stands
where accessibility is an issue for traditional field methods. The deciding factors will most probably
be reliant on an increased demand for such highly temporal datasets, time efficiency compared to
field-based methods, the availability of the technical expertise of personnel, and the affordability of
Unmanned Aerial Systems (UASs) and sensors.

5. Conclusions

The focus of this study was to determine the accuracy and precision of tree height measurements
using UAV photogrammetry at an intensive forest monitoring site. We showed that photogrammetric
measurements can attain similar accuracies to that of indirect field measurements in an even-aged
Scots Pine stand when destructive direct measurements are used as validation. It was found that
compared to direct measurements, indirect field-based measurements tend to overestimate tree
heights and UAV-based photogrammetric measurements have a tendency to underestimate tree
heights. Such positive and negative biases show a potential for a misinterpretation of results when
photogrammetric tree heights are validated with field measurements, especially when biases are
unknown. Nevertheless, it was determined that field-based measurements are adequate for the
purpose of the validation of UAVP tree heights when direct measurements are not available. We also
discovered a very high precision between photogrammetric tree height measurements derived from
two separate UAV missions, which could suggest a possibility to obtain yearly tree height increments,
or even measurements within a growth season for young or fast-growing tree species.

This paper shows that UAVP has the potential to possibly replace in situ tree height measurements
at intensive forest monitoring plots where a permanent GCP configuration is available.
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