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Abstract: This research was aimed at developing the mapping model of benthic habitat mapping
using machine-learning classification algorithms and tested the applicability of the model in different
areas. We integrated in situ benthic habitat data and image processing of WorldView-2 (WV2) image
to parameterise the machine-learning algorithm, namely: Random Forest (RF), Classification Tree
Analysis (CTA), and Support Vector Machine (SVM). The classification inputs are sunglint-free bands,
water column corrected bands, Principle Component (PC) bands, bathymetry, and the slope of
underwater topography. Kemujan Island was used in developing the model, while Karimunjawa,
Menjangan Besar, and Menjangan Kecil Islands served as test areas. The results obtained indicated
that RF was more accurate than any other classification algorithm based on the statistics and benthic
habitats spatial distribution. The maximum accuracy of RF was 94.17% (4 classes) and 88.54%
(14 classes). The accuracies from RF, CTA, and SVM were consistent across different input bands for
each classification scheme. The application of RF model in the classification of benthic habitat in other
areas revealed that it is recommended to make use of the more general classification scheme in order
to avoid several issues regarding benthic habitat variations. The result also established the possibility
of mapping a benthic habitat without the use of training areas.

Keywords: classification; benthic habitat; machine-learning; mapping; random forest; support vector
machine; classification tree analysis; accuracy assessment

1. Introduction

Indonesia is a country with abundant coastal and marine natural resources, including coral reef
resources. Along with several neighbouring countries in the Asia-Pacific region such as the Philippines,
Papua New Guinea, Timor Leste, Malaysia, and the Solomon Islands, Indonesia is incorporated in the
Coral Triangle Initiative (CTI), which is an association of countries belonging to the center of coral
reef biodiversity in the world and was established with the aim of preserving the natural resources
of coral reefs. This underwater ecosystem has a high strategic function in national development and
turning the wheels of the national economy, including through the food security sector (supporting the
sustainability of fish resource stocks), tourism (through snorkeling and diving), and coastal protection
(from coastal erosion caused by currents and waves). Furthermore, the role of coral reefs is essential
to President Joko Widodo’s program in realizing Indonesia as the World Maritime Axis (PMD). The
preservation of coral reefs will be of significant support to Indonesia’s ideals of becoming a PMD as
regards food security through marine fishery resources (pillar number 2), and the economy through
maritime tourism (pillar number 3). Given the importance of coral reefs to the nation, information
regarding the spatial distribution of its conditions is very important.
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Benthic habitats mapping activities including coral reef are quite challenging with the use of
remote-sensing, and this led to the development of approaches to obtain a higher classification
accuracy [1,2]. Per-pixel classification algorithms were commonly used in conducting the mapping
process, especially at a general level of benthic habitat complexity [3,4]. The development of algorithm
was further enhanced, using information on object’s texture, shape, neighborhood, and other spatial
aspects in Object-based Image Analysis (OBIA) [5,6]. Recently, machine learning non-parametric
classification algorithms such as Support Vector Machine (SVM) and Random Forest (RF) have also been
adapted and showed promising accuracy [7–9]. Improving the accuracy is not only limited to finding
the suitable classification algorithm but also on finding the most suitable benthic habitat classification
scheme for the specific remote-sensing data [10], integrating various datasets such as hyperspectral
image, aerial photo, and bathymetry [7,9], incorporating active and passive remote-sensing systems [11],
and conducting the mapping procedure, using hierarchical classification process [5].

Recent improvements of spatial and spectral resolution of multispectral images challenged us
to produce a more accurate benthic habitat map. However, the available spectral bands to penetrate
the water body is limited to visible bands and hindered by the low signal-to-noise ratio (SNR) of
shorter-wavelength bands [8], which make the mapping more challenging. Consequently, only
benthic habitat mappings using four classes’ scheme (i.e., coral reefs, seagrass, macro-algae, and sand),
generally have higher accuracy [2]. However, the accuracy is relatively lower for mappings at detailed
scheme [12–14]. Furthermore, [15] have established that even at 0m, most benthic habitats with similar
pigmentation are difficult to be spectrally-differentiated, and with the presence of water-column
energy attenuation effect, as the water-depth increases, so does the difficulty of spectrally-separating
benthic habitat. This occurs especially when detailed benthic habitats classification scheme is desired.
Furthermore, the accuracies of detailed benthic habitat mapping vary greatly with images, and the
methods employed, as well as the complexity of benthic habitat environment and composition of each
study area [2,16].

A commonly used classification algorithm for benthic habitats mapping is Maximum Likelihood
(ML) [3,4,12–14,17]. This classification is considered ideal if the spectral response of benthic habitat
has Gaussian distribution and the training area of benthic habitats feature in the dataset is normally
distributed. In reality, these assumptions are not always met, especially for complex benthic habitat
environments. Machine-learning techniques such as SVM, RF, and Neural Net (NN) are more suitable
to accommodate these issues and produced higher accuracy than ML [7,9,18], since they do not require
such assumptions to work effectively.

Another issue of benthic habitat mapping using the remote-sensing method is the need to obtain
field data for the training of the classification algorithm each time the classification is carried out. As a
consequence, benthic habitat map for areas with limited access is scarce or maybe not even in existence,
whereas, these hardly accessible areas shelter rich biodiversity of benthic habitats. Many of these areas
remain unmapped mainly as a result of this issue, which will impact on the time required to conduct
the mapping, as well as the required costs for mapping logistics, i.e., transportation, accommodation,
surveyor, and device insurance. Therefore, it is also essential to develop a benthic habitat mapping
model that can be applied to different areas with a relatively consistent accuracy, and this became the
main purpose of this research.

We tested three machine-learning classifications algorithms (RF, CTA, and SVM) in order to
classify benthic habitats, and obtain the parameter of its most accurate map to be adapted to other
areas. Machine-learning algorithm has the capability of developing a parameter and a set of decision
rules that can be saved and adapted to other images given they have similar inputs. The classification
was performed at pixel level given that it has the benefit to maintain the precision of the detailed
benthic habitat variations at this level, which is in some way sacrificed in the OBIA. We made use of
two levels of classification scheme complexities to assess the performance of the model. SVM and RF
were previously used to map benthic habitat by [7–9,18]. Therefore, by using SVM and RF, our work
can be compared, widely-recognized, and can be put into context into bigger benthic habitat mapping
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framework. Meanwhile, it is also necessary to propose CTA algorithm for benthic habitat mapping, as
to enrich the selection of possible machine learning algorithms for benthic habitat mapping.

This research was conducted in Karimunjawa Islands (Figure 1). These islands shelter high
biodiversity of benthic habitats [14,19]. The substrate is mainly dominated by carbonate sand. Rubble
also present in water adjacent to the shoreline, and red-colored volcanic sand dominates the substrate
along the shoreline of Kemujan Island. The development of the mapping model was conducted on
Kemujan Island, which was selected as the representative area to develop the mapping model due to
the high variations of reef ecology and morphology, and water-depths [14]. Karimunjawa, Menjangan
Besar and Menjangan Kecil Islands were used in assessing the applicability of the mapping model.

Remote Sens. 2019, 11, x FOR PEER REVIEW 3 of 25 

 

were previously used to map benthic habitat by [7–9,18]. Therefore, by using SVM and RF, our work 
can be compared, widely-recognized, and can be put into context into bigger benthic habitat mapping 
framework. Meanwhile, it is also necessary to propose CTA algorithm for benthic habitat mapping, 
as to enrich the selection of possible machine learning algorithms for benthic habitat mapping.  

This research was conducted in Karimunjawa Islands (Figure 1). These islands shelter high 
biodiversity of benthic habitats [14,19]. The substrate is mainly dominated by carbonate sand. Rubble 
also present in water adjacent to the shoreline, and red-colored volcanic sand dominates the substrate 
along the shoreline of Kemujan Island. The development of the mapping model was conducted on 
Kemujan Island, which was selected as the representative area to develop the mapping model due to 
the high variations of reef ecology and morphology, and water-depths [14]. Karimunjawa, 
Menjangan Besar and Menjangan Kecil Islands were used in assessing the applicability of the 
mapping model.  

  
Figure 1. The location of the research area. 

2. Materials and Methods  

2.1. Image Data 

The main remote-sensing image used in this research was WorldView-2 (WV2) image, which 
was acquired on 24 May 2012 at 2m spatial resolution, eight multispectral bands from coastal to near-
infrared (NIR) band, and 11-bit radiometric resolution (Table 1). The classification process involved 
only visible bands, while NIR bands were only used for sunglint correction. From this WV2 image, 
several derivative data used for classification algorithms inputs were derived; among others deglint 
(sunglint-free) bands, water-column-corrected bands, bands from Principle Component Analysis 
(PCA, hereafter PC bands), modelled-bathymetry, and underwater slope. 
  

Figure 1. The location of the research area.

2. Materials and Methods

2.1. Image Data

The main remote-sensing image used in this research was WorldView-2 (WV2) image, which
was acquired on 24 May 2012 at 2 m spatial resolution, eight multispectral bands from coastal to
near-infrared (NIR) band, and 11-bit radiometric resolution (Table 1). The classification process
involved only visible bands, while NIR bands were only used for sunglint correction. From this
WV2 image, several derivative data used for classification algorithms inputs were derived; among
others deglint (sunglint-free) bands, water-column-corrected bands, bands from Principle Component
Analysis (PCA, hereafter PC bands), modelled-bathymetry, and underwater slope.

Table 1. Specification and parameters of WV2 image used in this research. The unit of coefficient of
calibration is W m−2 str−1 count−1 and ESUN is W m−2 µm−1.

Name WorldView-2

Date of
Acquisition 24 May 2012

Multispectral
bands

Band Wavelength
(µm)

Coefficient
of

calibration
ESUN Band Wavelength

(µm)

Coefficient
of

calibration
ESUN

Coastal 0.400–0.450 0.009295654 1580.8140 Red 0.630–0.690 0.01103623 1559.4555

Blue 0.450–0.510 0.01783568 1758.2220 Red-edge 0.705–0.745 0.005188136 1342.0695

Green 0.510–0.580 0.01364197 1974.2416 NIR1 0.770–0.895 0.01224380 1069.7302

Yellow 0.585–0.625 0.005829815 1738.4791 NIR2 0.860–1.040 0.009042234 861.2866
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Table 1. Cont.

Name WorldView-2

Radiometric
resolution 11-bit

Correction
level LV3X Ortho

Solar zenith 32.6◦

Off-nadir
viewing 14.5◦

2.2. Image Corrections

2.2.1. Atmospheric Correction

The WV2 image was received at Level 3X Ortho and the pixels contain radiometrically calibrated
Digital Number (DN) value and have already been geometrically orthorectified. The DN was converted
to Top-of-Atmosphere (TOA) radiance and reflectance following the formula and parameters described
in the handbook and image header (see Table 1). Atmospheric correction was applied to the WV2 image
to obtain the Bottom-of-Atmosphere (BOA) reflectance image. While it is not mandatory to make use of
the BOA reflectance image when carrying out the mapping procedure using the single-date image [20],
it is mandatory to ensure that the relationship between spectral bands during PCA transformation
is consistent [14]. In addition, the machine-learning mapping model will be applied to other areas,
and thus, all images must be independent of atmospheric condition variations, hence atmospheric
correction is highly necessary. Dark-Object Subtraction (DOS) method [21] was applied to the TOA
reflectance image making use of optically-deep water reflectance as the dark-target [22]. Pixels of
optically-deep water were selected manually using visual interpretation on true color composite image
of WV2 (RGB 532, Red-Green-Blue). Using DOS formula described in [1], the values of the dark
target were converted into atmospheric offset triggered by path radiance (Table 1). These values were
subtracted from TOA reflectance image to obtain BOA reflectance image.

2.2.2. Sunglint Correction

Sunglint is visible across the WV2 image, thus, it is necessary to remove this specular reflection in
order to minimize noise in the course of image classification and to avoid misclassification. Bright
pixels of sunglint can easily be misclassified as carbonate sand when not removed. A number of
sunglint correction methods were reviewed by [23]. Among those methods, the most preferred of
them was the simple but robust method by [24]. It is a straightforward model, similar to the method
developed by [25], but produces less noise and is more suitable for benthic habitat mapping as opposed
to bathymetry mapping [23]. NIR band is required for the correction of sunglint in visible bands,
and since WV2 image has two NIR bands, it is essential to select the better one. Thus, the regression
analysis was conducted for each visible and NIR band pair. Summary of the sunglint correction process
can be found in Table 2.

Table 2. Summary of the atmospheric offset for DOS atmospheric correction and regression analysis
for sunglint correction.

Band
DOS Atmospheric Correction Sunglint Correction

Atmospheric Offset Regression with Infrared Band Slope R2

Cyan 0.153 NIR1 0.383 0.263
Blue 0.121 NIR1 0.590 0.382

Green 0.075 NIR1 0.953 0.523
Yellow 0.050 NIR2 1.481 0.778

Red 0.039 NIR1 0.902 0.952
Red-edge 0.029 NIR2 1.416 0.908

NIR 1 0.021 - - -
NIR 2 0.016 - - -
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2.2.3. Water-Column Correction

A simple water-column correction technique called Depth-Invariant Bottom Index (DII) which
was developed by References [26,27] was applied to the deglint image to remove benthic habitat
reflectance variations due to water-depth effect. Using this technique, it is not necessary to obtain the
actual water-column attenuation coefficient for each band (k), and water-depth for each pixel as in more
robust methods [28–31]. The use of DII prevents errors in predicting the water-column attenuation
coefficients and water-depth propagate in the water-column correction algorithm, hence adversely
impacts the classification result [14]. Instead, this technique only requires the ratio of water-column
attenuation coefficient between visible bands pair, which can be statistically derived by using the
reflectance of similar objects located at different depths. Altogether, there are 15 combinations of DII
from six WV2 deglint bands (the statistics to derive the water column-corrected bands are not shown).

2.3. Principle Component Analysis (PCA)

Principle Component Analysis (PCA) was applied to the WV2 deglint bands to reduce the
dimensionality of the data sets and produce uncorrelated output bands where each band contains
linear combination of spectral information from all deglint bands. Image transformation, especially
PCA, succeeded in improving the overall accuracy of benthic habitat mapping at different levels
of classification scheme complexities [14]. Previously conducted researches that employed the
noise-cancelling transformation such as Minimum Noise Fraction (MNF) also gained an accuracy
improvement for benthic habitat mapping [7,32–34]. The resulting PC bands were used as
classification input.

2.4. Bathymetry Map

Water depth vertically controls the spatial distribution of benthic habitats, as most
photosynthesizing biota is depth-limited. Macroalgae may live up to the depth where the irradiance is
only 1% of the surface, whereas seagrass and most zooxanthellae in the reefs-building corals require
over 10% of the surface irradiances in order to perform photosynthesis [35,36]. Bathymetry is therefore
a key factor to be considered when mapping benthic habitats spatial distribution. Bathymetry map for
the study area was adapted from [37]. The modelled-bathymetry map has a standard error of estimate
(SE) of 1.01m across an optically shallow water body up to a depth of 7 m. This was obtained from
the ratio of blue and yellow band (R2 = 0.776, sig. 95%CL). This bathymetry data was included in the
classification input and was also used in calculating the slope-steepness of the underwater topography.
The unit of the resulting slope map is percent (%) and was categorized into ten classes with intervals of
10% from 0–100%.

2.5. Field Data Collection and Classification Scheme Construction

2.5.1. Field Data Collection

Benthic habitat in situ samples were obtained from photo-transect survey method [38]. In short,
benthic habitat photos were captured under the water surface every ±2 m intervals by snorkeling along
the transect. Coordinates of the surveyed transects (recorded every 2 seconds) were recorded using the
Global Positioning System (GPS) Garmin Map 76CSx placed inside waterproof dry bag floating on the
water surface towed to the snorkeler. The photos are linked to GPS coordinates by matching the time in
photo metadata and GPS reading using Garmin DNR software. The collected-samples were recorded
as point, and each photo was interpreted using CPCe 4.0 software. For each photo, 24 points were
randomly placed across the photo. Each point in the photo was labeled based on the benthic habitat
class following the classification scheme (Table 3). The final class for each photo was determined by
the most dominant class in the photo. The locations of photo-transect samples are shown in Figure 2.
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Table 3. The classification scheme of benthic habitats used in this research along with the number of
samples. The numbers in bracket are the number of pixels obtained from the extrapolation of point
samples into area samples based on image segmentation result resampled to WV2 pixel size (4 m2).

No Major Class (Level 1) Detailed Class
(Level 2)

Samples No.
(Area) Class Descriptor

1
Coral reef
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Sand 398 (13,115) Calcium carbonate sand, white bright colour
(>70%).

Volcanic sand 4 (merged with
Sand)

Red-coloured sand from weathered and eroded
volcanic materials (>70%).

Rubble 34 (41) Area of mainly rubble (>70%), with small portion
of macroalgae, seagrass, or dead coral present.

These point samples were upscaled to area samples using segments created from the image
segmentation process, run using IDRISI Selva, with similarity tolerance 10, weighted mean 0.5,
weighted variance 0.5, window width 3, and using an assumption that the segments represent and
correspond with the variation of benthic habitat within the segment, as indicated by its point samples
contained within the segment.

The resulting segments were exported into vector file, and then overlaid on the point samples.
The segment polygon was labeled according to the dominant benthic habitat class of point samples
located within its boundary. These polygon segments were converted back to raster format matching
WV2 spatial resolution (2 m). The conversion of point samples to area samples using this approach
was employed in benthic habitat mapping with the use of OBIA [5,6], but rarely in the per-pixel
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classification. These area samples were divided into two independent sample sets, with one for image
classification, and the other for accuracy assessment.

The samples for machine learning model training and classification accuracy assessment were
randomly selected for each class. Furthermore, if the location of model training and accuracy assessment
samples for a particular class is adjacent to each other, whenever possible, we purposively modified
the location of these samples so that the model training and accuracy assessment samples are not
located adjacent to each other; hence they are statistically and spatially-independent to fully assess
the performance of machine learning classification model. We argue that the use of area samples
may assess the spatial dimension of benthic habitat classification accuracy, and accommodate the
spatial displacement between the GPS reading of situ benthic data and the geometric accuracy of the
WV2 image.
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2.5.2. Classification Scheme

Constructing benthic habitats classification scheme is not easy. The major level scheme, which is
widely recognized, comprises of coral reef, seagrass, macroalgae, and bare substratum class [1,2]. If we
want to understand the dynamics, changes, impacts of management, and how these benthic habitats
provide ecological functions and serve as natural resources inventory, more detailed information on
benthic habitat spatial distribution will be required. The mapping was therefore conducted in a more
detailed classification scheme. In this research, instead of using benthic habitat compositions to seek
the balance and consistency of mapping at different levels of complexities [14], the major level scheme
was further detailed based on the ecological function and how they may be spectrally separated using
remote-sensing reflectance. The classification scheme created, based on ecological purposes, was also
proposed by Hochberg and Atkinson [39].



Remote Sens. 2019, 11, 1279 8 of 24

Coral reef class was divided into healthy, intermediate, and dead. These three classes are important
for ecological analysis, monitoring benthic habitat environment’s health, and evaluating management
impacts. The healthy coral reef class refers to an area dominated by healthy coral reef of various
life-forms. Coral reef life-forms such as branching, tabular, massive, sub-massive, and encrusting
corals are commonly found in the study area. The intermediate class refers to an area of healthy coral
reef with some variations of rubble, macro algae, and dead coral. Furthermore, the dead coral class
refers to an area dominated by dead coral reef, and either bleaching corals, corals overgrown by algae,
or surrounded by rubble. There is a possibility of healthy coral reef being present in this class, but will
be at a very low percentage.

Seagrass class was detailed into species composition, given that information regarding species may
represent their unique ability to provide shelter and food for marine biota, sequestering and burying
carbon, coastal protection, and biodiversity measure. Moreover, mapping seagrass species is a difficult
task [40–42], despite the spectral response variations [43–45]. Seagrass species commonly found in
abundance in the study area were Enhalus acoroides (Ea), Thalassia hemprichii (Th), and Cymodocea
rotundata (Cr). However, other species such as Halodule uninervis (Hu), Cymodocea serrulata (Cs),
Syringodium isoetifoleum (Si), and Halophile ovalis (Ho) are rarely encountered in abundance, and are
commonly found amid the more dominant seagrass species such as Ea, Th, and Cr.

Macroalgae class was further classified based on pigment variations, given that brown, green, and
red macroalgae are ecologically and economically important. Actually, the life-form of macroalgae,
i.e., encrusting, calcareous, turf and fleshy indicates unique functions. Unfortunately, since the
reflectance of benthic habitat is basically sourced from visible wavelengths, the classification of
macroalgae based on pigment is more feasible, especially since different life-forms of macroalgae
may contain similar pigmentations, i.e., calcareous green algae and turf green algae, which make the
spectral differentiation difficult.

Bare substratum class was further divided into sand class and rubble class. In the former, the main
material is calcium carbonate, which is important for determining the ideal boat route, aquaculture
location, and safe places for anchoring. The rubble class can be used as an indicator of coral reef health
and degradation. Volcanic sand is unique to the study area. It is red-colored, originated from the
weathered and eroded iron-rich volcanic materials, and can be found mainly on Kemujan Island.

In this research, we developed the mapping model based on the two levels of classification scheme.
To begin with, we developed the model using the most complex classification scheme and then used
the major classification scheme as comparison afterwards. The details of the classification scheme used
in this research are given in Table 3.

2.6. Image Classification

Three machine-learning algorithms were used in carrying out the benthic habitat classification.
The input for classification is the combination of deglint bands, DII, and PCA with bathymetry and
slope of underwater benthic habitat topography.

2.6.1. Classification Tree Analysis (CTA)

CTA is categorised as a non-parametric univariate method of image classification. It is a bottom-up
approach to classify image, where the user allows the algorithm to learn the information from the input
training area in order to classify the image by continuously splitting the data to obtain a homogenous
cluster of pixels in a hierarchical tree of classification rules. The components of CTA are: (1) The Root,
which is the starting point of the classification tree; (2) the Internode, which is the connection between
the roots, leaves, and other internodes; and (3) the Leaf, which is the resulting class that contains pixels
of the same class or those classified to that class.

There are three CTA algorithms available and they are Gain Ratio, Entropy, and Gini algorithm. In
this study, Gain Ratio algorithm was preferred as it may possibly reduce the potential of over splitting
in Entropy algorithm. As a matter of fact, it is the normalization of Entropy algorithm. Gini splitting
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algorithm was not used, as it was difficult to find a significantly homogenous class within our training
area [46]. The process starts from the root, and then using the information from training areas, pixels
are split and assigned based on binary split rule. The splitting process will continue to grow until
certain conditions are met, which are usually related to the stability of the leaf (benthic habitat class).
This result is perceived to be a more precise classification result given that each data (ROI) is considered
important, and their characteristics are learned by the algorithm. We experimented with different
auto-pruning threshold, from 1%, 5%, 10%, and 15% so as to understand its impact to the classification
result. The auto-pruning threshold is used in eliminating leaves with pixel numbers equal or less than
the specified percentage of the class proportion.

2.6.2. Random Forest (RF)

The RF algorithm employed in this research was based on [47]. Random forest is an ensemble
classification method for supervised classification based on classification trees. RF algorithm can
produce a good classification result even though there are many outliers in the training data and also
if the data has a lot of noise [48]. To obtain the best RF model, we tuned the RF algorithm using (1)
different number of trees, i.e., 25, 50, 75, 100, 500, (2) different functions to determine the number of
randomly selected features to determine the optimum split point in a node, which is important to avoid
model overfitting, i.e., Square root and Log function, and (3) impurity functions, i.e., Gini coefficient
and Entropy.

2.6.3. Support Vector Machine (SVM)

SVM is a powerful machine-learning technique for image classification, and it has the capability
of creating boundaries called the hyperplane in the multi-dimensional feature space which separates
and classifies each pixel into classes [49,50]. SVM exploits the model based on margin maximization
concept. Hence, it has the ability to work efficiently on poor sample distribution, and does not require
prior estimation of the class statistical distribution for the classification process [8,51,52]. SVM is
increasingly being used in image classification for benthic habitat mapping and produced a better
accuracy than parametric classification algorithms including ML [8,34,52–54]. The SVM was conducted
using Gaussian Radial Basis Function (RBF) kernel. We tuned the SVM algorithm using different
range and multiplier value of C (regularization parameters) and g (The width of the Gaussian kernel
function). The range of C and g that we experimented was 0.01–1000.00 and for the multiplier was set
to 2, 5, and 10. The number of folds for the internal cross validation was set to 3. The termination
criterion for grid search was set to 0.100 and the termination criterion for final training was set to 0.001.
Performance surface matrix was used to determine the best combination of C and g that produced the
highest classification accuracy. Both RF and SVM were run using EnMAP-Box.

2.7. Accuracy Assessments

There are two parts of classification accuracy assessment. First is the confusion matrix analysis,
which was used in assessing the accuracy of the resulting classification from RF, CTA, and SVM.
It calculates the overall accuracy of the classification result, along with the user’s and producer’s
accuracy of individual benthic habitat class in the classification scheme [55]. Since the classification
accuracies are being compared, McNemar Test [56] was applied to the confusion matrix to come to a
conclusion if the accuracies of two classifications are significantly different. Secondly, the model of
machine-learning algorithm with the highest accuracy was applied to other benthic habitat locations,
such as Karimunjawa Island, Menjangan Besar Island, and Menjangan Kecil Island. This procedure
was carried out to test the performance of the machine-learning model so as to classify benthic habitats
independently, without the use of training areas in other locations.

2.8. Research Flowchart

The flowchart of this research is provided in Figure 3.
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Figure 3. Research flowchart for benthic habitat mapping model and cross validation using
machine-learning classification algorithms.

3. Results

3.1. Classification Results

Benthic habitat classification had its highest accuracy obtained from RF with 88.54% overall
accuracy. The mean overall accuracy is 88.05 ± 0.29%. These were obtained from RF model using Gini
coefficient to determine impurities in a node and Square root of all features to determine the number
of randomly selected features. The selected number of trees is 100. This accuracy is very high, given
the number of classes involved and the complexity of the classification scheme. RF produced a better
accuracy than other algorithms, not only based on the statistics of accuracy assessment result, but also
on the spatial distribution of the benthic habitats across the scene. Seagrass and macroalgae classes
were classified along the shoreline. Reef-flat on the southern part of the scene was classified as brown
algae and sand. The lagoon located on the western part of the island was also classified as healthy,
intermediate or dead coral. Sand was correctly classified in the lagoon, especially in the back-reef
area. The reef-crest and fore-reef were mainly classified as healthy coral reef with some mixture of
intermediate coral reef. The misclassification between coral reef and seagrass in the reef-crest area and
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in the boundary between optically shallow and optically deep water did not occur on RF result but
was noticeable in CTA and SVM results (see red polygon in Figure 4). However, there are also areas in
the Northern part of Kemujan Island where seagrass was misclassified as coral reef, and only CTA was
able to produce the correct classification (see blue boxes in Figure 4).
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Figure 4. Comparison of misclassification between RF (OA 88.54%), CTA (OA 77.80%), and SVM (OA
75.98%). Blue boxes show the area where seagrass was misclassified as coral reef except in CTA result.
However, many pixels in the reef-crest area were misclassified as seagrass classes in CTA result, where
they should have been classified as coral reef class as in RF and SVM results (see red polygon).

In RF result, a misclassification occurred between healthy coral, intermediate, and dead coral
as they share similar spectra and class descriptor. Healthy coral was also misclassified as EaTh and
sand. Brown algae class was mainly misclassified as mixed-algae and sand, which was expected, given
that mixed-algae also contains brown algae, while mixed-algae was misclassified as coral reef classes
due to similar pigmentation, resulting in similar reflectance. Ea was misclassified as brown algae
since its reflectance covered by epiphyte resembles that of brown algae [42]. EaTh was misclassified as
mixed-seagrass and Th, as the spectra of these classes are overlapping [42]. Ho was mainly misclassified
as intermediate coral, Th as brown algae and EaTh, and ThCr as Th. These misclassifications can be
attributed to the association of Th or ThCr with brown algae, especially Padina sp. and Dictyota sp.
The misclassification of Th as EaTh and ThCr as Th was as a result of the overlapping spectra of Th
in these classes. Mixed-seagrass was understandably misclassified as ThCr, since ThCr spectra are
also mixed-seagrass spectra. Furthermore, mixed-seagrass was also misclassified as sand. Sand was
misclassified as brown algae, Ea, healthy coral, and intermediate coral, as sand was the dominant
substrate for these classes and almost all benthic classes in the study area. See the confusion matrix of
RF result for the detailed information in Table 4.

The highest accuracy from CTA was obtained at 77.8% when using DII. The accuracy of CTA
using other inputs was just as high with a mean overall accuracy of 75.39±2.17%, which was higher
than the mean classification accuracy of SVM. When all inputs were being utilized, the accuracy of
CTA was 77.17%. Ho class has a very low accuracy and rubble produced a total misclassification. Ho
is rarely found in a large bed and high density, and thus the dominant resultant reflectance is still
highly affected by a sandy background. It was also found adjacent to brown algae Padina sp., and
thus, was mostly misclassified as sand and brown algae. Rubble had the worst accuracy with zero
classification accuracy. Given that rubble is commonly found in between and adjacent to coral reef of
various conditions, all the validation samples were classified as healthy coral reef, intermediate coral
reef, or sand. The class descriptor of healthy and intermediate coral reef class also included rubble
as the minor component. Rubble had the same material with carbonate sand, and was thus easily
misclassified as sand, which had more dominant coverage than rubble. See Table 5 for the confusion
matrix of CTA result.
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Table 4. Confusion matrix of RF result. HC: Healthy Coral, IC: Intermediate Coral, DC: Dead Coral, BA: Brown Algae, MA: Mixed-Algae, MS: Mixed-Seagrass, Rb:
Rubble, Sd: Sand. OA: Overall Accuracy, UA: User Accuracy, PA: Producer Accuracy, EC: Error Commission, EO: Error Omission.

Map
Class

Reference Class

BA CrHu DC Ea EaTh HC Ho IC MA MS Rb Sd Th ThCr Sum UA EC
BA 574 0 11 11 2 21 1 24 104 18 0 146 9 1 922 62.26 37.74

CrHu 0 21 0 0 0 0 0 0 0 0 0 0 0 0 21 100.00 0.00
DC 16 0 1056 0 0 117 0 204 5 1 4 5 1 18 1427 74.00 26.00
Ea 155 0 1 193 6 2 0 1 0 0 0 1 55 1 415 46.51 53.49

EaTh 12 3 2 1 613 30 0 1 3 36 0 14 22 10 747 82.06 17.94
HC 22 0 58 43 143 22,948 0 569 0 0 0 134 2 1 23,920 95.94 4.06
Ho 17 0 10 0 0 6 102 46 3 0 0 4 1 0 189 53.97 46.03
IC 6 1 257 0 15 1259 0 2198 6 1 0 65 4 2 3814 57.63 42.37

MA 7 0 20 0 0 23 0 24 219 1 0 5 2 1 302 72.52 27.48
MS 16 2 12 2 1 15 0 10 6 2312 0 47 10 104 2537 91.13 8.87
Rb 0 0 0 0 0 0 0 0 0 0 21 0 0 0 21 100 0.00
Sd 314 1 98 185 12 193 1 170 83 80 16 12,649 20 63 13,885 91.10 8.90
Th 63 0 1 17 40 0 0 1 1 15 0 17 234 13 402 58.21 41.79

ThCr 41 0 5 2 1 0 5 11 2 13 0 28 55 306 469 65.25 34.75
Sum 1243 28 1531 454 833 24,614 109 3259 432 2477 41 13,115 415 520 49,071

PA 46.18 75 68.97 42.51 73.59 93.23 93.58 67.44 50.69 93.34 51.22 96.45 56.39 58.85
OA 88.54

EO 53.82 25 31.03 57.49 26.41 6.77 6.42 32.56 49.31 6.66 48.78 3.55 43.61 41.15
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Table 5. Confusion matrix of CTA result. HC: Healthy Coral, IC: Intermediate Coral, DC: Dead Coral, BA: Brown Algae, MA: Mixed-Algae, MS: Mixed-Seagrass, Rb:
Rubble, Sd: Sand. OA: Overall Accuracy, UA: User Accuracy, PA: Producer Accuracy, EC: Error Commission, EO: Error Omission.

Map
Class

Reference Class

BA CrHu DC Ea EaTh HC Ho IC MA MS Rb Sd Th ThCr Sum UA EC
BA 501 0 26 9 18 3 2 39 112 106 0 370 36 13 1235 40.57 59.43

CrHu 17 22 0 0 95 41 0 8 4 17 0 13 10 9 236 9.32 90.68
DC 8 0 494 1 0 105 0 186 2 0 6 43 0 7 852 57.98 42.02
Ea 236 0 4 318 24 147 0 67 0 0 0 610 58 9 1473 21.59 78.41

EaTh 33 3 5 6 568 670 0 41 15 36 0 93 65 35 1570 36.18 63.82
HC 18 0 180 58 26 21,132 1 744 13 0 0 198 8 6 22,384 94.41 5.59
Ho 48 0 49 0 0 26 74 80 19 32 0 84 5 18 435 17.01 82.99
IC 25 0 444 0 15 2086 1 1591 17 1 0 66 0 3 4249 37.44 62.56

MA 85 0 137 2 7 112 14 104 134 9 0 202 6 32 844 15.88 84.12
MS 60 1 73 10 21 90 11 145 54 2046 0 328 36 152 3027 67.59 32.41
Rb 0 0 4 0 0 77 0 29 0 0 20 51 0 0 181 11.05 88.95
Sd 92 0 89 37 3 108 1 179 31 18 14 10,953 5 42 11,572 94.65 5.35
Th 53 1 3 9 50 0 0 2 13 110 0 15 143 12 411 34.79 65.21

ThCr 67 1 23 4 6 17 5 44 18 102 1 89 43 182 602 30.23 69.77
Sum 1243 28 1531 454 833 24,614 109 3259 432 2477 41 13,115 415 520 49,071

PA 40.31 78.57 32.27 70.04 68.19 85.85 67.89 48.82 31.02 82.6 48.78 83.52 34.46 35
OA 77.80

EO 59.69 21.43 67.73 29.96 31.81 14.15 32.11 51.18 68.98 17.4 51.22 16.48 65.54 65
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The best CTA results were obtained by using 1% auto-pruning threshold. Based on our experiments,
which involved using 5%, 10%, 15%, and 20% auto-pruning threshold, the accuracy decreased on
5% threshold, but increased on 10%. Afterwards, the accuracy kept decreasing on 15% and 20%
auto-pruning threshold. In addition to the declining accuracy, the analysis revealed that a high
percentage of auto-pruning thresholds should not be recommended for mapping with complex
classification scheme. This is due to the fact that it will eliminate some classes when the pixel in the
leaf composing these particular classes does not meet the auto-pruning threshold criteria. For instance,
at 10% threshold, the accuracy of CTA using DII increased to 89%. However, the remaining benthic
habitat classes were only eight.

SVM is the third-best algorithm with an overall accuracy of 75.98%. This was obtained using
DII input, with a mean accuracy of 74.27 ± 1.04%, which is slightly lower than CTA mean. These
were obtained from the following settings. The C value was set to 10.00 and g value was set to 0.001.
Meanwhile, the multiplier setting for C and g value during model tuning was set to 10. Despite the
accuracy, SVM failed to classify the rubble class, and several seagrass classes such as ThCr, CrHu
and Ho (Table 6). This is contradictory to the work of Reference [9], where seagrass variations
can be correctly classified using SVM. This difference can be attributed to the differences in benthic
habitat environmental complexity of each study area. Reference [9] classified areas covered mostly by
seagrass of different conditions, and thus lowered the misclassification rate of seagrass class to other
benthic habitats.

The main setback of running SVM algorithm using high number of training samples is the time
required to perform the classification. The time required to run SVM classification using area samples
adds up to almost four hours per classification process. We tried running the SVM algorithm using
the newest computer processing hardware, but there was no significant decrease in the processing
time compared to older computer hardware. Thus, although the accuracy of SVM is quite similar to
CTA, the productivity is much lower compared to CTA, especially if we are to experiment with various
scenarios of SVM parameter settings. The summary of overall accuracy for each classification result is
illustrated in Table 7. The results of machine learning classification are provided in Figure 5.
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benthic habitat classes were only eight.  

SVM is the third-best algorithm with an overall accuracy of 75.98%. This was obtained using DII 
input, with a mean accuracy of 74.27 ± 1.04%, which is slightly lower than CTA mean. These were 
obtained from the following settings. The C value was set to 10.00 and g value was set to 0.001. 
Meanwhile, the multiplier setting for C and g value during model tuning was set to 10. Despite the 
accuracy, SVM failed to classify the rubble class, and several seagrass classes such as ThCr, CrHu and 
Ho (Table 6). This is contradictory to the work of Reference [9], where seagrass variations can be 
correctly classified using SVM. This difference can be attributed to the differences in benthic habitat 
environmental complexity of each study area. Reference [9] classified areas covered mostly by 
seagrass of different conditions, and thus lowered the misclassification rate of seagrass class to other 
benthic habitats.  

The main setback of running SVM algorithm using high number of training samples is the time 
required to perform the classification. The time required to run SVM classification using area samples 
adds up to almost four hours per classification process. We tried running the SVM algorithm using 
the newest computer processing hardware, but there was no significant decrease in the processing 
time compared to older computer hardware. Thus, although the accuracy of SVM is quite similar to 
CTA, the productivity is much lower compared to CTA, especially if we are to experiment with 
various scenarios of SVM parameter settings. The summary of overall accuracy for each classification 
result is illustrated in Table 7. The results of machine learning classification are provided in Figure 5. 
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Table 6. Confusion matrix of SVM result. HC: Healthy Coral, IC: Intermediate Coral, DC: Dead Coral, BA: Brown Algae, MA: Mixed-Algae, MS: Mixed-Seagrass, Rb:
Rubble, Sd: Sand. OA: Overall Accuracy, UA: User Accuracy, PA: Producer Accuracy, EC: Error Commission, EO: Error Omission.

Map
Class

Reference Class

BA CrHu DC Ea EaTh HC Ho IC MA MS Rb Sd Th ThCr Sum UA EC
BA 249 3 7 96 16 7 12 50 49 39 0 339 121 34 1022 24.36 75.64

CrHu 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.00 100
DC 42 0 238 0 8 102 25 134 46 21 0 24 3 7 650 36.62 63.38
Ea 37 0 2 154 369 46 0 58 0 0 0 1591 56 15 2328 6.62 93.38

EaTh 2 0 0 0 4 0 0 0 0 0 0 0 0 0 6 66.67 33.33
HC 20 0 687 29 217 23,714 2 2279 13 170 0 105 0 3 27,239 87.06 12.94
Ho 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.00 100
IC 95 0 392 6 16 285 65 270 88 104 24 205 17 78 1645 16.41 83.59

MA 318 22 2 3 94 0 0 22 173 59 0 135 80 49 957 18.08 81.92
MS 57 2 35 25 92 17 2 42 22 1959 0 226 94 234 2807 69.79 30.21
Rb 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.00 100
Sd 415 0 168 141 14 442 2 401 33 118 17 10,490 9 84 12,334 85.05 14.95
Th 8 1 0 0 3 1 1 3 8 7 0 0 35 16 83 42.17 57.83

ThCr 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.00 100
Sum 1243 28 1531 454 833 24,614 109 3259 432 2477 41 13,115 415 520 49,071

PA 20.03 0 15.55 33.92 0.48 96.34 0 8.28 40.05 79.09 0 79.98 8.43 0
OA 75.98

EO 79.97 100 84.45 66.08 99.52 3.66 100 91.72 59.95 20.91 100 20.02 91.57 100
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Table 7. Overall accuracy (OA) of classification results (%) in Kemujan Island. * depicts the highest
classification accuracy for each classification algorithm. ** we failed to obtain the classification result of
SVM using all dataset as input due to computational issues. RF model produced the highest and most
consistent classification accuracy using different inputs.

Input RF CTA SVM

Deglint bands 88.01 75.58 75.04
Deglint-Bathymetry-Slope 87.68 75.25 73.99
DII 87.85 77.80 * 75.98 *
DII-Bathymetry-Slope 88.07 76.82 73.25
PC bands 87.88 73.28 73.55
PC-Bathymetry-Slope 88.29 71.84 73.78
All dataset 88.54 * 77.17 **

Mean 88.05 75.39 74.27

Standard Deviation 0.29 2.17 1.04

McNemar test was performed to select the ideal model to be applied on other islands, and RF
produced the highest classification accuracy. Based on this test, the performance of RF model using all
dataset was not significantly different from deglint bands, and for this reason, we selected the model
from RF deglint bands. The RF model was selected from deglint bands because it is more consistent
and can be widely applied. The use of DII, PC bands, and bathymetry will improve the complexity
of the required input and lead to the non-standard input values in exchange for an insignificant OA
improvement. The value of PC bands and DII is highly dependent on the statistic of the input samples
and image statistics, which is prone to subjectivity. Meanwhile, bathymetry between areas vastly
varies, and cannot be used as standard parameter.

3.2. Model Application

The application of RF 14 class benthic habitat model from Kemujan Island to Karimunjawa,
Menjangan Besar, and Menjangan Kecil Islands (hereafter, these islands are referred to as test areas)
was not very successful. The accuracy of RF in test areas was 48.99%, with healthy coral reefs as the
most accurate class with 66.24% and 91.99% UA and PA respectively. The accuracy of other classes
such as ThCr (UA 55.13%, PA 55.4%), Ea (UA 49.6%, PA 49.87%), rubble (UA 33.33%, PA 33.59%),
intermediate (UA 28.61%, PA 28.85%), and sand (UA 21.38%, PA 27.8%) followed accordingly. The
rest of benthic habitat classes had less than 10% of UA and PA. Nevertheless, the result was actually
consistent where the shoreline was dominated by seagrass and brown algae, and coral reef was located
in reef-crest or reef-cut. However, there were some inconsistencies where healthy coral occurred in the
shoreline, and the overestimation of seagrass extent in Menjangan Besar and Menjangan Kecil Islands.
These results indicate that:

• The classification scheme of benthic habitat is too detailed and creates confusion in the application
of models in other areas.

• Since not all benthic classes may be present in all areas, it is unclear if the model failed to classify
a particular class, i.e., CrHu, or this particular class truly does not exist in the area. In our case, we
can confirm that this was as a result of a failure in the model, since our field data indicated that
there is CrHu located somewhere in the field.

• For general mapping, the scheme needs to be refined and be more universal, to ensure that all
classes in the scheme are present in many areas.

To justify our statement, we simplified the scheme and used the major benthic habitat classification
scheme; coral reef, seagrass, macroalgae, and “sand and rubble”. All training areas were re-labelled
based on these classes. We developed the model by means of RF using deglint bands and produced
94.17% OA. The UAs are 98.58%, 83.13%, 66.69%, and 91.80% for coral reef, seagrass, macroalgae, and
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“sand and rubble” classes respectively. The PAs are 97.44%, 87.76%, 58.57%, and 93.74% for the classes
in the same order. Most classes produced very high accuracies with low misclassifications. Macroalgae
class had the lowest accuracy owing to high misclassification rate with sand and rubble, and seagrass.

Afterwards, we applied this RF model to the test areas and yielded 70.93% OA. The UAs for
coral reef, seagrass, macroalgae, and “sand and rubble” class are 86.24%, 44.30%, 5.94%, and 37.00%
respectively, while the PAs are 91.75%, 20.40%, 13.48%, and 29.64% for the classes in the same order.
The accuracy of the simplified RF model produced more accurate results, just as expected. This
accuracy is statistically high, especially for rapid mapping, and it is within the acceptable limit for
benthic habitat mapping using a scheme that comprises of four benthic classes. The acceptable
limit lies within the range of 40%–70% [1] and >60% based on Indonesian Nasional Standard for
Mapping [57]. Nevertheless, only coral reef class produced an accurate result, while other classes had
low accuracies. Seagrass class was highly misclassified as macroalgae and coral reef, macroalgae was
highly misclassified as sand and rubble and seagrass. Sand and rubble class was highly misclassified
as coral reef and also indicated that the spatial distribution of coral reef was overestimated. Many areas
near shoreline, which should have been classified as sand, seagrass, or macroalgae, were misclassified
as coral reef.

4. Discussion

4.1. Accuracy Comparison

The goal of this research is to perform benthic habitat mapping using machine-learning algorithms,
develop a mapping model from the most accurate result, and lastly, adapt the model to other areas.
Machine-learning approach is different from the parametric classification algorithms that utilize
training area statistics to generate the centroid of each class cluster, while the remaining pixels
are classified accordingly, based on the range of boxes, shortest distance, mahalanobis distance,
maximum probabilities, or angle of spectral similarity [58]. Machine-learning may resolve the issue
of non-normal Gaussian distribution of training areas, where in this research is mainly due to the
sub-pixel mixing of benthic habitats, different number of training areas between classes, and the
possibility of inconsistencies in labeling the sample photos.

The use of CTA for benthic habitats mapping is limited, and a direct comparison could not
be performed. SVM is a powerful classifier for benthic habitats mapping as described in previous
works [8,9,52]. In this research, the reported accuracy of SVM is higher than other works that have
employed less complex classification schemes [8,9,34,53]. The setback is the failure to properly classify
small life-form seagrass classes compared to RF and CTA, and the required processing time. In SVM,
there were four classes with zero accuracy, even after we experimented with different settings of SVM
parameters in order to obtain more effective classification results and minimizing the misclassification.

It is also rather difficult comparing our result with others since the scheme used in each research
is unique. The closest would be [14] with 13 classes, where he reached an accuracy of 40% using PC
bands. However, the scheme does not contain any species differentiation of seagrass or the variation of
macroalgae pigments. Our accuracy is considered to be higher, compared to other researches with the
same or even lower scheme complexities. Even when using hyperspectral data, an accuracy of over
80% was only obtained for benthic habitat mapping with 3-12 classes complexity [7]. Recent researches
that made use of high spatial resolution image classified less than ten benthic habitats classes, and
examples are [8] with 73% accuracy (four classes), and Reference [59] employed the Spectral Angle
Mapper (SAM) method on CASI hyperspectral image (7 classes, accuracy not reported).

The misclassification pattern for SVM and CTA result is similar, where in average, the user’s and
producer’s accuracy of classes containing multiple benthic class (mixed class) are lower than classes
containing single benthic class. Meanwhile, in RF result, the average producer’s accuracy of mixed
classes is lower but the average user’s accuracy of mixed classes is higher than classes containing single
benthic class (see Tables 4–6). Therefore, RF algorithm has better performance to correctly classify
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different benthic habitat compositions compared to SVM and CTA. However, strong misclassification
did not only occur for mixed classes, but also in the classes containing single benthic object due to the
similarity of object spectral response characteristics between individual benthic classes, overlapping
class descriptor between classes, and class association, as explained in Section 3.1. As a consequence,
even the class containing single benthic object can also have high misclassification rate.

The application of PCA did little to improve the accuracy of RF, CTA, and SVM, which is not in
accordance with the result obtained by Reference [14] where the accuracy of PC bands outperformed
other inputs such as deglint bands and DII in hierarchical benthic habitats mapping complexity using
ML. Another contrary result was obtained by Reference [34] where the application of SVM to PC
bands of Landsat 8 image obtained accuracy higher than that of DII. In fact, the accuracy is relatively
constant for all inputs with very low standard deviation. Our results indicated that the incorporation
of bathymetry and slope data in the classification input had no significant effect on improving the
classification accuracy. Depending on the main input bands and algorithm, adding bathymetry and
slope data may or may not improve the accuracy, and this is similar to the result from Reference [60]
where the addition of LIDAR data increased and decreased the classification accuracy depending on
the associated input bands and classification algorithm. Reference [7] indicated that bathymetry is not
necessary to improve the accuracy of benthic habitats mapping, but Reference [8] reported otherwise.
This difference may be as a result of the quality of bathymetry data. The bathymetry model of [8]
was generated from a more complex radiative transfer model. Hence, resulting in a more accurate
bathymetry map, and provided accuracy improvement on benthic habitat classification result.

Reference [8] highlighted the importance of water-column correction, therefore the dominant
spectral response from underwater pixels sourced solely from benthic habitats, meanwhile, [7] warned
about the difficulties of removing water-column effect from an optically shallow water, due to the need
to obtain unique parameters for each spectral band. Additionally, the correction of water-column effect
may not always be beneficial. Using ML, [14] did not manage to obtain accuracy improvement just by
applying DII. Since there are several methods for removing the water-column effect, it is important to
assess the impact of these different methods on the classification accuracy in other works to come.

In our case, the most accurate CTA and SVM result was from DII. Although the accuracy
improvement for CTA was only 2% from deglint bands, DII made a significant impact in resolving
the misclassification between coral reef and seagrass. Interestingly, if the results of RF, SVM and
CTA from deglint bands, water column corrected bands, and PC bands are compared, the accuracy
would not vary much. Even if all data were used at once, the accuracy will still not be significantly
different. Hence, machine-learning algorithms may also reflect the maximum descriptive resolution of
remote-sensing image to map benthic habitats at this level of complexity.

4.2. Benefits and Setbacks of Machine-Learning Algorithms

Using machine-learning algorithm, it is very possible to include various datasets as classification
inputs, whether it is spectral bands or continuous dataset, i.e., bathymetry, slope, distance from
shoreline, and categorical dataset, i.e., coral reef geomorphology map, in order to obtain an accurate
benthic habitat map. The more data we made use of, the more information can be used in the
machine-learning process. We do not have to repeatedly process and classify the image using different
scenarios. Thus, machine-learning algorithm may produce a classification result at the maximum
image descriptive resolution. In this research, the maximum accuracy is 88.54% (14 class) and 94.17% (4
class), which were derived from RF using Deglint bands. When we consider the various combinations
of inputs or all input bands from all algorithms, the difference is insignificant (<5% standard deviation),
which means that we can either make use of all the available data, or only limited data such as
deglint bands to produce high accuracy. Machine-learning algorithm is powerful enough to exploit the
capability of the input bands to their maximum descriptive resolution. This can be observed from the
insignificant difference between accuracies of different input bands. Consequently, further processing
may not be necessary, given that deglint bands are capable of producing an accurate result. We just
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need to ensure the correctness of the spatial distribution of benthic habitats by carefully identifying
areas with potential misclassifications.

We also maintained the details provided by WV2 spatial resolution (2 m) while obtaining higher
classification accuracy. Depending on benthic habitat complexity of the study area, the intended details
of benthic habitat map, and the complexity of the classification scheme, per-pixel classification or OBIA
may produce more representative benthic habitat spatial distribution. In this research, we preferred
to have information at pixel level for benthic habitat mapping, as the information contained in each
pixel is unique and the variation of adjacent benthic habitat in the study area is not always constant.
There are many small patches of coral reef, seagrass, sand, or macroalgae in between and among on
another. Coral reef and the change of adjacent habitat may not be linear, and sometimes exhibit a
distinct feature boundary [61]. This distinct boundary is highly essential in identifying the biodiversity
and ecological composition. Generalizing this variation may not be ecologically sound and reduce
intra-habitat variations information. Performing majority analysis may also provide a better object
distribution and less noise. However, it also decreases the precision provided by the WV2 image,
and thus negates the high cost required to purchase the image [61]. Finally, whether it is per-pixel
classification or OBIA, it depends on the in situ object variations that we intend to explain as well as
what we are really planning to aim for benthic habitat mapping.

4.3. Machine-Learning Model Performance in Test Area

Using a model developed by a complex classification scheme is not effective when applied to other
areas. Only several classes managed to be classified with good accuracy, especially the most dominant
class, which is healthy coral reef. In addition, the detailed variation of benthic habitat between areas
may not be similar, and thus, there is a possibility that a particular class in the developed model is not
present in the applied areas, and this could therefore result in the possibility of having a non-existence
class in the applied areas. The use of a more general scheme yielded better accuracy, though some
classes still failed to be mapped at high accuracy. Coral reef class remains the class to be mapped with
the highest accuracy, while macroalgae is mapped with the lowest.

As regards to the model that can be widely applied, it is important not to use input bands with
high variability. For instance, the quality of water column corrected image is highly subjective and
dependent of the range of depths and water column attenuation coefficient. PC bands result also
relies strongly on the object variation in the scene, and bathymetry vastly varies between areas. As a
result, the application of the model may fail. The most standard input would be surface reflectance
and deglint bands. However, deglint bands may also introduce variability, depending on the strength
of sunglint intensity.

The main goal for developing benthic habitats mapping model is to establish an automatic,
accurate and consistent mapping model that can be widely applied. This research has shown that it is
possible to perform such a task, although it is still premature to be concluded, since the area used in
testing the model performance is having a relatively similar reef type and benthic habitat complexity.
We plan to apply the RF model developed in this research to map benthic habitat in different reef
types with different benthic habitat complexities. It is also important for us to develop similar models,
especially using 3 visible bands, given that this is the most widely available spectral resolution, i.e.,
IKONOS, Quickbird, Geoeye-1, Skysat, PlanetScope, Rapideye, ALOS AVNIR-2, Sentinel-2, Landsat
series, and SPOT series. This will ensure data continuity and possibility to perform historical analysis
of benthic habitat.

Finally, refining the classification scheme in order to understand whether the model scheme has
satisfactorily answered various management needs, and if obtaining the variations of benthic habitats
areas across different geographical areas are necessary. For instance, seagrass class in our study did not
include Thalassodendrom ciliatum (Tc), which is uniquely abundant on Nusa Lembongan Island [42].
Furthermore, it is essential to identify the balance between the details of benthic habitat classification
scheme and the ease of scheme adaption to different areas. If these can be achieved, we can predict
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a well-detailed benthic habitat map across inaccessible areas, since the requirement to have in situ
data to train the classification process is no longer necessary, unless the benthic habitats composition
is unique to the area. Obtaining in situ benthic habitat data for validation will then be subject to the
management priority.

5. Conclusions

Machine-learning algorithms are powerful approaches used in classifying benthic habitats at
detailed and major classification schemes in order to produce an accurate benthic habitat map.
Machine-learning algorithms also produced more stable classification results where the variation of
input bands resulted in no significant alteration on the overall accuracy. The maximum accuracy
was obtained from RF with 94.17% (4 classes) and 88.54% (14 classes), which is relatively higher than
most classification results at similar levels of scheme complexity and managed to resolve various
misclassification issues encountered by CTA and SVM. CTA and SVM also produced high accuracy,
but there were several issues of misclassification between coral reef and seagrass classes in the CTA
result, and also the failure of SVM to classify 4 from 14 benthic habitat classes. The application of
RF model in classifying benthic habitat in other areas reveals that it is recommended to use the more
general classification scheme to avoid several issues associated with benthic habitat variations. We
successfully applied the 4-class RF model developed in Kemujan Island to the test areas with acceptable
accuracy. Therefore, the RF model that we developed in this project can be applied to other benthic
habitat areas, provided that the input bands required by our RF model are available. However, it is
important to test our RF model to classify benthic habitat in other areas with either similar or different
environmental setting to provide a more comprehensive assessment regarding its applicability. When
the mapping model can be applied to other areas with a relatively consistent accuracy, initial benthic
habitat mapping effort can be conducted without performing field survey across many currently
unmapped areas.
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