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Abstract: The rapid, accurate, and economical estimation of crop above-ground biomass at the
farm scale is crucial for precision agricultural management. The unmanned aerial vehicle (UAV)
remote-sensing system has a great application potential with the ability to obtain remote-sensing
imagery with high temporal-spatial resolution. To verify the application potential of consumer-grade
UAV RGB imagery in estimating maize above-ground biomass, vegetation indices and plant height
derived from UAV RGB imagery were adopted. To obtain a more accurate observation, plant height
was directly derived from UAV RGB point clouds. To search the optimal estimation method, the
estimation performances of the models based on vegetation indices alone, based on plant height
alone, and based on both vegetation indices and plant height were compared. The results showed that
plant height directly derived from UAV RGB point clouds had a high correlation with ground-truth
data with an R2 value of 0.90 and an RMSE value of 0.12 m. The above-ground biomass exponential
regression models based on plant height alone had higher correlations for both fresh and dry
above-ground biomass with R2 values of 0.77 and 0.76, respectively, compared to the linear regression
model (both R2 values were 0.59). The vegetation indices derived from UAV RGB imagery had
great potential to estimate maize above-ground biomass with R2 values ranging from 0.63 to 0.73.
When estimating the above-ground biomass of maize by using multivariable linear regression based
on vegetation indices, a higher correlation was obtained with an R2 value of 0.82. There was no
significant improvement of the estimation performance when plant height derived from UAV RGB
imagery was added into the multivariable linear regression model based on vegetation indices.
When estimating crop above-ground biomass based on UAV RGB remote-sensing system alone,
looking for optimized vegetation indices and establishing estimation models with high performance
based on advanced algorithms (e.g., machine learning technology) may be a better way.

Keywords: vegetation index; plant height; point clouds; linear regression; exponential regression;
multivariable linear regression

1. Introduction

Agriculture is facing a great challenge in how to meet the increasing demand for agricultural
production with limited soil and water resources due to the increasing population and rapidly growing
economy [1]. By 2050, the projected population and socio-economic growth will double current food
demand. To meet this challenge in developing countries, grain production needs to increase by 40%
and net irrigation water requirements by 40–50% [2]. Maize is one of the most important food crops and
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provides at least 30% of the food calories together with rice and wheat to more than 4.5 billion people
in developing countries [3,4]. Therefore, predicting maize production accurately before harvesting is
of great significance to national food security and personal living standards [5].

Above-ground biomass (AGB), an important indicator of agro-ecosystems, is usually used as a
key factor in predicting crop production and estimating water use efficiency [6–8]. The rapid, accurate,
and economical estimation of AGB is of great importance. AGB remains one of the basic indicators to
assess the performance of agricultural practices [9,10], to research agro-ecosystem processes [11], and
to estimate global market risk [12].

Currently, remote-sensing has become the main data source for large-area AGB estimation [13].
Satellite remote-sensing, as an important data source, has been widely used to estimate plant AGB at
the landscape scale. There are two main kinds satellite remote-sensing data used to estimate AGB,
namely optical imagery [14–16] and synthetic aperture radar data [17–19], providing different spatial
resolutions, such as SPOT (20 m) and MODIS (1 km), and Sentinel 1A (10 m) and ALOS-2 PALSAR2
(6 m). However, crop monitoring applications at the farm scale are highly demanding with respect to
temporal frequency (1–3 days revisit), while spatial resolution requirements are driven by the minimum
management unit that can be in the range of 1–10 m [20,21]. Satellite remote-sensing is often difficult
to meet the monitoring needs of AGB at the farm scale due to the low spatial-temporal resolution.

Recently, rapid advances in unmanned aerial vehicle (UAV) remote-sensing platforms have
boosted the use of near-earth aerial imagery in estimating crop AGB [4,22–24]. UAV remote-sensing
systems are easier to obtain crop information at the farm scale during an adequate weather condition
with high temporal-spatial resolution. For example, Jayathunga et al. [25] examined the potential of
the digital aerial photogrammetry UAV remote-sensing system for estimating AGB of forest in Furano
City, northern Japan, and provided AGB maps with a ground resolution of 14 cm. As one of the most
important indicators to describe the growing status of the crop, plant height (PH) has been widely
used to estimate AGB [26,27]. Zhang et al. [28] estimated AGB of grassland by using PH at three
different study sites selected from the Gansu, Inner Mongolia, and Jiangsu provinces of China, and
indicated a high correlation between the PH and AGB with the coefficient of determination (R2) values
greater than 0.66. In addition to PH, vegetation indices (VIs) which could provide reliable information
about crop growing status [26,29,30], such as green canopy cover and PH, have also been investigated
as a reliable source to estimate AGB [31–33]. Sankaran et al. [34] estimated biomass of dry bean at
flowering and mid-pod fill stages by using the average green normalized difference vegetation index
(GNDVI) in Othello, WA, USA, and indicated a high correlation between the average GNDVI and
biomass with Pearson correlation coefficient values greater than 0.52.

In general, VIs derived from the UAV imagery reflect the spectral characteristics of the top canopy
and PH reflects the vertical structure properties of the entire canopy. To improve the estimation
accuracy of AGB, researchers start to estimate crop AGB by using VIs and PH derived from UAV
imagery simultaneously [35–37]. For example, Han et al. [38] estimated AGB of maize in Changping
District of Beijing City, China and Li et al. [39] estimated AGB of sorghum in Central City, Nebraska,
US by simultaneously using VIs derived from UAV multispectral imagery and PH derived from UAV
RGB imagery. However, many of these studies utilized VIs and PH derived from different UAV
platforms. Research simultaneously using VIs and PH both derived from consumer-grade UAV RGB
remote-sensing system is still relatively less in biomass estimation.

Therefore, the main goal of this study was to estimate AGB of maize by using VIs and PH both
derived from consumer-grade UAV RGB imagery. The estimation performances of models based on
VIs alone, based on PH alone, and based on both VIs and PH were also analyzed. More specifically,
our study aimed to:

(1) directly derive maize PH from consumer-grade UAV RGB point clouds and comparatively analyze
the estimation performance with ground-truth PH;
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(2) establish maize AGB estimation models based on PH alone by using linear and exponential
regression analyses; based on VIs alone by using single and multivariable linear regression
analyses; and based on both VIs and PH by using multivariable linear regression analysis;

(3) comparatively analyze the performances of maize AGB estimating models and map the
distribution of maize AGB by using the optimal estimating model.

2. Materials and Methods

2.1. Research Field

The experiment was carried out on a field in Zhaojun town located in the southwest of Inner
Mongolia, China (40◦26′0.29” N, 109◦36′25.99” E, elevation 1010 m). The research field, approximately
1.13 ha, planted with maize, was divided into 5 large regions. Three 6 × 6 m2 areas within each region
were chosen as sampling plots (yellow square in Figure 1b) for data collection from three sampling sites
(green square in Figure 2a, 1 × 1 m2) within the sampling plot. The mixture of soil samples at depths
of 30, 60, and 90 cm were used to estimate soil characteristics. The soil type was loamy sand (80.7%
sand, 13.7% powder, and 5.6% clay), using the United States Department of Agriculture soil taxonomy.
The soil pH, organic matter, and C content were 9.27, 47.17 g/Kg, and 27.35 g/Kg, respectively. Maize
(Junkai 918) was planted on 11 May 2018 (DOY, day of year, 131), with 0.58 m row spacing and 0.25 m
plant spacing, and row direction was East–West. The maize emerged on 18 May, headed on 21 July,
was harvested on 10 September 2018 (silage) with a 115-day lifespan.
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2.2. Field Measurements 
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biomass (AGB) were measured on DOY 171, 177, and 185, respectively. A total of 15 sets of samples 
(PH and AGB) were obtained each day. There were 45 total biomass observations scaled up to the 
unit of kg/m2. The heights of maize were measured manually within each sampling site (green square 
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stage [40]. Five PH measurements were taken within each sampling site and the average of total 

Figure 1. Location and region division of the research field: (a) location of the research field in China;
(b) aerial view of the research field indicating regions division, the location of sampling plots, and
ground control points (green round). RGN is the abbreviation of region. The aerial image was taken on
DOY 185.
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Figure 2. The locations of sampling site within each sampling plot (a) and the measuring method of
maize plant height within each sampling site (b). PHref represents the reference plant height.

2.2. Field Measurements

At the maize vegetative stage (V5-V7, DOY 171-185), plant height (PH) and above-ground biomass
(AGB) were measured on DOY 171, 177, and 185, respectively. A total of 15 sets of samples (PH and
AGB) were obtained each day. There were 45 total biomass observations scaled up to the unit of kg/m2.
The heights of maize were measured manually within each sampling site (green square in Figure 2a)
using a measuring tape. As shown in Figure 2b, the distance between the ground and the highest leaf
of maize was measured as the PH within each sampling site during the vegetative stage [40]. Five PH
measurements were taken within each sampling site and the average of total fifteen measurements
from three sampling sites was used as reference plant height (PHref) for the sampling plot (yellow
square in Figure 1b).

For measuring AGB, maize samples were harvested from a 0.5 × 0.5 m2 subplot adjacent to
the sampling plot and then was immediately put into a sealed bag to avoid the loss of water.
Electronic balance (DJ-2000A, Suzhou Jiangdong Precision Instrument CO., Ltd., Suzhou, China) with
a measurement accuracy of 0.01 g was used to measure the weight of maize fresh and dry AGB. For
dry AGB, maize sample was put into a DHG-9053A oven (HASUC, Shanghai, China) to de-enzyme
under 105 ◦C for two hours and then was dried to a constant weight under 80 ◦C. The time required
varied from 36 to 72 h depending on the mass of maize samples on each sampling day. Each subplot’s
measurement was referred to as the reference biomass of corresponding sampling plot.

2.3. Acquisition and Pretreatment of UAV RGB Imagery

Figure 3 shows the main steps in the acquisition and pretreatment of UAV RGB imagery. A
consumer-grade quadrotor UAV RGB remote-sensing system, DJI Phantom 4 Pro (Shenzhen Dajiang
Baiwang Technology Co., Ltd., Shenzhen, China) was adopted to collect RGB imagery of maize. This
UAV has an integrated camera, with a 1-inch complementary metal-oxide semiconductor sensor that
captures red-green-blue spectral information. The camera has an 84◦ field of view lens with an f/2.8
aperture, and a resolution of 4864 × 3648 pixels. This lens is also specially designed to eliminate image
distortion. Detailed information about the digital camera and the UAV system are given in Table 1. On
DOY 171, 177, and 185 (sunny days) between 11:00–13:00 (Chinese standard time), RGB imagery of
maize were captured by DJI Phantom 4 Pro. Parameters of ISO and shutter were set to 400 and 1/1250
according to specific weather condition, and white balance was set to sunny. Flight was controlled by
Altizure software (Everest Innovation Technology Ltd., Hong Kong, China), which directed the UAV
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flying along a serpentine image acquisition plan at a height of 30 m and a speed of 1.3 m/s with the
camera looking downwards. Overlap of imagery to the front and side was 90%. The ground sample
distance was 0.8 cm. To improve the geo-location accuracy, the geo-referencing of the point clouds was
done using a combination of direct geo-referencing and five ground control points (Figure 1b, green
round). The coordinates of the ground control points were measured by a KOLIDA RTK differential
GNSS device (KOLIDA Instrument Co., Ltd., Guangzhou, China).
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Figure 3. The acquisition and pretreatment of unmanned aerial vehicles (UAV) RGB imagery, including
camera parameter setting, flight route design, UAV fights, and image mosaic and correction. GCP is
the abbreviation of the ground control point.

Table 1. Main parameters of UAV RGB imagery acquisition system.

Parameter Value

Wheelbase 350 mm
Weight 1388 g

Flight time 30 min
Communication radius 5 km

Speed <72 km/s
Image sensor 1-inch CMOS

RGB color space sRGB
Camera resolution 4864 × 3648 pixels
Lens focal length 8.8 mm/24 mm
Lens field of view 84◦

ISO range 100–12,800
Shutter speed 8–1/8000 s
Image format JPEG; DNG

After acquisition, the image mosaic processing was performed by using Pix4DMapper software
(Pix4DInc., Switzerland, https://www.pix4d.com/) which was specifically designed to process UAV
imagery using techniques rooted in both computer vision and photogrammetry [41]. The whole
processing workflow was: firstly, initializing all geo-located imagery captured in each flight by
automatically searching for feature tie-points in match pairs of imagery and correcting them based on

https://www.pix4d.com/
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the camera model. After that, five ground control points were incorporated to correct the geographic
coordinates of imagery. Then, the densified point clouds were generated with a 7 × 7 pixels match
window. Finally, the digital surface model and orthophoto with a spatial resolution of 0.8 cm were
generated by using the inverse distance weighting method. More detailed information about the image
mosaic processing based on Pix4DMapper software could be seen in Duan et al. [42].

2.4. The Extraction of Maize Plant Height

At the vegetative stage (V5-V7, DOY 171-185), maize canopy did not reach full coverage. Therefore,
point clouds include both soil and maize plants (Figure 4b). PH could be calculated by subtracting the
ground level from estimated plant level derived from point clouds. As shown in Figure 4a, the 1st
percentile of the cumulative probability distribution of elevation derived from the mixed point clouds
was chosen to represent the ground level. To search for an optimal PH feature, the 90th, 95th, 97th,
98th, and 99th percentiles, and the maximum value of point clouds altitude within each sampling plot
were selected to represent the plant level. Then, six PH features (PH90, PH95, PH97, PH98, PH99, and
PHmax) for each sampling plot were obtained. Regression analyses between six PH features and PHref

were adopted to search for the optimal PH feature. There were 45 total PHref values averaged from
observations, 15 PHref values for each day. The estimation precisions of six PH features were evaluated
by their coefficient of determination (R2) and root mean square error (RMSE).
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Figure 4. Schematic indicating the selecting method of the six maize plant height features (PH90, PH95,
PH97, PH98, PH99, and PHmax) for each sampling plot. (a) The curve of the cumulative probability
distribution of point clouds within each sampling plot; (b) a cross-section view of point clouds within a
sampling plot illustrating the calculation of plant height using height percentiles.

2.5. The Calculation of UAV RGB Vegetation Index

Many previous studies have used different vegetation indices (VIs) derived from RGB imagery to
estimate the AGB of crops [40,43–47]. In this study, five VIs and one VI combination were calculated
using visible bands, including the normalized green-red difference index (NGRDI) [44], excess green
index (ExG) [48], excess green minus excess red (ExGR), color index of vegetation (CIVE) [49], vegetation
index (VEG) [50], and the combination of ExG, ExGR, CIVE and VEG (COM) [51]. Their calculation
formulas are as follows:

NGRDI =
RG −RR

RG + RR
(1)

ExG = 2×RG −RR −RB (2)

ExGR = ExG− 1.4×RR −RG (3)

CIVE = 0.441×RR − 0.881×RG + 0.385×RB + 18.78745 (4)

VEG =
RG

RRa ×RB
(1−a)

, a = 0.667 (5)
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COM = 0.25× ExG + 0.3× ExGR + 0.33×CIVE + 0.12×VEG (6)

where RR, RG, and RB represent the digital numbers of red, green, and blue bands which were
normalized by dividing 255 (8-bit image in this study) [52,53].

2.6. Estimation Models of Plant Height and Biomass

Figure 5 shows the main procedures to obtain the optimal estimation model of maize AGB based
on maize features derived from UAV RGB imagery. Three estimation models of maize AGB were
adopted in this study, namely, estimation models based on (1) PH; (2) Vis; and (3) both PH and VIs. The
PH feature derived from point clouds with the best performance and VIs with the better correlations
were adopted. Linear regression analysis was used for VIs, and both linear and exponential regression
analyses were used for PH. In the establishment of the third kind estimation model, multivariable
linear regression analysis was adopted.
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2.7. Statistical Analysis

For statistical analysis, the R programming language (R-3.4.3, https://www.r-project.org/) was
adopted. More specifically, the lm () function was used to perform regression analyses and AIC
()function was used to calculate the Akaike Information Criterion (AIC). The coefficient of determination
(R2), the root mean square error (RMSE), and the AIC [54,55] were calculated for the comparison. R2 is
not suitable to evaluate the predictive and fitting performance among models with different forms and
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different numbers of parameters. Therefore, the AIC was further used for the comparison of models
with the lower value representing the better estimation performance.

3. Results

3.1. Comparison between Maize Plant Height Derived from UAV Point Clouds and Ground-Truth Values

The correlations between six PH features (PH90, PH95, PH97, PH98, PH99, and PHmax) and PHref

were analyzed (Figure 6). The PH90 and PH95 had the lowest correlations with PHref, with R2 values of
0.20 and 0.51, respectively. The other four PH features (PH97, PH98, PH99 and PHmax) all had good
correlations with PHref with R2 values no less than 0.70. The PH99 had the highest correlation with
PHref with an R2 value of 0.90. The PH99 also had the lowest extraction error with the RMSE value of
0.12 m. At the same time, it could be observed that when the 90th, 95th, 97th, 98th, and 99th percentiles
of point clouds altitude were used to represent the maize plant level, a relatively lower estimation was
obtained, compared to ground-truth PH with the fitting line below the 1:1 line (Figure 6). With the
increase of percentile of UAV RGB point clouds altitude, there was a decreasing trend of the difference
between PH derived from point clouds and PHref. When the maximum value of point clouds altitude
was used to represent the maize plant level, a relatively higher estimation was obtained with the fitting
line above the 1:1 line.
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Figure 6. Correlations between maize plant heights derived from UAV RGB point clouds and
ground-truth plant heights (PHref). Maize plant height estimations were obtained by using the 90th (a);
95th (b); 97th (c); 98th (d); and 99th (e) percentiles; and maximum value (f) of point clouds altitude
to represent the plant level, respectively. R2 represents the coefficient of determination and RMSE
represents the root mean square error.

3.2. Estimation Models of Maize Biomass Based on Plant Height Derived from UAV RGB Point Clouds

Both linear and exponential regression analyses were used to estimate maize fresh and dry AGB
based on maize PH99, which had the best estimation performance. As shown in Figure 7, there were
high positive correlations between PH99 and fresh or dry AGB, with R2 values no less than 0.59
(p < 0.01). For both fresh and dry AGB, the exponential regression model had higher correlations with
R2 values of 0.77 and 0.76, respectively, compared to the linear regression model with R2 values both
of 0.59. However, when RMSE and AIC were considered, the linear regression model had relatively
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lower RMSE and AIC values. For fresh AGB, the RMSE and AIC values of the linear and exponential
regression models were 0.41 and 50.18, and 0.49 and 57.17, respectively. For dry AGB, the RMSE
and AIC values of the linear and exponential regression models were 0.05 and −134.89, and 0.07 and
−128.90, respectively.
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Figure 7. Correlations between maize plant heights derived from UAV RGB point clouds and
ground-truth fresh or dry above-ground biomass (AGB). Maize plant height (PH99) observations were
obtained by using the 99th percentile of point clouds altitude to represent the plant level. AIC represents
the Akaike Information Criterion; (a,c) were the linear and exponential regression models for fresh
above-ground biomass, respectively; (b,d) were the linear and exponential regression models for dry
above-ground biomass, respectively.

3.3. Estimation Models of Maize Biomass Based on UAV RGB Vegetation Indices

In this study, five VIs, NGRDI, ExG, ExGR, CIVE, VEG, and one VI combination (COM), derived
from UAV RGB imagery were used to establish linear regression models for both maize fresh and
dry AGB. As shown in Figures A1 and A2, and Table 2, except for CIVE, the other five VIs all had
significant positive correlations (p < 0.01) with both maize fresh and dry AGB. For both maize fresh
and dry AGB, the ExGR had the highest correlations with R2 values both of 0.73, followed by the
NGRDI and VEG with R2 values of 0.70 and 0.68, and 0.65 and 0.63, respectively. Lowest correlations
were observed by using ExG to estimate maize fresh and dry AGB, with R2 values of 0.34 and 0.33,
respectively. The COM also had a high correlation with both maize fresh and dry AGB with R2 values
of 0.73 and 0.72, respectively, due to the fact that the COM was a combination of ExG, ExGR, CIVE,
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and VEG. When it comes to the RMSE, a similar observation was obtained. For maize fresh AGB, the
ExGR also had the lowest RMSE with a value of 0.32, following by the NGRDI and VEG with RMSE
values of 0.34 and 0.37. The CIVE had the largest RMSE with a value of 0.62. For the maize dry AGB,
similar observations were found.

Table 2. Correlations between vegetation indices derived from UAV RGB imagery and ground-truth
fresh or dry above-ground biomass. Five vegetation indices and one vegetation index combination,
normalized green-red difference index (NGRDI), excess green index (ExG), excess green minus excess
red (ExGR), color index of vegetation (CIVE), vegetation index (VEG) and the combination of ExG,
ExGR, CIVE, and VEG (COM), were used to establish linear regression estimation models for both
maize ground-truth fresh and dry above-ground biomass.

Vegetation Index
and Combination

Fresh Above-Ground Biomass Dry Above-Ground Biomass

R2 RMSE (kg/m2) R2 RMSE (kg/m2)

NGRDI 0.70 0.34 0.68 0.04
ExG 0.34 0.50 0.33 0.06

ExGR 0.73 0.32 0.73 0.04
CIVE 0.02 0.62 0.02 0.09
VEG 0.65 0.37 0.63 0.05
COM 0.73 0.32 0.72 0.05

After estimating maize fresh and dry AGB by using single vegetation index, three VIs, NGRDI,
ExGR, and VEG, which had the highest correlations were chosen to estimate maize fresh and dry AGB
by using multivariable linear regression analysis. When multivariable linear regression was adopted,
the estimation performance of maize AGB was improved (Figure 8). For both fresh and dry AGB, the
R2 values were 0.82, with an increase of 0.09 compared to the highest R2 values of 0.73 (ExGR) for the
single vegetation index. The RMSE of fresh and dry AGB decreased with values of 0.06 and 0.01 kg/m2,
compared to the lowest RMSE values of 0.32 and 0.04 kg/m2 (ExGR) for single VI, respectively. The
maize fresh and dry AGB could be calculated based on NGRDI, ExGR, and VEG by using Equations
(7) and (8), respectively.

AGB f = 53.22×NGRDI + 2.90× ExGR− 24.01×VEG + 29.10 (7)

AGBd = 6.88×NGRDI + 0.40× ExGR− 3.23×VEG + 3.93 (8)
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3.4. Estimation Models of Maize Biomass Based on Both Plant Height and Vegetation Indices

After estimating maize fresh and dry AGB by using PH or VIs alone, multivariable linear regression
analyses were adopted based on both PH and three VIs (NGRDI, ExGR, and VEG). As shown in
Figure 9, when PH was added, the correlations with both maize fresh and dry AGB, and the estimation
accuracy were improved slightly with an increase of 0.03 of R2 for both maize fresh and dry AGB, and
a decrease of 0.02 kg/m2 of RMSE only for maize fresh AGB. At the same time, there were decreases of
6.23 and 7.76 of AIC for maize fresh and dry AGB, respectively.
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and plant height by using multivariable linear regression analysis and ground-truth above-ground
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3.5. Mapping Maize Above-Ground Biomass Based on UAV RGB Remote-Sensing

Due to the insignificant improvement of the correlations and estimation accuracy when PH
was added into the multivariable linear regression models, the distributions of both maize fresh
and dry AGB at a farm scale were plotted by using VIs alone (Equations (7) and (8)). It could be
observed that there were obvious increases of both maize fresh and dry AGB with the growth of maize
(Figure 10). For maize fresh AGB, the mean values for DOY 171, 177, and 185 were 0.85, 2.00, and 2.25
kg/m2, respectively. For maize dry AGB, the mean values for DOY 171, 177, and 185 were 0.11, 0.25,
and 0.29 kg/m2, respectively.
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4. Discussion

The unmanned aerial vehicle (UAV) remote-sensing platform as one of the most important
farm-scale data acquisition tools has a great application potential in the rapid, accurate, and economical
estimation of crop above-ground biomass (AGB). It has been successfully used to estimate AGB of
many crops, such as barely [32], sunflower [40], maize [38,56], wheat [36,37,57], etc. As the two main
data sources to describe the growing status of crop, plant height (PH), and vegetation indices (VIs)
have been widely used to estimate AGB of crops [23,35,58]. The UAV-based light detection and ranging
(LiDAR) system provides a way to estimate plant height accurately [59–62]. For example, Liu et al. [63]
assessed the effectiveness of UAV-based LiDAR obtained point clouds to estimate the mean height of
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trees in the northern plains of Jiangsu Province, China, and showed a high prediction accuracy for
Lorey’s mean height with cross-validation coefficient of determination and relative root mean squared
error of 0.97 and 2.83% by using partial least squares model.

However, the high cost of UAV-based LiDAR system is the main limitation for its further application.
To reduce the cost of estimating crop PH, researchers start to use low-cost UAV RGB remote-sensing
system [64–67]. For example, Ziliani et al. [68] compared the PH derived from high-resolution
UAV RGB imagery against PH derived from LiDAR, and showed a strong correlation between
structure-from-motion derived heights and LiDAR scan data with the coefficient of determination (R2)
ranged from 0.77 to 0.99. Grüner et al. [69] estimated the PH of grass in northern Hesse, Germany from
UAV RGB imagery by using photogrammetric structure from motion processing, and showed a high
correlation between PH derived from UAV RGB imagery and ground-truth data with a R2 value of 0.56
and a root mean squared error (RMSE) value of 0.13 m. In many of these studies, crop surface model
derived from point clouds was adopted to estimate PH. However, relatively low estimations of PH
were often obtained due to the fact that information below the crop canopy is also included in the crop
surface model [70]. Compared to the crop surface model, choosing the appropriate PH feature directly
from the point clouds to represent plant level could avoid estimation error caused by the information
below the crop canopy. Therefore, in this study, point clouds derived from a consumer-grade UAV
RGB imagery was directly adopted to estimate PH. More specifically, the 1st percentile of point clouds
altitude was defined as the ground level, and six PH features, the 90th, 95th, 97th, 98th, and 99th
percentiles, and the maximum value of point clouds altitude were used to search for an optimal PH
feature. There was a highest correlation between PH directly derived from point clouds with the 99th
percentile defined as the plant level and ground-truth PH (0.36–0.92 m) with an R2 value of 0.90 and an
RMSE value of 0.12 m. Compared to ground-truth PH, a relatively lower estimation was derived from
the point clouds with the fitting line below the 1:1 line (Figure 6). The reason for this relatively lower
estimation may be that, during the study period, the highest position of maize appeared at the tip of
the leaf (Figure 2b). Due to the limitation of accuracy of point clouds, the tip of the leaf may be difficult
to be obtained.

Both linear and exponential regression analyses were adopted to estimate maize fresh and dry
AGB based on PH99 which had the best estimation performance of maize plant height. Compared to
the linear regression model (both R2 values were 0.59), the exponential regression models had higher
correlations for both fresh and dry AGB with R2 values of 0.77 and 0.76, respectively. However, with
respect to RMSE, the exponential regression models had higher values of 0.49 and 0.07 kg/m2 for maize
fresh and dry AGB compared to the linear models with values of 0.41 and 0.07 kg/m2, respectively.
Similar results were found for maize [71], barely [23,72]. For example, when LiDAR-derived metrics,
mean height, and the coefficient of variation of normalized digital terrain model points’ elevations,
were used to estimate maize AGB in Heihe River Basin, Gansu province of China, the exponential
regression models had higher R2 values of 0.73 and 0.80 compared to R2 values of 0.68 and 0.67
for the linear regression models. There were similar RMSE values for the linear and exponential
regression models when the mean height was used; there was a higher RMSE value of 0.66 kg/m2 for
the exponential regression model compared to RMSE value of 0.60 kg/m2 for the linear regression
model when the coefficient of variation of normalized digital terrain model points’ elevations was used.
However, Tilly et al. [73] found an opposite result when PH derived from terrestrial laser scanning was
used to estimate AGB of rice in Jiansanjiang, Heilongjiang Province, China. More specifically, for rice
species of village 69 and village 36, there were lower R2 values of 0.85 and 0.56 for the exponential
regression model, compared to R2 values of 0.90 and 0.60 for the linear regression model. The range of
PH used to establish the AGB estimation model may be the reason for the opposite observations of
estimation performance. The ranges of mean PH of each data collection campaign for this study, Bendig
et al. [23], Tilly et al. [72], and Tilly et al. [73] were 0.36 to 0.92 m, 0.14 to 1.00 m, 0.17 to 0.81 m, and 0.25
to 0.57 m, respectively. When there was a relatively small range of PH, the linear regression model
had better performance. However, when there was a relatively large range of PH, the exponential
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regression model had better performance. As shown in Figure 11, there was a rapidly increasing trend
in slopes of the linear regression models between manually measured maize PH and biomass (both
fresh and dry maize biomass), indicating that the exponential regression model was more suitable to
describe the relationship between maize PH and biomass when all data (a relatively large range of PH)
was adopted.
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When it comes to estimating crop AGB by using VIs derived from UAV remote-sensing system,
there were two traditionally data sources, namely, multispectral [38,40] and hyperspectral [32,74].
For example, Meij et al. [75] estimated fresh AGB of oat based on simple difference vegetation index
derived from UAV-based hyperspectral remote-sensing systems and showed an R2 value of 0.56.
Vega et al. [40] estimated AGB of sunflower by using the normalized difference vegetation index
derived from UAV multispectral remote-sensing system and showed R2 values ranged from 0.09 to
0.98. Recently, due to the high cost and low spatial resolution of UAV hyperspectral and multispectral
remote-sensing systems, researchers started to estimate crop AGB based on vegetation index derived
from UAV RGB remote-sensing system with a low cost and high spatial resolution [48,76], and showed
a similar estimation performance. For example, Yue et al. [36] reported that there was a same R2 value
of 0.93 when random forest regression was adopted to estimate AGB of wheat in Changping District of
Beijing, China based on vegetation indices derived from UAV hyperspectral and RGB remote-sensing
systems, respectively. Therefore, in this study, five VIs and one VI combination, namely, normalized
green-red difference index (NGRDI), excess green index (ExG), excess green minus excess red (ExGR),
color index of vegetation (CIVE), vegetation index (VEG), and the combination of ExG, ExGR, CIVE,
and VEG (COM), derived from consumer-grade UAV RGB imagery were adopted to estimate maize
fresh and dry AGB by using simple and multivariable linear regression analyses. The results showed
that there were good correlations when ExGR, NGRDI, and VEG were used to estimate maize AGB
with R2 values ranging from 0.63 to 0.73. It could be also observed that when ExGR, NGRDI, and
VEG were used together in the multivariable linear regression model, a higher R2 value of 0.82 was
found for both of maize fresh and dry AGB. Similar results have been found for wheat [36,37]. For
example, Lu et al. [37] reported that when VIs derived from UAV RGB remote-sensing system with
R2 values ranging from 0.04 to 0.62 were put into a random forest regression model, an ensemble
learning method combining a large number of decision trees to improve the accuracy of classification
and regression trees, a higher correlation with wheat AGB was obtained with an R2 value of 0.70. The
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different recognition abilities of VIs for different aspects of crops may be the reason for the increase of
estimation performance when multiple VIs were adopted. For example, NGRDI is sensitive to AGB
before canopy closure [44] and VEG is invariant over the range of natural daylight illumination [50].
The addition of VEG into the AGB estimation model based on NGRDI may enhance the adaptability
to different natural daylight illumination of this model, resulting in a better estimation performance.
Further studies are still needed.

For the further improvement of estimation performance, researchers start to estimate crop AGB
by using the crop VIs and PH simultaneously. However, in this study, the optimal PH observation
of maize directly derived from UAV RGB point clouds was added into the AGB multivariable linear
regression model based on ExGR, NGRDI, and VEG, resulting in a slight increase of 0.03 of the R2

value for both fresh and dry AGB. For the RMSE, there was only a decrease of 0.01 kg/m2 for fresh AGB.
Similar results have been found for wheat [36,37] and barley [35]. For example, Lu et al. [37] reported
an increase of 0.06 of R2 value when wheat height was added into the random forest regression model
based on UAV RGB VIs. Näsi reported a decrease of 0.01 of R2 value when barley height information
derived from UAV RGB imagery was added into the random forest regression model based on UAV
RGB VIs. There may be two reasons for the slight improvement of performance when PH derived
from UAV RGB imagery was added into the AGB estimation model based on VIs derived from UAV
RGB imagery. On one hand, the reason may be the weaker ability of UAV RGB remote-sensing system
to obtain an accurate ground level when estimating PH. Ota et al. [31] reported that the accuracy of
ground level derived from the UAV RGB imagery was not accurate enough to estimate AGB of forest in
the tropics, and that, for the accurate estimation of AGB, at least a single acquisition of airborne LiDAR
was required to obtain ground level. On the other hand, the VIs have a significant relationship with
PH. For example, Schirrmann et al. [48] reported a highly significant relationship between blue-green
ratio index and winter wheat PH with an R2 value of −0.93. As shown in Figure 12, in this study, high
significant relationships were also found between VIs and maize PH with R2 values of 0.77, 0.85, and
0.78 for NGRDI, ExGR, and VEG, respectively. Therefore, when estimating crop AGB based on UAV
RGB remote-sensing system alone, exploring the optimized VIs and establishing estimation models
with high performance based on advanced algorithms (e.g., machine learning technology) may be a
better way [35,36].
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5. Conclusions

Unmanned aerial vehicle (UAV) RGB remote-sensing system as one of the most important
farm-scale data acquisition tools has a great application potential in the rapid, accurate, and economical
estimation of above-ground biomass at the farm scale. Our results confirmed that there was a high
correlation between plant height directly derived from UAV RGB point clouds and ground-truth plant
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height with a coefficient of determination (R2) value of 0.90 and an RMSE value of 0.12 m. Compared
to the linear regression model (both R2 values were 0.59), the exponential regression models based
on plant height alone had higher correlations for both fresh and dry above-ground biomass with
R2 values of 0.77 and 0.76, respectively. The range of plant height used to establish the estimation
model may affect the estimation performances of the linear and exponential regression models. The
vegetation indices derived from UAV RGB imagery had great potential to estimate maize above-ground
biomass with R2 values ranging from 0.63 to 0.73. When multiple vegetation indices were adopted,
a higher correlation was obtained with an R2 value of 0.82. The different recognition abilities of
vegetation indices to different aspects of the crop may be the reason for the increase of estimation
performance. It was also confirmed that the addition of plant height derived from UAV RGB imagery
into the above-ground biomass estimation model based on vegetation index could not significantly
enhance the estimation performance. When estimating crop above-ground biomass based on UAV RGB
remote-sensing system alone, exploring the optimized vegetation indices and establishing estimation
models with high performance based on advanced algorithms (e.g., machine learning technology) may
be a better way.
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Figure A1. Correlations between five vegetation indices and one VI combination derived from UAV
RGB imagery and fresh above-ground biomass (AGB), respectively. (a) Normalized green-red difference
index (NGRDI); (b) excess green index (ExG); (c) excess green minus excess red (ExGR); (d) color index
of vegetation (CIVE); (e) vegetation index (VEG); and (f) the combination of ExG, ExGR, CIVE and VEG
(COM). R2 represents the coefficient of determination and RMSE represents the root mean square error.
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