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Abstract: The so-called Real Time Kinematic (RTK) option, which allows one to determine with
cm-level accuracy the Unmanned Aerial Vehicles (UAV) camera position at shooting time, is also being
made available on medium- or low-cost drones. It can be foreseen that a sizeable amount of UAV
surveys will be soon performed (almost) without Ground Control Points (GCP). However, obstacles to
Global Navigation Satellite Systems (GNSS) signal at the optimal flight altitude might prevent accurate
retrieval of camera station positions, e.g., in narrow gorges. In such cases, the master block can be
georeferenced by tying it to an (auxiliary) block flown at higher altitude, where the GNSS signal is not
impeded. To prove the point in a worst case scenario, but under controlled conditions, an experiment
was devised. A single strip about 700 m long, surveyed by a multi-copter at 30 m relative flight height,
was referenced with cm-level accuracy by joint adjustment with a block flown at 100 m relative flight
height, acquired by a fixed-wing UAV provided with RTK option. The joint block orientation was
repeated with or without GCP and with pre-calibrated or self-calibrated camera parameters. Accuracy
on ground was assessed on a fair number of Check Points (CP). The results show that, even without
GCP, the precision is effectively transferred from the auxiliary block projection centres to the object
point horizontal coordinates and, with a pre-calibrated camera, also to the elevations.

Keywords: UAV; GNSS-assisted block orientation; Structure from Motion; RTK; accuracy; Ground
Control Points; Check Points

1. Introduction

1.1. UAV-Photogrammetry

Photogrammetric applications of UAV have been expanding relentlessly in the last decade. Drones
available on the market span a large range of capabilities and characteristics, so users can find the
best compromise between price and performance, from specialized applications to general purpose
surveys; see [1,2] for two comprehensive reviews. In the following, we restrict ourselves to the so-called
micro-UAV, either fixed-wing or rotary-wings, with Maximum Take Off Weight below 2 kg.

Though still too restrictive in the opinion of many users and professionals, regulations on the
commercial use of drones [3] are being revised frequently by the flight authorities to reflect the
dramatic evolution of drone features and capabilities and the push towards allowing operation also in
the so-called critical areas. On the one hand, this led to the development of new on-board devices
(for instance, safety equipment such as anti-collision systems) with an overall improvement of product
standards [3]. On the other hand, some limits of normal visual line of sight (VLOS) operations can be
overcome by applying extended VLOS (EVLOS) and beyond VLOS (BVLOS) operations.
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Under VLOS, the relative flight height of micro-UAV is generally limited to 150 m, so the typical
Ground Sampling Distance (GSD) of UAV surveys is in the range 1–10 cm. With such ground resolution,
the accuracy requirements for most UAV surveys can generally be met with appropriate block design
and block control. Many tests have been carried out to find the optimum number and distribution
of GCP, showing that the Root Mean Square Error (RMSE) on CP improves with the density of
GCP [4–6]. The accuracy potential, given the small GSD, is such that surveying GCP and CP with
GNSS in RTK mode is sometimes not accurate enough: a Total Station should be used instead [7].
Indeed, accuracies of 1.0–2.0 GSD in horizontal coordinates and of 1.5–4.0 GSD in elevation have been
reported on targets [5,6]; the elevation accuracy obtained for relative flight elevation below 100 m in
Digital Terrain Models production in different landscapes is in most cases better than 10 cm [8–13].
To deliver such results, UAV photogrammetry builds on the performance of Structure from Motion
(SfM) algorithms [14] and on the careful execution of the standard photogrammetric workflow, in
particular flight planning, ground control network and camera calibration.

1.2. Flight Planning

Over decades of practice and theoretical studies, aerial photogrammetry with large format film
cameras developed a full set of rules (on strip forward and side overlaps, baselength-to-height ratios
and GCP density and distribution) to minimize the number of images necessary to fulfil map production
tolerances [15]. Many years after the advent of digital aerial cameras with non-standard sensor
formats [16], on the one hand, and of digital photogrammetry and SfM, on the other hand, no comparable
set of established rules has yet emerged. This is even truer in planning UAV photogrammetric flights,
where the variety of camera formats and focal lengths, as well as of survey scenarios and goals, is larger.
Rather than minimizing the number of images, the goal of flight planning is today ensuring a sufficient
degree of multi-image coverage, to increase image matching reliability and possibly avoid gaps and
occlusions. The GSD, rather than the image scale, is the main parameter to consider in planning [16];
large overlaps (up to 70–90% forward and 60–80% sidelap) are normally adopted.

Increasingly, UAV are employed in surveys of complex landscapes with large height differences,
as in geomorphological studies [17] or rock face stability analysis [18] and open pit surveys [19].
Flight planning becomes more complex than in standard nadiral blocks, as not only the 2D shape
of the survey area is to be considered, to guarantee uniformity of precision. Indeed, increasingly
oblique images are being included in the block [17,20–22] not only to improve camera calibration (see
Section 1.4), but also to improve ground point precision and landscape reconstruction completeness [17].
Though not yet formally employing design techniques normally used in close range surveys [23] or in
next-best-view [24] and exploration [25] problems, full exploitation of multi-copter flying capabilities
in complex landscapes is pushing flight design in that direction.

1.3. Georeferencing and Control of UAV Photogrammetric Blocks

In most cases, UAV photogrammetric block georeferencing and control is today obtained by the
so-called indirect determination of the exterior orientation (EO) parameters, i.e., by extracting and
matching tie points with SfM, measuring GCP coordinates and running a Bundle Block Adjustment
(BBA) [15].

GCP measurement is currently the bottleneck of UAV Photogrammetry. Placing and measuring
targets by GNSS is in many cases fast and efficient, but not always so in rough or unsafe terrain or with
dense low vegetation or finally in forested areas. Using the camera positions geotagged by the UAV
navigation system might be the only solution in difficult environments, though such data accuracy,
typically 1–3 m in horizontal coordinates and 2–3 times worse in elevation, might not be sufficient for
the survey requirements, especially for repeat (periodic) surveys. In [26] it has been shown that, under
condition of a geometrically strong block (high overlap, nadir and oblique images, cross strips) and
of a carefully calibrated camera, a fair reconstruction of the topography (of the object shape) can be
achieved, with rough georeferencing by the (inaccurate) on-board navigation system. However, proper
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georeferencing (especially whenever elevations and terrain slope are necessary) is to be provided using
GCP or other task-specific auxiliary information.

A large number of fixed-wing UAV on the market offer today the so-called RTK option, where an
on-board multi-frequency GNSS receiver can determine the camera position at shooting time with
cm-level accuracy thanks to differential corrections sent by a master station, or, through the ground
control station, by a Continuously Operating Reference Station (CORS) network [11]. Recently, low- or
medium-cost multi-copters with the same capabilities have also been announced or introduced [27].

Blocks flown with RTK-enabled drones can be georeferenced with an extended BBA where, besides
the tie points coordinates, the camera station positions as well as the coordinates of GCPs (if available)
are included as observations with pre-defined precision [28]. This process, sometimes improperly
referred to as Direct Georeferencing, has been formerly employed in aerial photogrammetry, variously
named as GPS-supported or GPS-assisted Aerial Triangulation [28–30]. In the following, it will be
referred to as GNSS-AT for short. Direct Georeferencing proper is achieved when the EO parameters are
computed by Direct Sensor Orientation (DSO), processing GNSS and inertial measurements collected by
on-board sensors [31]. In DSO there is no need for tie points nor GCP: in principle the photogrammetric
workflow can begin straight from the dense point cloud generation, skipping SfM and BBA altogether.
DSO is however not so common even in manned aerial photogrammetry, where Inertial Measurement
Units (IMU) attached to the cameras are much more accurate than those available in UAVs. Indeed, as
SfM significantly improves the attitude data through tie point matching, the EO parameters are still
obtained with a BBA that includes camera attitude and position from IMU/GNSS observations as well
as image observations; GCP might also be added for camera and system calibration purposes. This
technique is called Integrated Sensor Orientation (ISO); GNSS-AT can be seen as a special case of ISO,
without IMU data.

Due to payload constraints, typically UAV’s IMU are based on MEMS (MicroElectroMechanical
Systems) technology, whose attitude data are currently still of insufficient quality, especially in
yaw [32,33]. As GNSS-AT is simpler to implement on the hardware side and accurate enough, the real
benefits brought by attitude data compared to GNSS-AT are limited to corridor mapping. In this kind
of surveys, due to camera projection centers being roughly aligned, single strips cannot be reliably
oriented by GNSS-AT, as poor determinability of the roll angle leads to a nearly rank-deficient normal
equation system in the BBA.

1.4. Camera Calibration

The camera interior orientation (IO) parameters must be accurately determined, otherwise residual
errors in such parameters, though partly adsorbed by the EO parameters, may translate to systematic
errors on ground coordinates [20]. In contrast to this, convergent (oblique) imaging has been shown to be
effective [26,34]. To avoid projective coupling with the EO parameters, especially for nadiral imaging, a
pre-calibration is advisable. However, as the consumer cameras employed in UAVs exhibit not-so-stable
IO parameters, self-calibration is routinely used in practice. Conditions for successful self-calibration
in the BBA of UAV blocks (GCP distribution, flight pattern, nadiral and oblique imaging, etc.) are
discussed in [7,35–38]. Camera calibration is even more critical in blocks oriented with GNSS-AT as
opposed to GCP, as residual errors from calibration are more likely to affect primarily ground point
coordinates rather than the EO parameters [37–39]. In practice, therefore, the alternative is between a
pre-calibration on-site (on-the-job calibration) [26] and a self-calibrating BBA with GCP [40,41].

1.5. Paper Objectives and Previous Work on the Topic

High resolution UAV photogrammetric surveys are sometimes needed in places where only a
multi-copter, often under careful manual control, can be used. Think for instance of narrow canyons,
gorges or of streams or creeks lined by high trees or close to high rock faces. Such situations are
not uncommon in surveys for road safety checks from rock fall [18] or in maintenance works,
geomorphological studies, erosion studies of gullies [42,43], as well as in surveys in mountain areas
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subject to debris flow [44]. Placing and measuring GCP in such circumstances is normally difficult, often
dangerous or outright impossible. To add to the difficulties, even for a RTK-equipped multi-copter,
successfully receiving and processing the GNSS signal would be hard, as not enough satellites might be in
sight. In such cases, frequent cycle slips, poor Position Dilution of Precision (PDOP) or strong multi-path
might affect the positioning accuracy of the camera stations, and so block georeferencing accuracy.

Even if the GNSS signal is available, the narrowness of a safe flight corridor might prevent
flying several parallel strips. As the single strip case cannot be handled by GNSS-AT, due to the
above-mentioned poor determination of the strip roll angle, an alternative must be found. This scenario
has similarities with corridor mapping, where a (sequence of) single strip(s) is sufficient to map the
area of interest. As using GCP in corridor mapping dramatically decreases the survey’s pipeline
efficiency, several alternatives have been proposed, all based on inertial and satellite data collection
as well as SfM: in [32], ISO is applied to single UAV strips; recognizing the limited accuracy and the
sensitivity to systematic errors of MEMS inertial sensors, in [45], the so-called relative aerial control
is proposed to add constraints to BBA in corridor mapping, a technique also experimented in [46].
More recently, a general approach based on dynamic networks to tightly integrate image, inertial and
GNSS observations has been proposed and implemented in [33]. Finally, in [41], GNSS-AT is applied
in corridor mapping, adding oblique- and nadir-looking strips to increase imaging geometry strength.
Moreover, to exploit the multi-copter flexibility in camera pointing, lever arm estimation is included in
the BBA. A common feature of these approaches is that they assume continuous GNSS signal coverage
or signal outages lasting for a short time, so that inertial data, eventually combined with SfM, can still
supply a solution for the EO parameters.

An alternative to the above-mentioned approaches, pursued in this paper, is combining two
blocks flown at different elevations by an RTK-equipped multi-rotor. While in the lower block (master)
the GNSS signal is unlikely to be received, the higher (auxiliary) block should have better chances.
Flying higher, the sky visibility improves and so will the likelihood that more GNSS satellites can
be traced and that the GNSS signal can be received continuously. Except with really vertical walls,
normally flying higher in a valley allows several parallel strips to be acquired, avoiding running into
the single strip near deficiency condition.

For this strategy to succeed, the lower and higher blocks have to be effectively connected by tie
points, and the uncertainty propagation from the camera stations of the higher flight to the object
points of the lower flight should not exceed the accuracy requirements of the survey.

Satisfying the former condition depends on the extent to which image descriptors used in feature
extraction by SfM algorithms are actually invariant to image scale and ground resolution and so can
reliably and densely be found across both image sets.

As far as the latter condition is concerned, the answer is not straightforward, as many parameters
are involved, the main one being reasonably the ratio between the GSD of the two flights.

To gain a better understanding of the issues at stake, an experiment was carried out under a
“worst case scenario” for the proposed method, i.e., trying to georeference a single strip with a minimal
configuration of the auxiliary block. To ensure a fair amount of CP for the accuracy checks, the test was
set in an environment where ground control could be easily provided, rather than in a mountain site: the
single-strip master block was flown over a road bridge crossing a dry riverbed while the higher-altitude
auxiliary block, made of several parallel and cross strips, was flown over a larger area across the bridge.
The uncertainty propagation from the higher camera projection centers to the ground was assessed on
a number of CP distributed over the bridge and on the riverbed. The results show that the indirect
orientation of the master block is indeed feasible but its accuracy depends, as can be expected, on the
auxiliary block strength. The accuracy loss with respect to a traditional GCP-based block orientation
can be estimated in the 30% to 50% range both in horizontal coordinates and elevation.

The paper is structured as follows: Section 2 (Materials and Methods) describes the test site, the
UAV features, the reference network survey and finally the experiment organization, in particular
camera calibration and the auxiliary–master joint adjustment configurations; Section 3 (Results) reports
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the RMSE on CP found in the various tests; Section 4 (Discussion) discusses the significance of the
results and foresees additional investigations on some still open questions. Finally, Section 5 draws the
conclusions and perspectives.

2. Materials and Methods

2.1. Test Site Description

The surveyed bridge belongs to a national road that crosses River Taro at (44◦29′22” N; 10◦13′28” E),
a few kilometers west of the city of Parma (Italy). Including the ramps, the bridge is about 850 m
long and about 8 m wide. The bridge is about 10.5 m higher than the riverbed, made of an alluvial
plain with deposits of silt, sands and gravel, mostly dry at the survey period (September 2018). Both
riversides and about one third of the northern bridge side are lined by high trees (see Figure 1).
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Figure 1. The surveyed area centered at (44◦29′22” N; 10◦13′28” E) with the locations of the Ground
Control Points (GCP) and Control Points (CP). Targets are colored according to the test type performed
(see Section 2.5). Green: always used as CP; Red: used as GCP in the test with traditional strip
adjustment, CP otherwise; Orange: used as GCP in single GCP self-calibration, CP otherwise; Light
blue: used as GCP in pre-calibration, CP otherwise.

2.2. Reference Network and GCP

To provide an independent network to evaluate the georeferencing accuracy of GNSS-AT, a total
of 60 signalized targets were deployed and surveyed: 31 over the bridge (road surface and parapet)
and 29 distributed on the riverbed and on a factory service area on the river west bank.

The GCP and the CP coordinates were determined by TS measurements from a network of
12 stations. Moreover, 26 of the targets were surveyed twice in Network RTK mode with a Leica GS14
and a Geomax Zenith 35 Pro receiver, in order to provide double points for the connection of the GNSS
network to the TS network.

The GNSS positions of the targets as well as of the higher flight camera stations (see Section 2.3.),
determined in the national reference frame ETRF2000(2008), were converted to a local cartesian
reference system centered at mid bridge, with origin on the reference ellipsoid, z axis along the ellipsoid
normal and y axis parallel to the north axis of the UTM 32N fuse of the ETRS89 datum.
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The TS network was adjusted in this reference system, using as known points with accuracy
of 1 cm in horizontal coordinates and 1.5 cm in elevation the GNSS positions expressed in the local
reference system. The Root Mean Square (RMS) of the residuals on the GNSS coordinates turned out
to be 1 cm for each horizontal coordinate and 1.2 cm for the elevation. From the network adjustment,
the RMS of the estimated precisions of all network points in the local system turned out to be 8 mm in
X,Y and 7 mm in Z.

2.3. Survey Flights

Even though, as mentioned in Section 1.5, a single RTK-equipped multi-rotor could have acquired
both the master and the auxiliary block, in our case we had to use two different UAVs. Indeed, we had
available only a RTK-equipped fixed-wing senseFly eBee and a multi-rotor DJI Phantom4 Pro, not
provided with the RTK option. The former was therefore used for the auxiliary flight while the latter
was necessary for the high-resolution survey of the bridge (the master block), as only a multi-rotor
could ensure adequate forward overlap for the low-elevation single strip over the bridge.

The eBee RTK is equipped with a 20 Mpx compact S.O.D.A. camera with 29 mm nominal focal
length (35 mm equivalent). The RGB camera (resolution 5472 × 3648 pixels, pixel size 2.4 µm) acquires
nadiral images with exposure parameters set automatically. The on-board receiver can process L1 and
L2 GPS and GLONASS data and receive the differential corrections from the master station or from the
control center of a CORS network via the flight control software and a ground radio modem. Camera
positions are stored in the image metadata as geo-tags as well as in the flight log. A Geomax Zenith 35
Pro, set on a benchmark at the eastern bridge end, was used as master station.

The DJI Phantom4 Pro is equipped with a 20 Mpx CMOS sensor with 24 mm nominal focal length
(35 mm equivalent). The FC6310 RGB camera (resolution 5472 × 3078 pixels, pixel size 2.5 µm) is
mounted on a stabilized gimbal with controllable pitch range from −90 ◦ to +30 ◦. The single frequency
on-board GNSS receiver is fit only for navigation purposes, not for accurate georeferencing.

Four flights were executed, two with the eBee and two with the Phantom4; the main parameters of
each flight are shown in Table 1. The high-resolution bridge survey flight is made of a single strip, flown
manually with the Phantom4, with an average 80% forward overlap at ground level (see Figure 2);
while still under manual control and without landing, a second single strip was executed, at a higher
flying height but with a slightly larger forward overlap (as a matter of fact, however, the overlap is far
from constant in both strips). Finally, two flights were executed in automatic mode with the eBee, about
half an hour apart from each other. The former is made of 11 strips, flown along the bridge direction
(roughly in east–west direction), with forward and side overlap of about 50% and 70% respectively
(covered area: about 740 m × 370 m). The latter consists of 7 strips, flown across the bridge, just east
of bridge center, almost at the same height as the previous flight and with roughly the same overlaps
(covered area: about 370 m × 220 m). The two eBee flights were combined in a single block (see Figure 3)
and will be referred to as the eBee block in the following. Due to proximity to Parma Airport, the activity
was authorized by air traffic control and all flights were made under coordination of the control tower.

Table 1. Survey flights data summary. Relative flight height refers to riverbed mean elevation, i.e.,
Above Ground Level (AGL). Overlap percentages: F: forward, S: side. Overlap varies considerably
along the Phantom4 strips; average values are reported.

Flight Flight Height
(m) AGL

GSD
(cm)

Overlap F–S
(%) # Images Start–End

Local Time

Ph4 30m 32 0.9 82 (avg.) 155 12:13–12:39
Ph4 70m 75 2.1 86 (avg.) 76 12:40–12:55
eBee EW 97 2.2 50–70 177 14:52–15:05
eBee NS 105 2.4 55–75 69 15:32–15:37
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flown about 100 m above the riverbed. Cross strips are included.

2.4. Photogrammetric Data Processing

Photogrammetric data processing was executed with the commercial package PhotoScan (PS)
version 1.2.6, build 2834, by Agisoft LLC, St. Petersburg, Russia. Block orientation is performed
with SfM algorithms in an arbitrary reference frame. A Helmert transformation is computed from the
arbitrary reference to the object reference system, based on the GCP coordinates, or, in the case of
GNSS-AT, on the camera center positions, loaded directly from the image geotags or from a file.

A global optimization stage is then executed that minimizes the sum of the reprojection error and
of the GCP and/or the camera station coordinate residuals; camera parameters can be estimated by
self-calibration or just applied if the camera has been pre-calibrated. Each GCP coordinate and each
camera position can be assigned a specific a-priori precision; otherwise, default values can be assigned.
In the tests, based also on previous experiences [40] the following default standard deviations were
assigned: 1 pixel to tie points image coordinates (automatically or manually extracted and matched),
5 mm to the GCP coordinates and 3 cm to the eBee camera station coordinates.
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2.5. Test Description

The goal of the experiments is to find out whether GNSS-AT can be applied indirectly, i.e., also
in cases where the UAV collecting the master block images is not RTK-equipped, or, due to site
characteristics, the GNSS signal cannot be received reliably, or, finally, the master block is just made of
a single strip. In such cases an auxiliary block, flown at higher elevation by a UAV with an on-board
RTK GNSS receiver, could be employed to georeference the master block.

To this aim, the experiment foresaw several stages, comparing different eBee camera calibration
parameter sets and flight combinations in terms of accuracy on the CP. Each stage is briefly described
in the following, stating first its objectives.

O1. To evaluate the GNSS-AT orientation accuracy of the standalone eBee block with camera parameters obtained
from on-site pre-calibration or from self-calibration.

Though the expected accuracy of RTK-equipped UAV blocks has already been reported by several
studies [40,47] and can therefore be reasonably foreseen, it is still worth checking the eBee block
accuracy prior to its combination with the Phantom4 strip, investigating the alternatives for calibration
discussed in Section 1.4. An on-site camera pre-calibration executed imaging a small test-field, located
on the riverbed just north of the bridge (see Figure 1). A subset of 18 eBee images, 9 from the east–west
flight and 9 from the north–south flight (see Figure 4), was selected for the calibration, in order to keep
the effort commensurate to that of the survey. By keeping fixed all the test-field GCP or just one GCP
at a time, four calibration parameter sets were estimated. Finally, four self-calibrating BBA were also
performed fixing each time a single GCP, located at mid bridge, or at one of the bridge ends, or on the
riverbed, to find out whether GNSS-AT orientation accuracy depends on the single GCP location.
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These calibration parameter sets were then used in the GNSS-AT adjustments of the O4 and
O5 stages.

O2. To assess the accuracy of the Phantom4 single strip at 30 m oriented with GCP.

A traditional GCP-based BBA of the Phantom4 single strip was performed fixing the coordinates
of 17 GCP; 13 placed on both parapets along the bridge and 4 located on the riverbed in pairs, upstream
and downstream with respect to the bridge. As a single strip is far from the ideal geometry for a
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reliable camera calibration, first self-calibration was applied in the joint adjustment of both the 30 m
and 70 m Phantom4 flights and then used as pre-calibration dataset in the adjustment of the 30 m strip.

O3. To find out whether SfM effectively connects master and auxiliary blocks.

To this aim, an analysis of the number of tie points connections and their distribution across the
master and the auxiliary blocks was performed.

O4. To assess the accuracy of the master–auxiliary joint adjustment using different camera calibration techniques,
and compare it to the accuracy of the GCP-controlled master block.

To this aim, different joint adjustments of the eBee and of the Phantom4 30 m blocks were
performed with GNSS-AT, with camera calibration parameters pre-calibrated of self-calibrated. Finally,
the RMSE on CP were computed and compared to those obtained in O2.

O5. To find the best (minimum) auxiliary block configuration still ensuring the stability of the master block.

As flying the auxiliary block adds time and cost to the survey, it is worth searching for its minimal
effective configuration. To this aim, the eBee and Phantom4 blocks were jointly processed, each time
progressively removing from the former the longitudinal and/or the cross strips, and measuring the
accuracy decrease on the CP. Strip removal was applied both to the whole eBee block and to the
east–west eBee flight only (i.e., without cross strips). The longitudinal strips were removed in pairs,
one from each side with respect to the bridge axis, from 10 to 2, i.e., progressively moving towards the
quasi-singularity condition as the distance between the two flight lines farthest apart decreases.

In the full block case, all cross strips were maintained until only two longitudinal strips remained.
Then the cross strips were first shortened from 10 to 6 images each and after progressively removed
(from 7 to 4 to 2), always maintaining the first and last ones (i.e., the cross strips farthest apart from
each other).

The accuracy of block orientation was evaluated by computing the differences between the
coordinates of the CP estimated in every BBA and those estimated from the topographic network.

In the accuracy checks on single blocks (eBee block, Phantom4 strip) the targets were measured in
all images. To the contrary, in the accuracy checks for the eBee and Phantom4 joint blocks, targets were
measured only in the Phantom4 images, as the goal is to assess the accuracy of ground points from the
indirectly-oriented master block. Any collimation of CP also in the eBee images would have, instead,
bypassed the uncertainty propagation through the connection master–auxiliary established by the
across-blocks tie points.

The above remarks imply that the number of CP varies according to the examined block
configuration: 59 or 60 in the eBee block alone, 43 or 44 in the joint eBee and Phantom4 blocks, 27 in
the GCP-controlled Phantom4 strip.

In Table 2 a summary of the tests carried out is reported, where the test Id string is built on the
following list of abbreviations:

• eBeeprecal: the set of 18 images used for pre-calibration purposes, oriented with GNSS-AT and a
variable number of GCP as control information;

• eBee: the eBee block with camera stations from GNSS RTK positioning as control information;
• eBeeOpt: the best (minimum) subset of the eBee block still ensuring block accuracy; camera

stations are the only control information;
• P4 30: the single strip flown with the Phantom4 at 30 m relative elevation;
• + k GCP: the adjusted block includes k GCP;
• pre-c: the IO parameters are fixed to values obtained from an on-the-job pre-calibration;
• self-c: the IO parameters are estimated by self-calibration in the BBA.
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Table 2. Summary of the tests performed. See above for the meaning of the test Id.

Obj. Test Id eBee cal P4 cal # GCP # CP Notes

O1 eBeeprecal self-c n.a. 1 or 12 9 or none 18-image calibration block; three single-GCP
calibrations and one 12-GCP calibration

O1 eBee pre-c n.a. 0 60 four tests, each with a different set of
pre-cal parameters

O1 eBee +1GCP self-c n.a. 1 59 three self-calibrations with single-GCP at mid
bridge or at bridge ends

O2 P4 30 + 17 GCP n.a. self-c 17 27 traditional adjustment with GCP

O4 eBee + P4 30 pre-c self-c 0 44 full eBee block

O4 eBee + P4 30 + 1GCP self-c self-c 1 43 full eBee block; single-GCP at mid bridge or at
bridge ends

O5 eBeeOpt + P4 30 pre-c self-c 0 44 eBee longitudinal and cross strip
progressively removed

3. Results

The experiment results are presented in the following, according to the list of goals O1–O5
illustrated in the previous section.

3.1. Comparison between Pre- and Self-eBee Camera Calibration (O1)

Using only the images of the small block shown in Figure 4, the pre-calibration of the eBee camera
was repeated four times: fixing all 12 GCP available in the area or just one at a time (GCP number 706,
707 and 713). Table 3 reports the estimated calibration parameters and, for the single GCP cases, the
RMSE on the nine remaining GCP of the block, used as CP.

Table 3. Calibration parameters of the eBee camera obtained by fixing 12 GCP or a single GCP in the
calibration adjustment; RMSE on the 9 CP coordinates in the single GCP cases.

Parameter 12 GCP GCP 706 GCP 707 GCP 713

f 4401.43 4400.79 4400.49 4399.679
cx −70.17 −70.34 −70.31 −70.37
cy 0.34 0.19 0.40 0.71
b1 1.85 1.75 1.81 1.80
b2 −0.52 −0.52 −0.50 −0.51
k1 3.176 × 10-2 3.212 × 10-2 3.195 × 10-2 3.187 × 10-2

k2 −1.928 × 10-1
−1.937 × 10-1

−1.937 × 10-1
−1.935 × 10-1

k3 2.863 × 10-1 2.880 × 10-1 2.878 × 10-1 2.874 × 10-1

p1 −5.474 × 10-3
−5.488 × 10-3

−5.488 × 10-3
−5.489 × 10-3

p2 7.559 × 10-4 6.850 × 10-4 7.308 × 10-4 7.430 × 10-4

RMSE X (cm) n.a. 1.9 2.5 2.5
RMSE Y (cm) n.a. 1.6 2.1 3.0
RMSE Z (cm) n.a. 3.3 1.8 1.4

The estimated precision of the IO parameters (not shown in Table 3) is best in the 12 GCP case,
at about 0.1 pixels for all three IO elements, while it ranges from 0.1 to 0.4 pixels in the single GCP
cases for the principal distance f and the principal point coordinates cx, cy. The precision of the lens
distortion parameters k1–k3 and p1–p2 remains almost the same in all cases. Differences between
parameters estimates in different adjustments are in most cases significant to the t-test. Correlations
between parameters exceed 0.9 only among the k1–k3 parameters and reach 0.82 between f and cy in
the single GCP case.

The accuracy on the 9 CP coordinates changes as the single GCP fixed changes; overall, however,
the total error remains the same, at about 4 cm.

To evaluate the alternative between pre- and self-calibration, the eBee block orientation accuracy
was estimated on 57 CP, using first the pre-calibration parameter sets of Table 3 (without any GCP
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fixed) and later applying single-GCP self-calibration in the BBA. In the latter case, five different GCP
were used: the same three used in pre-calibration (GCP 706, 707 and 713), all located at mid bridge, and
GCP A721 and NS484, located at the two opposite bridge ends. Finally, an additional self-calibrating
BBA was executed without fixing any GCP. The RMSE on CP of the different BBA are shown in Table 4.

Table 4. RMSE on 57 CP coordinates computed from a Bundle Block Adjustment (BBA) of the eBee
block with different camera calibration parameters sets. No GCP was fixed in the four BBA with
pre-calibrated parameters, while self-calibration was executed with a single GCP in all but the last case.

eBee Camera Calibration
Parameters from: GCP Location GCP Fixed RMSE X

(cm)
RMSE Y

(cm)
RMSE Z

(cm)

Pre-c with GCP 713 n.a. none 1.3 1.7 3.8
Pre-c with GCP 707 n.a. none 1.3 1.7 2.6
Pre-c with GCP 706 n.a. none 1.2 1.5 2.7
Pre-c with 12GCP n.a. none 1.3 1.7 2.2

Self-c mid bridge GCP 713 1.3 1.5 3.0
Self-c mid bridge GCP 707 1.3 1.5 2.8
Self-c mid bridge GCP 706 1.3 1.5 2.7
Self-c bridge west end GCP A721 1.3 1.3 2.7
Self-c bridge east end GCP BS484 1.4 1.7 2.8
Self-c n.a. none 1.6 1.5 5.7

As the eBee flight GSD is about 2.3 cm, the horizontal error is fairly constant to around 0.86 GSD,
while the elevation error ranges from 0.95 to 1.65 GSD, a better result compared to the P4 30 flight
with GCP (see next Section 3.2). The larger GSD, which makes target collimation more uncertain, is
more than compensated by a stronger camera network and by the even distribution of the control
on all camera stations. The influence of the employed calibration set seems negligible as far as the
horizontal coordinates are concerned, while it varies in elevation, with a ratio of 1.7 of the worst-to-best
result. This is likely due to the actual accuracy of the GCP: the best result is indeed obtained with
the 12 GCP parameter set, where some averaging of survey errors can be expected. The last row of
Table 4 shows that, with self-calibration, large (systematic) errors in elevation should be expected if no
GCP are fixed, due to correlations between camera parameters and ground coordinates, as already
noticed in [11,40,41]. Which method is the best between single GCP pre-calibration and single GCP
self-calibration is not apparent from the results.

3.2. Accuracy of the Phantom4 30 m Strip Adjusted with GCP Only (O2)

The orientation accuracy of the P4 30 strip, adjusted fixing 17 GCP along the bridge, was measured
on 27 CP. The adjustment was executed twice: with self-calibration and with the fixed calibration
parameter set previously estimated by a GCP-controlled joint adjustment of the P4 30 and P4 70 strips.
The mean reprojection error of the adjustment is in both cases about 0.55 pixels. The RMSE on the CP
for the two adjustments are reported in Table 5.

Table 5. Phantom4 single strip at 30 m adjustment with 17 GCP: RMSE on 27 CP coordinates computed
with two different camera parameters settings in the BBA.

Calibration Parameters from RMSE X (cm) RMSE Y (cm) RMSE Z (cm)

Pre-c joint P4 30 + P4 70 strips 1.2 1.4 1.8
Self-c 1.2 1.5 2.1

As the GSD of the P4 30 flight at bridge level is 0.9 cm, the overall horizontal accuracy and the
elevation accuracy are both around 2 GSD. No influence on CP accuracy of the calibration set employed
or estimated can be noticed. Fixing more GCP does not improve significantly the result.
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3.3. Tie Points Across Master and Auxilary Blocks (O3)

Automatically extracted tie points shared among images of the two blocks are the key to run a
successful joint orientation. An exhaustive analysis of the relative proportion of valid matches between
same-block images and across-block images is out of the scope of this paper, as it would be concerned
primarily with image descriptors performance on image scale differences. However, Photoscan allows
for a visualization and check of the matches of each image with those overlapping it. Figure 5 shows on
the left-hand side the image Id and, in decreasing order, the total number of matches and the number
of the validated ones for the image DJI_0145 of the P4 30 strip.
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Figure 5. Efficiency of tie point extraction across auxiliary and master block. Left: total and valid
number of matches between Phantom4 image 0145 and the images of the joint P4 30 and eBee block.
Right: valid (blue) and invalid (red) matches across Phantom4 image 0145 and eBee image 0032_0062.

Most of the matches occur obviously with the P4 30 images preceding and following the current,
and the cardinality of matches decreases with the decrease of the overlap. The number of valid matches
range from a few thousand (the limit is fixed to at most 4000 per image pair) to about one hundred.
The number of matches with the eBee images is much smaller, and subject to strong variations even for
consecutive images: up to four hundred at most and on average 50–80 only, shared with 4 to 12 images
(less than 10 valid matches are not considered in this analysis). On the right-hand side of Figure 5, valid
matches are represented in blue while invalid ones, discarded by SfM in the orientation stage, are in red.
Figure 5 shows an almost ideal case, where (actually few) matches are fairly distributed across the whole
image format of the master (large scale) image, as the scene offers a number of details and texture.

As can be seen from Figure 6, referring to Phantom4 image 0031 at the eastern end of the bridge,
the number of images sharing points and the number of ties are much smaller; additionally, tie points
are concentrated on a small part of the image format. This inhomogeneity depends primarily, apart
from the image content, on the lower degree of overlap of the auxiliary block along the block perimeter
(see Figure 3).
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3.4. Orientation Accuracy of the Master–Auxiliary Joint Block (O4)

The accuracy of the joint adjustment of the eBee block and of the P4 30 strip (O4), evaluated on 44
CP, is reported in Table 6 for different camera calibration settings in the BBA. More specifically, the
P4 camera parameters have been always estimated by self-calibration; to the contrary, for the eBee
camera the same sequence of ten different settings as in Table 4 was applied. In the first four cases no
GCP was fixed in the adjustment, as the parameter set was obtained by pre-calibration. In the next
five cases, self-calibration was applied with a single GCP fixed. In the final one, self-calibration was
applied without fixing any GCP.

Table 6. Accuracy of the joint adjustment of the eBee and P4 30 blocks: RMSE on 44 CP coordinates.
No GCP was fixed in the four BBA with pre-calibrated parameters, while self-calibration was executed
with a single GCP fixed in all but the last case.

eBee Camera Calibration
Parameters from: GCP Location GCP Fixed RMSE X

(cm)
RMSE Y

(cm)
RMSE Z

(cm)

Pre-c GCP 713 n.a. none 2.3 2.0 3.4
Pre-c GCP 707 n.a. none 2.0 2.0 2.4
Pre-c GCP 706 n.a. none 1.5 1.6 2.3
Pre-c 12GCP n.a. none 2.2 2.0 2.8

Self-c mid bridge GCP 713 2.1 2.0 3.0
Self-c mid bridge GCP 707 1.9 1.9 2.3
Self-c mid bridge GCP 706 1.2 1.3 2.6
Self-c bridge west end GCP A721 1.5 1.8 4.5
Self-c bridge east end GCP BS484 1.5 1.8 4.5
Self-c n.a. none 1.5 1.8 11.5

The average accuracy of horizontal coordinates is 2.8 cm with pre-calibration and 2.4 cm with
self-calibration. This is less accurate by about 50% and 30% respectively compared to the 1.9 cm of
the GCP-adjusted P4 30 single strip. In elevation, self-calibration with the single GCP located at mid
bridge performs the same as pre-calibration; the accuracy with respect to the GCP-adjusted P4 30
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single strip is about 40% lower. However, self-calibration is clearly worse (70% less accurate) if the
GCP is located at one of the bridge ends.

3.5. Search for the Best Auxiliary Block Configuration (O5)

Figure 7 summarizes the effects on 44 CP accuracy of progressively reducing the number of
auxiliary block strips, and of including (left hand side of the graph) or not including (right hand side
of the graph) the cross strips. The different colour bars refer to the RMSE in cm for the coordinates
in the along- and across-bridge directions and to the elevation. Each auxiliary block configuration
tested is identified by an id composed by the number of active longitudinal (s) and cross (cr) strips and,
for cross strips only, by the number of images per strip. For instance, “10 s + 7 × 10 cr” stands for an
auxiliary block with 10 longitudinal strips and with 7 cross strips with 10 images each. Out of the four
longitudinal strips closest to the bridge axis, the id “2 s_ int” and “2 s_ ext” refer respectively to the
internal strip pair and the external one.
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eBee flights in the joint adjustment with the P4 30 strip. RMSE of the coordinates at 44 CP: along bridge
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The BBA were executed with the pre-calibration parameter set computed with GCP 706 for the
eBee camera and with self-calibration for the P4 camera; no GCP was fixed.

If the cross strips are included (left hand side of Figure 7) the accuracy along and across bridge is
similar and about constant as long as at least four strips and six cross strips are included; then the
across error grows quickly. To the contrary, without cross strips the accuracy across flight direction
is always about 60–70% worse (and much more in the two strips “internal” case) than along flight
direction. The elevation accuracy remains below 3 cm in almost all cases, with or without cross strips,
even with just two longitudinal strips; with fewer cross strips, it degrades to about 4 cm.

4. Discussion

As far as the accuracy of GNSS-AT block orientation is concerned, the RMSE on 59 CP of Table 4
shows that the tie points horizontal coordinate accuracy of the eBee block, even if determined without a
pre-calibrated camera and without any GCP (last row of Table 4), is quite good. However, a significant
bias may affect the elevations, unless a pre-calibrated camera is used or at least one GCP is used to
strengthen the self-calibrating BBA. Both these findings agree with the results presented in previous
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studies on GNSS-AT by the authors [11,40] and by Zhou [41] and Hugen [47]; in Jozkow [48] a large
bias in elevation is also found in GNSS-AT self-calibration without GCP. On the other hand, Mian [49]
found that fixing a single GCP for system calibration purposes in the BBA of a UAV block with IMU and
GNSS data did not prevent a bias of about 11 cm to remain in CP elevations. Finally, in [50], increasing
from 0 to 4, the number of GCP improved the RMSE in elevation by just more than 1 cm, from 6.7 to
5.4 cm and adding 14 more GCP the RMSE improved only to 5.1 cm. Though no specific bias estimate is
provided in the paper, it can therefore reasonably be inferred that just a small amount of elevation bias
was present in this case; moreover, the lack of improvements from 4 to 18 GCP shows the strength that
precise GNSS-determined camera stations convey to the block, as also found by simulations by [51].

As far as on-site pre-calibration is concerned, the tests performed on a small block using a single
GCP or a sizeable number of GCPs (12) show variations by less than half pixel for the principal point
and less than one pixel for the principal distance in the calibration parameters (Table 3). Applying these
different sets of parameters to the eBee block in the GNSS-AT BBA, the RMSE on the CP horizontal
coordinates are fairly small, with differences from set to set smaller than 4 mm. In elevation the average
error is 2.8 cm, while the differences are larger, up to 1.6 cm. They look related to the specific GCP
rather than to the amount of GCP used in pre-calibration and are therefore likely to originate from the
particular measurement error in the image or object coordinates of the GCP fixed.

A larger pre-calibration test-field and a stronger imaging geometry would likely deliver more
stable IO parameters; however, two points must be stressed: with GNSS-AT a few (even a single) GCP
seem sufficient for effective self-calibration, as control from the camera positions is spread all over the
block. Though this point deserves deeper investigations by simulations, a less demanding imaging
geometry might be therefore enough for GNSS-AT camera calibration, unlike GCP-based calibration
where oblique imaging is recommendable [20,34]. In any case, as up-to-date camera parameters are
necessary, only on-site (pre-)calibration represents a working alternative to self-calibration. However,
there should be a balance between the time and effort required by the pre-calibration and that of the
whole survey, when GNSS-AT is employed.

Zhou [41] also applied GNSS-AT to corridor mapping, using a rotary-wing RTK-equipped UAV
capable of oblique imaging. Therefore, in addition to camera calibration, lever arm calibration is also
considered, to exploit the flexibility of image acquisition. In the experiment, made of three nadir strips
600 m long, they used a pre-calibration flight with strong geometry (a combination of nadir strips
at different altitudes and of oblique imaging). Then they applied to the survey flight the same IO
parameters configuration as we have done: with self-calibration (with or without a single GCP fixed)
and with camera parameters fixed (again, with and without a single GCP fixed). While in horizontal
coordinates the accuracy on CP stays the same, at about 3.3 cm with a GSD of 1 cm, in the self-calibration
without GCP case, a 15 cm bias is found on elevations, as in our case. Fixing the GCP, the RMS is
down to 1 cm. In the pre-calibrated case, using or not the single GCP does not change the RMS in
elevation, which is slightly larger than that in the self-calibration case (2 cm). Our results are therefore
very well in agreement with those in [41], both with respect to the alternative between pre-calibration
and self-calibration as well as for the need of a single CGP in case of self-calibration. The agreement
applies also to accuracy on CP, as from Table 6 and Figure 7 it can be seen that our results are well
comparable (slightly better in horizontal coordinates and slightly worse in elevation).

As this paper refers specifically to cases where GCP are difficult or impossible to place in the
master block area, so preventing self-calibration with one or more GCP, the main finding of our
experiment in this respect is that a small test-field, arranged in a convenient area near the survey site,
seems sufficient for a camera pre-calibration that removes most, if not all, the bias in elevation from the
GNSS-assisted survey flight.

Overall, the experiment shows that an auxiliary block, flown with a RTK-equipped UAV, can be
successfully adjusted with the GNSS-AT technique to georeference and control a master block, flown
at a lower elevation, without using GCP. The presented technique is likely to remain a special one,
useful whenever the master block cannot be reliably georeferenced by GNSS-AT and surveying GCP
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is difficult or inconvenient. However, it should be noted that, as the RMSE on CP in Table 6 shows,
the error propagation from the auxiliary to the master block is not too unfavourable, as an accuracy
loss compared to the eBee block between 30% and 50% is registered in horizontal coordinates and
none in elevation. In a similarly difficult environment, [33] proposed a new formulation of ISO, which
foresees the tightly coupled integration of inertial, GNSS, and image observations. In their experiment
they also consider the corridor case (actually made by three long strips, divided in two sections, one
with good GNSS coverage and the other with no GNSS coverage). They show that, with the current
poor IMU data quality in UAV, inertial navigation can hardly bridge GNSS gaps with the IMU data
only (the elevation error grows very fast), while their method performs better, combining position and
attitude data from IMU with SfM. However, for a strip of comparable length with our experiment, the
RMS on CP is larger than 10 cm in horizontal coordinates and 6 cm in elevation. In comparison, the
proposed approach is of course more demanding in operational terms but still more accurate even with
a two-strip auxiliary block. Moreover, it works also for a single strip of (in principle) any length, as the
stability is tied to the auxiliary block, while their method starts drifting anyway, if the GNSS-denied
section of the flight is too long. Finally, no additional sensors and software are required, as GNSS-AT is
today implemented in all major SfM packages for UAV image processing.

The number and spatial distribution of tie points common to master and auxiliary blocks is
certainly a critical element for the successful transfer of georeference information and block deformation
control. In this respect, the test setup presented in this paper is from the one hand a demanding case,
as a long single strip (i.e., a weak configuration) was successfully oriented. On the other hand, as far as
perspective differences between the two sets of images are concerned, the test area is not particularly
demanding, as both the bridge and the riverbed are basically flat, while the viewing direction is nadiral
for both cameras. Despite a relevant height difference of about 70 m between the two flights, the
different camera focal lengths keep the ratio among the two GSD, which is the driving factor for image
matching, at about 1:2.5. Further investigations on the limits of this ratio for master and auxiliary
blocks might help to clarify how far can this technique be extended.

As in previous tests [40], the position within the block of the single GCP used for self-calibration
in GNSS-AT was found to be not relevant. However, this does not seem to be the case in the
master–auxiliary joint block, where the GCP position affects the amount of elevation bias removed,
with the most effective position being at mid-block. The reason for this difference is likely due to the
weak single-strip geometry and therefore suggests using a pre-calibrated camera in the master–auxiliary
case. No other study, to the best of our knowledge, reports on this point, however.

As far as the optimal configuration of the auxiliary block is concerned, our findings are obviously
related to the specific case of the single strip, where both longitudinal and cross strip are necessary to
ensure an accuracy not too far from a traditional adjustment.

More investigations are still necessary to assess the true applicability of the technique in a more
demanding environment: think for instance of a narrow gorge, where the walls might be the main area
of interest. In such cases, to ensure good connections between two blocks, both might need nadiral as
well as oblique images. However, perspective and scale differences between the oblique images of the
two flights might be too demanding for SfM to handle.

5. Conclusions

The results presented in the previous sections show that accurate georeferencing and control of a
master block, even in the unfavourable case of a single strip, can be achieved by means of the joint
adjustment with an auxiliary block, flown at a higher elevation with an RTK-equipped UAV. For a
single strip about 700 m long, with 70 m height difference between master and auxiliary flight lines, a
GSD of 0.9 cm and a strong auxiliary block, the accuracy verified on targets can be as good as 1.5 cm in
each horizontal coordinates and less than 2.5 cm in elevation. With a weaker geometry of the auxiliary
block the accuracy decreases, but still could be maintained below 4 cm for both coordinates.
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The auxiliary block represents an obvious project overhead, that might be acceptable when cheaper
or more efficient alternatives cannot be found. More investigations are necessary as far as its optimal
configuration is concerned with different master blocks characteristics.

Another limit that the actual application of the technique on demanding environments may clarify
is the maximum height difference between the master and auxiliary block, that in turn might depend
on the ratio among the GSD of the two blocks.

However, on the one hand, the test results were obtained by a BBA with self-calibration without any
GCP, as far as the horizontal coordinates accuracy is concerned. On the other hand, no significant bias
could be found in the elevations using up-to-date camera calibration parameters. On-site pre-calibration
with at least one GCP has proven to be adequate and on par or better than self-calibration, where one
or more GCP are anyway necessary.

From the above remarks, it is clear that GCP are still necessary even with an RTK-equipped
UAV. However, as more experimental evidence is gathered on the accuracy of the GNSS-supported
GCP-free UAV photogrammetry, consistently confirming the high accuracy of horizontal coordinates
and the limited amount of bias in elevation, a clearer picture of the future of this technique is emerging,
particularly as far as medium-accuracy applications are concerned.

The strength conveyed to UAV blocks by the GNSS-determined camera projection centers is
probably still underestimated. More investigations should be performed: from a theoretical standpoint,
on residual calibration errors propagation; from a practical standpoint, on the requisites for an effective
but affordable on-site calibration.

As we can expect a dramatic diffusion of RTK-equipped UAVs also to multi-copters, the proposed
master–auxiliary technique is likely to remain a useful approach, to resort to in special cases. However,
it shows the high degree of flexibility that RTK-endowed UAV and GNSS-AT offer today to the surveyor.
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