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Abstract: Accurate information regarding forest tree species composition is useful for a wide range of
applications, both for forest management and scientific research. Remote sensing is an efficient tool for
collecting spatially explicit information on forest attributes. With the launch of the Sentinel-2 mission,
new opportunities have arisen for mapping tree species owing to its spatial, spectral, and temporal
resolution. The short revisit cycle (five days) is crucial in vegetation mapping because of the reflectance
changes caused by phenological phases. In our study, we evaluated the utility of the Sentinel-2 time
series for mapping tree species in the complex, mixed forests of the Polish Carpathian Mountains.
We mapped the following nine tree species: common beech, silver birch, common hornbeam, silver fir,
sycamore maple, European larch, grey alder, Scots pine, and Norway spruce. We used the Sentinel-2
time series from 2018, with 18 images included in the study. Different combinations of Sentinel-2
imagery were selected based on mean decrease accuracy (MDA) and mean decrease Gini (MDG)
measures, in addition to temporal phonological pattern analysis. Tree species discrimination was
performed using the Random Forest classification algorithm. Our results showed that the use of
the Sentinel-2 time series instead of single date imagery significantly improved forest tree species
mapping, by approximately 5–10% of overall accuracy. In particular, combining images from spring
and autumn resulted in better species discrimination.
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1. Introduction

Forest species mapping is crucial for forest management, monitoring of forest disturbances, habitat
and biodiversity assessment, as well as carbon cycle and energy budget estimation [1–3]. The use of
the latest remote sensing data and methods, whether passive or active, can provide useful information
regarding forest stand species composition, and, in comparison to conventional field studies, requires
less time and enables the study of large and inaccessible areas [2,4,5].

To date, multispectral imagery has been the most commonly used data in forest species composition
mapping studies, particularly imagery from the Landsat missions [6–8]. However, the use of
medium spatial resolution remote sensing data such as Landsat imagery is challenging, especially
in heterogeneous forests, owing to the occurrence of mixed pixels [9–11]. Therefore, in many cases,
medium or low spatial resolution data have been used mostly for mapping broad forest types [12,13],
without detailed analyses of tree species composition [14–16].

Other remote sensing data that are used in forest species mapping are hyperspectral imagery
or light detection and ranging (LiDAR) data. Hyperspectral sensors, which monitor the Earth’s
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surface in contiguous and narrow bands, allow the capture of the biochemical composition of
vegetation [2,9]. They provide a significant level of detail; therefore, in many studies, hyperspectral
data has outperformed multispectral imagery [1,4,17]. However, from a broad set of wavebands,
the optimal set must be selected [18] because most bands are highly correlated [9]. Furthermore,
greater computational power is required for processing hyperspectral imagery [19]. Multispectral and
hyperspectral data are often combined with LiDAR data [20,21]. When combining multispectral images
with LiDAR data, it is possible to achieve high accuracies (above 90%) in vegetation mapping [22].
In addition, terrestrial laser scanning is used for tree species classification and provides very detailed
information about forest structure [23]. Although LiDAR and hyperspectral data possess high potential
for species classification, their operational use is restricted owing to limited availability and high
acquisition costs [3,24], and the applicability of these data in a regional or global scale is still limited [25].
Therefore, optical multispectral data are often considered a good alternative to LiDAR data [26].
Currently, radar (synthetic aperture radar) data are used in tree species mapping, particularly for the
determination of broad-leaved forest types [2]. Considering a variety of spatial resolutions of imagery
used in the classification process, forest species composition can be mapped at several scales. With the
use of very high-resolution imagery, it is possible to separate individual trees or even leaves [27].
However, when using very high spatial resolution imagery, the spectral responses of individual trees
are affected by differences in canopy illumination and background signal [28]. Therefore, in vegetation
studies covering large geographical areas, relatively dense and freely available multispectral imagery
such as Sentinel-2 appears to be the best solution [10], and new approaches are required.

In forest tree species classification studies using multispectral imagery, the key issue is the
multi-temporal methodology applied [6,29]. The general assumption is that phenological variations
can increase the spectral separability between tree species; variations in reflectance caused by the
phenological cycle can help in the accurate mapping of forest tree species [3]. The majority of studies
on the phenology of forest trees refer to leaf seasonality [30], which includes the main phenophases
such as budburst, leaf unfolding, autumn coloring, and abscission [31]. For conifers, needle appearance
is an indicator of the beginning of growth; however, there is no obvious phenological phase during
autumn [32]. On the contrary, seasonal variations in photosynthetic efficiency in deciduous trees
are the most noticeable during autumn—the process of senescence connected to the change of leaf
colors [33]. However, for some species the differences are difficult to capture; for example, hornbeam
and common beech are characterized by very similar phenological phases [34]. Many studies have
shown that the use of multi-temporal imagery allows the achievement of higher accuracies in mapping
forest species than those produced using a single image [3,9]. However, combining individual images
that achieve the highest accuracies does not necessarily lead to a high accuracy of the classification with
combined images, and the timing of image acquisition is more important than the image quantity [35].
One of the newest optical satellite missions, Sentinel-2, can significantly improve forest mapping [36].
The Sentinel-2 sensor, MultiSpectral Instrument (MSI), acquires data in, among others, three red-edge
bands, which are very useful in providing information about vegetation, e.g., chlorophyll content [37,38].
Furthermore, the repetition cycle of Sentinel-2A and its twin satellite Sentinel-2B is five days [39].
This short repetition cycle provides an opportunity to acquire dense time series imagery. Regarding
tree species classification using Sentinel-2 data, in a study by Immitzer et al. [39], one of the earliest
Sentinel-2A image acquisitions from 2015 was used to classify tree species. These authors achieved a tree
species classification overall accuracy (OA) of 65% and highlighted the importance of the acquisition
date. They also concluded that the spatial resolution of Sentinel-2A images may be insufficient for
the classification of heterogeneous forests with fragmented species distribution and recommended
combining these images with high-resolution data. Karasiak et al. [40] evaluated the potential of
11 Sentinel-2A images for the classification of tree species in southwest France and obtained OAs of
classification above 90%. They highlighted the requirement for further studies of forest tree species
mapping with the use of Sentinel-2 data and the assessment of imagery contribution from certain dates.
Persson et al. [41] used four Sentinel-2 images to classify five forest tree species. They remarked that
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there is a requirement to undertake further studies of more dense time series of Sentinel-2 imagery
including data from spring and autumn. Furthermore, Wessel et al. [42] conducted a study confirming
the potential of Sentinel-2 data for forest species analysis. Above-mentioned studies were performed
on relatively small and flat areas.

Thus, the main aim of the present study was to evaluate the performance of dense Sentinel-2
time series from spring, summer, and autumn in forest tree species mapping in a more challenging
environment, i.e., mountainous area. We assessed which Sentinel-2 time series combinations were
adequate for performing forest stand species classification with high accuracy (>90% of OA) and which
image acquisition dates and Sentinel-2 bands contributed the most to the OA. In addition, we analyzed
temporal phenological patterns of nine tree species occurring in the study area.

2. Materials and Methods

2.1. Study Area

The study area is in the northern, Polish part of the Carpathian Mountains (Figure 1).
Woodlands cover approximately 41% of the Polish Carpathians and are dominated by common
beech (Fagus sylvatica), silver fir (Abies alba), and Norway spruce (Picea abies) [11,43]. The proportions
of these three forest-forming species in the overall species composition is different in various parts of
the Polish Carpathians. In the western part, the forests are dominated by Norway spruce and species
diversity is low. Forests in the eastern part of the Polish Carpathians are characterized by a high
percentage of common beech and silver fir [44]. Owing to the complex characteristics of tree species
composition in the Polish Carpathians, the study site contained a diversified species composition,
named the Baligród Forest District (Figure 1). The Baligród Forest District covers an area of 305 km2 and
is in the Bieszczady Mountains in the eastern part of the Polish Carpathians. Forests here are dominated
by common beech and silver fir. Other common tree species are grey alder (Alnus incana), Scots
pine (Pinus sylvestris), sycamore maple (Acer pseudoplatanus), and Norway spruce. Rare species here
include European larch (Larix decidua), European ash (Fraxinus excelsior), silver birch (Betula pendula),
and European hornbeam (Carpinus betulus) [45]. The elevation above sea level ranges from 375 to
1070 meters a.s.l.
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2.2. Data Collection and Preprocessing

In the present study, we used freely available Sentinel-2 images (Level-2A product–Bottom
of Atmosphere (BOA) reflectance; tile number T34UEV) downloaded from the Copernicus Open
Access Hub (https://scihub.copernicus.eu/). We used 18 topographically-corrected images distributed
irregularly over the study period with no or very limited cloud cover (less than 10% of the studied
forest district; Figure 2). We selected all bands with 10 and 20 m spatial resolution (Sentinel-2 bands: 2,
3, 4, 5, 6, 7, 8, 8a, 11, and 12).
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Training and validation data on tree stand species composition were acquired from the Polish Forest
Data Bank (Bank Danych o Lasach; https://www.bdl.lasy.gov.pl/portal/). This database is available
free of charge and provides information about forest management, forest conditions and changes,
detailed information on the composition of forest stands, and many other types of information [46].
The Forest Data Bank is updated every year, however, information is provided only for the Polish State
Forests. The main unit here is called a subarea—homogenous forest area described and measured
during inventory. A polygon represents each subarea with known coordinates. For the present study,
from each subarea located in the study sites we used information regarding the share of tree species
at the tree layer of the forest stand. The tree species share was estimated based on the stand volume
during forest inventory. Subareas ranged in size from 0.01 to 94 ha (mean of 6.9 ha) and represent
25 different tree species. However, as described in the next section, only the most common species
were distinguished in our classification.

2.3. Methods

Our workflow consists of the following steps: (1) cloud masking, (2) obtaining forest cover for
2018 (see Section 2.3.1), (3) data processing, which involved the design of training and validation
samples (Section 2.3.2) and the creation of time series based on variable importance measures and
temporal pattern analysis (Section 2.3.3), (4) classification of forest stand species using a Random Forest
(RF) algorithm (Section 2.3.4), and (5) classification accuracy assessment of species maps for studied
combinations of Sentinel-2 time series (Section 2.3.5) (Figure 3).
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2.3.1. Forest Mask

First, we extracted forest areas for 2018 using Random Forest classification algorithm. The training
and validation samples for this step were visually selected forested and non-forested polygons.
The non-forested cover contained all non-wooded classes including built-up areas, agricultural lands,
non-wooded vegetation, and water. The total number of reference areas was 27 forest polygons and
52 non-forest polygons. For this classification, one Sentinel-2 image from 20 August 2018 (the middle
of the growing season and the best quality image) was used as the input data.

2.3.2. Training and Validation Samples

For the classification of tree species, all subareas from the Polish Forest Data Bank with 100%
share of a particular tree species were selected. In addition, all polygons were visually checked and
we removed polygons, which were not spectrally homogeneous. For less common species such as
silver birch, common hornbeam, sycamore maple, European larch, grey alder, and Norway spruce,

https://www.bdl.lasy.gov.pl/portal/
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additional polygons were delineated based on subareas with 80% and 90% share of one species and
visual inspection of Sentinel-2 imagery. Finally, the following nine tree species were analyzed: common
beech, silver birch, European hornbeam, silver fir, sycamore maple, European larch, grey alder, Scots
pine, and Norway spruce (Table 1).

Table 1. Reference samples.

Tree Species Number of Polygons Area [ha]

Common beech 76 578.7
Silver birch 6 4.9

Common hornbeam 6 14.65
Silver fir 59 127.9

Sycamore maple 9 18.9
European larch 8 12.5

Grey alder 8 9.1
Scots pine 37 35.4

Norway spruce 11 12.6
Total 220 814.6

2.3.3. Variable Importance and Assessment of Temporal Patterns

To select only the most important variables (acquisition dates) for classification, the evaluation
was performed in two steps: the assessment of temporal phenological patterns and variable importance
estimation (spectral bands and acquisition dates) using mean decrease in accuracy (MDA) and
mean decrease Gini (MDG) measures. MDA and MDG are the most popular measures for variable
importance embedded in RF classifier. In MDA, input variable values are randomly permuted,
then the changes in predicted accuracy is measured, while MDG measures the reduction of Gini
Impurity metric by a variable for a particular class [47–50]. In the majority of studies, MDA is
used [47] because it is considered as more straightforward, reliable, and easier to understand [51].
However, Behnamian et al. [52] claimed that MDG is slightly more stable. Thus, we decided to use
both methodologies. All statistics were calculated in R software using the randomForest package [53].

In the second step, we produced temporal phenological patterns based on ten bands from the
analyzed Sentinel-2 imageries. For each band, mean spectral reflectance values for the reference
polygons were extracted.

Finally, based on variable importance and temporal phenological patterns, we selected the best
combinations of dates in the Sentinel-2 time series to perform further tree species classification; a total
of 12 combinations and we performed classifications of all the single Sentinel-2 images separately.

2.3.4. Forest Tree Species Classification

Tree species supervised classification was performed using the non-parametric RF algorithm,
which consists of an ensemble of decision trees. The main assumption behind ensemble classifiers is
that when using a set of weak learners, better performance is obtained than when only a single classifier
is used [54]. In comparison with other non-parametric classifiers, this algorithm is faster and less
expensive computationally and, furthermore, this technique is robust with respect to overfitting and
can manage many input variables without variable deletion [53–55]. We applied the RF algorithm in the
supervised classification function from RStoolbox in R software [56]. The sample polygons described
in Section 2.3.2 were used as the input reference data for classification and were randomly split into
training and validation polygons in a 70:30 ratio. Then, the pixels inside the sample polygons were
used to perform the classification. The number of trees was set at a default value of 500. The selected
time series were clipped to only forest cover and used as the input variables during the classification
procedure. The classification for each input image or combination of images was performed ten times
using k-fold validation in R, and then the best one in terms of OA was selected.
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2.3.5. Accuracy Assessment

We assessed the following two levels of classification accuracy: (1) maps of forest and non-forest
cover (forest mask) and (2) maps of forest tree species. We visually inspected the obtained maps [57].
For the statistical accuracy assessment, the most common coefficients were calculated, i.e., OA,
producer´s and user´s accuracies, and confusion matrixes [57,58].

3. Results

3.1. Variable Importance and Temporal Patterns

We obtained the statistics (MDA and MDG, Figure 4) for 180 bands; however, we have included
only the most important ones here, i.e., 15 variables that had the highest MDA and MDG values.
Based on the MDA statistics, the most significant variables included the October images (October 17
and 14), whereas MDG showed higher contribution from spring images (end of April and beginning
of May). In addition, there were differences in the importance of particular Sentinel-2 bands—MDA
showed the importance of visible and red-edge bands, whereas MDG showed the importance of
red-edge and short-wave infrared (SWIR) bands. For the variable importance for particular forest tree
species, autumn images had a greater contribution for broad-leaved species discrimination, whereas
spring images showed a greater contribution for conifers (Figure 5).
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Temporal phenological patterns showed how the reflectance values varied over the 2018-growing
season (Figure 6). In the visible blue part of the spectrum (VIS B, S2 Band 2), the reflectance was
characterized by low and irregular values throughout the growing season for all studied species.
The reflectance peaks and falls in the visible green band (VIS G, Band 3) occurred irregularly over
the year, with lower values for conifers than for broad-leaved species. In the visible red band (VIS R,
Band 4), the reflectance was higher during early spring and late autumn than during the middle of
the vegetation cycle. Regularities occurred during autumn, i.e., from September to October there was
an increase in the reflectance of broad-leaved species, a slight decrease of spruce and fir reflectance,
and stable values for larch and pine. Then, in October, the trend changed for the reflectance of
broad-leaved trees in VIS R, i.e., their reflectance values started to decline, whereas for larch, there was
a significant increase. In general, in the visible part of the spectrum, the lowest reflectance values
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characterized fir and spruce. However, between May and June, pine had lower values than those for
spruce. In the VIS R band, pine had higher reflectance than most of the other species during late spring
and summer (May, June, and August).Remote Sens. 2019, 11, x FOR PEER REVIEW 8 of 24 
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(b) visible green, (c) visible red, (d) red edge 1, (e) red edge 2, (f) red edge 3, (g) near-infrared 1,
(h) near-infrared 2, (i) short-wave infrared 1, and (j) short-wave infrared 2. The temporal patterns with
standard deviations values can be found in Appendix A.

In the red-edge 1 band (RE1, Band 5) reflectance patterns are characterized by a higher diversity
than in the visible bands. The reflectance for broad-leaved species was higher than conifers during
almost the entire growing season. However, similarly to visible bands, during the late summer
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larch had higher reflectance values than that of broad-leaved species. Furthermore, larch reflectance
increased during autumn in contrast to other species. Among the broad-leaved species, in the RE1 band,
the highest reflectance occurred for beech (spring), grey alder (late spring), and hornbeam (late summer
and autumn). Birch was characterized by the lowest reflectance. In the red-edge 2 (RE2, Band 6),
red-edge 3 (RE3, Band 7), and near-infrared (NIR 1 and NIR 2, Band 8 and 8a) bands, reflectance values
exhibited very similar patterns. The highest values and greatest variability between species in these
parts of the spectrum occurred during late spring and summer (from May to August). The reflectance
peak occurred during May (for sycamore) or June (for all other species) and after that reflectance
slowly decreased. A sharp decrease in reflectance was observed for broad-leaved species between
October 9 and 14. The sharpest decrease in reflectance values occurred for beech in the RE2 and RE3
bands. Among the conifers, larch spectral responses were characterized by similar properties to that
of broad-leaved species. Three remaining conifer species had similar reflectance values, which were
significantly lower than those of the broad-leaved values: the highest for spruce and the lowest for
pine during the summer. During November, pine reflectance exceeded all the species apart from larch.
Among the broad-leaved species, birch is characterized by much lower values than others.

In the shortwave-infrared spectrum (SWIR1, Band 11) the highest differences in reflectance
occurred during November. For hornbeam, there was a lower reflectance during early spring than that
for the other broad-leaved species; however, were similar by the beginning of May. In SWIR2 (Band 12),
reflectance patterns were characterized by lower values in summer and higher values during spring
and autumn. The highest peak in reflectance occurred on April 12 in both SWIR bands. Among the
conifers, pine, spruce, and fir patterns were similar throughout the growing season, with similar
reflectance for spruce and fir, and higher reflectance for pine. Similar to other parts of the spectrum,
in both SWIR bands larch reflectance was characterized by an increase during late autumn. Based on
the results of variable importance and spectral-temporal patterns assessment, we selected 12 image
combinations for further forest tree species classification (Table 2).

Table 2. Selected combinations for tree species classification.

Number of Images Combination

Two
05-May/14-Oct
30-Apr/17-Oct
14-Oct/17-Oct

Three

05-May/06-Jun/14-Oct
30-Apr/14-Oct/17-Oct
05-May/14-Oct/17-Oct

05-Apr/05-May/08-Nov

Four
05-Apr/05-May/14-Oct/08-Nov
30-Apr/05-May/14-Oct/17-Oct
30-Apr/05-May/17-Oct/08-Nov

Five 30-Apr/05-May/14-Oct/17-Oct/08-Nov
Eighteen All images

3.2. Forest Tree Species Classification

The forests in the Baligród Forest District cover 240 km2 (79% of the total area). The OA of our
forest and non-forest classification was 99%. In the classification of forest tree species with single
Sentinel-2 image, we achieved the best accuracy (maximum obtained OA from ten times validation)
for April 30, followed by October 9 and April 12, being 87.39%, 87.08%, and 84.94% of OA, respectively
(Figure 7). In the classification of the combination of two images (one from spring and one from
autumn), the OA improved significantly to 90.19%. Adding more images to this combination resulted
in only slight improvement; for three images (spring and two autumn images): 91.8% OA; for four
images (two spring and two autumn): 92.09% of OA; and for five images: 92.38% OA. Using all
available imagery did not improve forest species classification accuracy (92.12% OA).
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Figure 7. Overall classification accuracy for single Sentinel-2 images and selected combinations of
time series.

The highest producer accuracies were achieved for common beech, hornbeam, silver fir, and Scots
pine, whereas the highest user accuracies for beech, hornbeam, fir, spruce, larch, and pine (Table 3).
The lowest accuracies were for birch and grey alder. Combining at least two images from different
seasons resulted in accurate classification (above 90%). However, using an increasing number of
images for classification did not necessarily lead to higher accuracies of less common species (Figure 8).
This was particularly noticeable for birch, which producers’ and users’ accuracies decreased with the
increasing number of images. Accuracies for hornbeam and spruce increased and reached highest
values for the classification of five images. Other species accuracies remained stable.

Table 3. Confusion matrix for the best classification of five images (30-April/05-May/

14-October/17-October/08-November).

Reference

1 2 3 4 5 6 7 8 9 Total

Map

Beech (1) 932 0 4 1 18 0 0 3 0 958
Birch (2) 0 5 9 0 0 0 5 6 0 25

Hornbeam (3) 4 6 120 0 0 0 0 1 0 131
Fir (4) 0 0 2 830 0 52 15 0 21 920

Sycamore (5) 4 1 4 0 47 0 1 6 0 63
Spruce (6) 0 0 0 0 0 64 0 0 0 64
Larch (7) 4 6 1 0 0 0 62 1 0 74

Grey alder (8) 4 0 0 0 3 0 0 9 0 16
Pine (9) 3 0 0 1 0 4 0 0 174 182

Total 951 18 140 832 68 120 83 26 195 2433
Prod. Acc. 98.0 27.8 85.7 99.8 69.1 53.3 74.7 34.6 89.2
User Acc. 97.3 20.0 91.6 90.2 74.6 100 83.8 56.3 95.6
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Figure 8. Changes in producers’ (PA) and users’ accuracies (UA) depending on the combination of
images used for classification: 2, two images; 3, three images; 4, five images; and 5, five images.

Based on classification accuracy assessment, we produced the final map of forest tree species
for the best combination (April 30/May 5/October 14/October 17/November 8) (Figure 9). The most
common species were common beech (35%) and silver fir (21%). Other main species were Scots pine
(11%), grey alder (11%), sycamore (11%), and hornbeam (7%). The rarest species were European larch
(3%), European birch (2%), and Norway spruce (1%).
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4. Discussion

The present study evaluated the use of dense Sentinel-2 time series for forest tree species
classification. The approach was applied in a species-diversified test site in the eastern part of the
Polish Carpathians. In the study, we used dense time series from the Sentinel-2 satellite from one
growing season (spring, summer, and autumn); thus, we obtained detailed information regarding the
spectral–temporal patterns of the studied tree species. The outcomes from our study are similar to
the results from other studies where high- or medium-resolution optical data were used [6,35,59,60].
In general, implementing multi-temporal satellite imagery improved tree species mapping accuracy.
Our results show that the use of only two images from two different seasons allowed us to exceed
the assumed high accuracy threshold (90% OA). However, there were some significant changes in the
classification accuracy for particular tree species. Adding more variables from different acquisition
dates may result in both an increase (e.g., hornbeam larch) and decrease (e.g., birch) of producer/user
accuracies. Some species-specific differences are easier to capture with the use of multi-temporal
imagery, while for some species using more variables may be redundant because of their high
correlation. The highest contribution to the overall mapping accuracy came from spring (the turn of
April and May) and autumn (mid-October) imagery. In other studies, it has been highlighted that
autumn imagery tended to have a high discriminating ability [35,61,62]. In our study, the importance of
two October images (14 and 17), when the leaf color changing process occurs, is indisputable. Although
they were taken only three days apart, the differences in phenology proved to be crucial for the
broad-leaved species discrimination, e.g., hornbeam. On the other hand, in a study by Lisein et al. [63],
late spring and early summer images were optimal for discriminating of species. In addition,
Persson et al. [41] found that late spring imagery performed the best tree species classification because
the phenological variations are the highest during this part of the growing season. Leaf spectroscopy
studies have also indicated that rapid changes in spectral values are observed during early spring
and late autumn [64]. A contribution of particular imagery acquisition dates for forest tree species
discrimination is different for broad-leaved and conifer species. For broad-leaved species, the most
significant variables include October imagery, whereas for conifers April and May images tended to be
more important. Even so, spectral signatures for some of the broad-leaved species were very similar,
the greatest being for beech, hornbeam, sycamore, and grey alder. The latter species is characterized
by a poor classification accuracy and adding more imagery to the classification only improved the
accuracy slightly. Determining evergreen photosynthetic activity from remote sensing data is difficult;
however, they also exhibit seasonal changes, especially in the visible range [65,66]. For pine, the visible
part of the spectrum is significant. In general, temporal patterns for silver fir and Norway spruce are
very similar, yet they differ considerably for Scots pine, indicating differences between the phenology
of pines and other conifers. Finally, the only conifer but deciduous species occurring in our study
area—the European larch—exhibited different properties regarding reflectance during the growing
season. The spectral signatures of larch are more similar to broad-leaved species. In contrast to other
species, both broad-leaved and coniferous, larch spectral reflectance increased during autumn in the
visible and SWIR bands. This might result from the background signal connected to the understory
vegetation in larch stands and should be examined in future studies.

In comparison to other studies on forest species with the use of Sentinel-2 data, our results (highest
OA: 92.38%) are very similar to the accuracy of outcomes of the study by Karasiak et al. [40] from
southwest France and higher than those from the study by Immitzer et al. [39] in Bavaria, Germany.
Similar accuracies were also achieved by Puletti et al. [67] in a study area in Tuscany, Italy. However,
only four broad forest types were identified there. In comparison with studies that have focused on
forest species classification with the use of multi-temporal, optical imagery, the accuracies obtained
in the present study were higher than those in studies where Landsat imagery was used [25,68].
Regarding similar spatial resolution imagery (e.g., 8 m Formosat-2), our results are comparable with
the results of Sheeren et al. [3] even though relatively small test sites were studied. In comparison
with single, very high-resolution WorldView-2 images, the multi-temporal Sentinel-2 data provided
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higher accuracies, e.g., the Immitzer et al. [69] study from east Austria, where the OA of forest tree
species classification was 82% and the test area was much smaller (30 km2). Using IKONOS-2 imagery
for Belgium, Carleer et al. [70] achieved an OA of 85.79% for tree species classification. However,
Formosat-2 provides only four spectral bands (three in visible and one in near-infrared wavelengths) and
IKONOS-2 also provides the same four bands plus a panchromatic band. Furthermore, WorldView-2
has lower spectral resolution (with 8 bands). From our results, it is evident that there is a benefit
of using additional bands. Our results show that Senitnel-2 MSI provides valuable information on
vegetation properties; the MDA and MDG statistics show that not all spectral bands contributed
equally to the tree species classification. However, assessing the importance of particular dates and
bands is hampered by the correlation of bands and dates. The most important bands in the present
study were two SWIR bands, red-edge bands, visible blue, and visible red. The high contribution of
SWIR and red-edge bands was also confirmed by Bolyn et al. [71]. The utility of SWIR regions for
mapping tree species has not been fully explored yet, but the importance of these bands for tree species
mapping in tropical forests was confirmed [72]. As shown in our study, the importance of these bands
is high in temperate zone forests.

Regarding temporal pattern analysis, in vegetation mapping, generally, the highest reflectance
values occur for the infrared region and the lowest for the visible red region [10]. In near-infrared
bands, the reflectance represents radiation scattering by the canopy [38], whereas the red-edge bands
are more sensitive to chlorophyll a and b levels and their variations [38,73]. In the red-edge regions,
there is a sharp increase in the reflectance of vegetation [74]. From our results, this increase is more
evident between RE1 and RE2 bands than that between visible light and RE1. In the SWIR region
reflectance, the water absorption features are important [2,64]. For example, SWIR bands are used as
key indicators in forest recovery studies [51].

The important problem in forest species mapping is the character of study sites, i.e., environmental
conditions (e.g., relief or climate) or forest types and species diversity (e.g., forest management or
legacies). Common problems with the study of mountainous areas are cloud cover and atmospheric and
topographical effects, thus the acquisition of high-quality and cloudless imagery for key phenological
periods still may be difficult [12,25]. However, this might be overcome by the short revisit time of
the twin Sentinel-2 satellites. In addition, the heterogeneous stand structure or high fragmentation
implies difficulties with collecting enough samples, especially for the less common and non-dominant
species [39,75]. Thus, often more common species are classified with higher accuracy [25]. It has been
proven that small classes tend to be misclassified [3,76]. In our study, species with the lowest accuracies
were birch and grey alder, which could be explained by the small sample size as well as the forest stand
properties (spectral similarity to other species and not forming homogeneous stands).

In future research, especially when larger test areas are studied, the use of additional environmental
variables should be considered, as these data can help to obtain higher species prediction accuracies [77].
The phenology of species can differ across communities and can increase the overlap between
species [78]. It is not only species composition that has an influence on spectral reflectance. There are
also within-species variations in reflectance caused by tree age, stress, and local site conditions;
openness of trees; shadowing effects; and crown health [79]. The presence of insects or diseases also
has a significant effect on forest stand reflectance values and differences in growth conditions such as
elevation and aspect, and soils have an influence on spectral variability within the same tree species [80].
These aspects might still hamper tree species classification studies. Thus, for larger mountainous areas,
phenological patterns may be examined, e.g., for different elevation zones and aspects. However,
the approach proposed in the present study demonstrates the potential of dense Sentinel-2 time series
to conduct forest tree species mapping in challenging, mountainous areas. In future studies, using these
dense time series will provide a valuable indicator of changing plant phenology caused by climate
change. Furthermore, the data and methods used can be a great source of information for enhancing
forest inventory data.
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5. Conclusions

In the present study, Sentinel-2 time series served as data input for forest tree stand composition
mapping using the RF algorithm. The analysis was applied at the pixel level, in a challenging,
mountainous study area with a highly diversified tree species composition. Classification with
Sentinel-2 time series performed more accurately than that of single date imagery. Specifically, the use
of images from different seasons including spring and autumn provided much higher forest species
classification accuracies.

The results from the present study confirm the potential of Sentinel-2 data in mapping tree stand
species composition. Spectral bands of Sentinel-2 MSI allow the capture of differences among species
during the growing season and analysis of their temporal patterns. This should be investigated further
in future studies. The largest contribution among Sentinel-2 MSI bands was derived from the VIS B,
VIS R, SWIR, and red-edge part of the spectrum.

Given the high classification accuracy obtained with automatic classification, the proposed
approach could be integrated into operational programs dedicated to forest stand tree species mapping
and monitoring based on satellite image time series.
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