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Abstract: An accurate and spatially continuous estimation of terrestrial latent heat flux (LE) is crucial
to the management and planning of water resources for arid and semi-arid areas, for which LE
estimations from different satellite sensors unfortunately often contain data gaps and are inconsistent.
Many integration approaches have been implemented to overcome these limitations; however,
most suffer from either the persistent bias of relying on datasets at only one resolution or the
spatiotemporal inconsistency of LE products. In this study, we exhibit an integration case in the
midstream of the Heihe River Basin of northwest China by using a multi-resolution Kalman filter
(MKF) method to develop continuous and consistent LE maps from satellite LE datasets across
different resolutions. The Moderate Resolution Imaging Spectroradiometer (MODIS) LE product
(MOD16), the Landsat-based LE product derived from the Landsat 7 Enhanced Thematic Mapper
Plus (ETM+) sensor, and ground observations of eddy covariance flux tower from June to September
2012 are used. The integrated results illustrate that data gaps of MOD16 dropped to less than 0.4%
from the original 27–52%, and the root-mean-square error (RMSE) between the LE products decreased
by 50.7% on average. Our findings indicate that the MKF method has excellent capacity to fill data
gaps, reduce uncertainty, and improve the consistency of multiple LE datasets at different resolutions.

Keywords: latent heat flux; data integration; multi-resolution; Heihe River Basin

1. Introduction

Terrestrial latent heat flux (LE) describes the heat flux of transpiration and evaporation from
the land surface to the atmosphere and plays an indispensable role in understanding the global
energy balance and water cycle [1,2]. In arid and semi-arid areas, such as large portions of China, LE
represents more than 70% of the annual water balance [3]. The reliable acquisition of LE is conducive
to advancing a wide variety of scientific explorations and societal fields, including, but not limited to,
climate forecasting [4], sustainable agriculture development [5,6], and the management of basin water
resources [7,8], especially for those arid and semi-arid areas.

LE is difficult to measure and predict, however, particularly over regional-to-global scales [9,10].
With the rapid development of new technologies during the past several decades, estimating LE
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via satellite remote sensing provides an unprecedented opportunity to acquire temporally and
spatially continuous LE data at regional-to-global scales [11]. Although there are a large amount of
remotely sensed LE products available with different resolutions, uncertainties still remain among the
individual LE products due to the error of algorithm inputs, the differences of model mechanisms,
physical parameterization, and scaling effects [12,13]. For instance, the Moderate Resolution Imaging
Spectroradiometer (MODIS) LE product (MOD16) has been substantially applied because it can cover
the global land surface with moderate spatial resolution (1 km/500 m) and high temporal resolution
(8 days) [14]. In relatively dry environments, however, MOD16 exhibits large uncertainty due to
inadequate description of the soil moisture and the inconsistency between the meteorological inputs
(e.g., average and minimum air temperature, incident photosynthetically active radiation, specific
humidity) and the MODIS images [15]. In addition, some remotely sensed LE products fail to deal
appropriately with complicated surface heterogeneity characteristics and the diversity of landscape
types, and hence, there are data gaps in current LE products. For instance, arid and semi-arid regions
with large barren or sparsely vegetated areas are often excluded from MOD16. Xiong et al. (2015)
reported 70% missing data in the MOD16 of the Heihe River Basin (HRB) [16], which is situated in one
of the most hydrologically vulnerable areas in the arid and semi-arid regions of northwest China [17,18].
Currently, the water scarcity conflicts with user needs, and the issue has become increasingly intense
due to the increasing use of irrigation water for the midstream in the HRB [19]. To resolve the intense
conflict, the first step is to better quantify water budgets at the field scale through accurate and high
spatiotemporal resolution estimates of land surface LE [20]. Unfortunately, the data gaps stated above
limit the comprehensive understanding of regional water budgets over these areas.

To overcome these limitations, many data fusion methods have been proposed to improve accuracy
and spatiotemporal consistencies of LE data by integrating multiple products. Two major types of
data integration are being used. The first integrates the input parameters and then estimates LE.
Ma et al. [18] merged the input parameters (e.g., normalized difference vegetation index, leaf rea index,
fractional vegetation cover, emissivity, land surface temperature) for estimating LE using the enhanced
spatial and temporal adaptive reflectance fusion model (ESTARFM) and then estimated daily LE
for the middle reaches of the HRB. Yet, great complexity and potential uncertainties of the inputs
hinder such an integration type and its universal applicability. The other type directly integrates LE
products building on various methods. For instance, Yao et al. [21] merged five LE products using
the Bayesian model averaging (BMA) method and improved the accuracy of global LE estimates
comparing with ground observations from over 300 flux sites. Feng et al. [22] integrated the MOD16
and the Priestley–Taylor Jet Propulsion Laboratory (PT-JPL) model [23] using an empirical orthogonal
function (EOF) method. The integrated LE product showed a lowest bias of 3.67 W/m2 and highest
R2 of 0.84 through the validation of 22 eddy covariance (EC) sites, compared with original datasets.
However, these methods are generally used at the same spatial resolutions, and the scaling issues
across different resolutions are rarely considered.

Recently, a multi-resolution Kalman filter (MKF) method has been explored to take advantage of
multi-resolution data and to fill data gaps, by assuming a linear tree structure that is autoregressive
in levels of resolution [24]. One of the MKF method’s strengths lies in the integration of multiple
variables across different resolutions. For instance, He et al. [25] integrated three Albedo products
with multi-resolution, and the results showed that the data gaps were significantly filled based
on the supporting data from other scales. Wang et al. [26] compared the MKF method with the
optimal interpolation (OI) method when integrating leaf area index (LAI) products and found that
the computation efficiency of the MKF method is also high, and significantly meets the requirements
of large satellite-based datasets. Although the MKF method has been substantially carried out over
high-level satellite products, the advantages of this method have not been applied to resolving LE data
gaps, which requires further exploration, especially in arid and semi-arid areas.

Herein, given the immense data gaps of the MOD16 in arid and semi-arid areas, we integrated two
satellite-based LE products (the MOD16 and Landsat-based LE products) using the MKF method, and



Remote Sens. 2019, 11, 1787 3 of 19

generated spatially and temporally consistent LE products across different resolutions. The objectives
of this study are: (1) to integrate the MOD16 and Landsat-based LE products using the MKF method;
and (2) to assess the performance of the MKF method, including the magnitude of remaining data
gaps and the accuracy of the two LE products after the integration.

2. Study Area and Data

2.1. Study Area and Ground Observations

The Heihe River Basin (HRB), located at 97◦24′–102◦10′E and 37◦41′–42◦42′N, covers approximately
143,600 km2 in the arid region of northwestern China [19,27].

The study area is situated in the midstream of the HRB (Figure 1), which is characterized by
annual air temperature of 7.3 ◦C (1971–2000) and annual precipitation of 130.4 mm [28]. The land cover
types follow the classification from Internation Geosphere–Biosphere Program (IGBP) and consist of
barren and sparsely vegetated, cropland, grassland, urban and built-up, deciduous broadleaf forest,
evergreen needleleaf forest, and water body. The main crops, including maize, wheat, and vegetables,
are distributed along the irrigated region in the midstream.
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Figure 1. Land cover types (IGBP classification) of the study area and the location of EC sites. LEA:
large experimental area, KEA: kernel experimental area.

To better understand how LE interacts under the heterogeneity of land surfaces across multiple
spatial resolutions [29], the “Multi-Scale Observation Experiment on Evapotranspiration over
heterogeneous land surfaces 2012” (HiWATER-MUSOEXE) thematic experiment was conducted
in the middle reaches of the HRB from May to September 2012, involving a flux observation matrix
that was composed of two nested matrices [30,31]. One was a 30 km × 30 km large experimental area
(LEA) in an oasis-desert area, and the other was a 5 km × 5 km kernel experimental area (KEA) inside
the oasis (Figure 3, left). As shown in Table 1, the LEA included one superstation (Daman) and four
regular stations (Zhangye wetland, Shenshawo sandy desert, Huazhaizi desert steppe and Bajitan
Gobi). The KEA, which was within the LEA, contained 17 stations.
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Table 1. Summary of EC Sites in the midstream of the Heihe River Basin [11].

Observed Sites Longitude Latitude Land Cover Duration 1

Zhangye wetland 100.45◦ 38.98◦ wetland 6/2012–12/2016
Shenshawo sandy desert 100.49◦ 38.79◦ barren land 6/2012–4/2015
Huazhaizi desert steppe 100.32◦ 38.77◦ barren land 6/2012–12/2016

Bajitan Gobi 100.30◦ 38.92◦ barren land 6/2012–4/2015
1 100.36◦ 38.89◦ cropland 6/10/2012–9/17/2012
2 100.35◦ 38.89◦ cropland 5/3/2012–9/21/2012
3 100.38◦ 38.89◦ cropland 6/3/2012–9/18/2012
4 100.36◦ 38.88◦ cropland 5/10/2012–9/17/2012
5 100.35◦ 38.88◦ cropland 6/4/2012–9/18/2012
6 100.36◦ 38.87◦ cropland 5/9/2012–9/21/2012
7 100.37◦ 38.88◦ cropland 5/28/2012–9/18/2012
8 100.38◦ 38.87◦ cropland 5/14/2012–9/21/2012
9 100.39◦ 38.87◦ cropland 6/4/2012–9/17/2012
10 100.40◦ 38.88◦ cropland 6/1/2012–9/17/2012
11 100.34◦ 38.87◦ cropland 6/2/2012–9/18/2012
12 100.37◦ 38.87◦ cropland 5/10/2012–9/21/2012
13 100.38◦ 38.86◦ cropland 5/6/2012–9/20/2012
14 100.35◦ 38.86◦ cropland 5/6/2012–9/21/2012

Daman (15) 100.37◦ 38.86◦ cropland 9/2012–12/2016
16 100.36◦ 38.85◦ cropland 6/1/2012–9/17/2012
17 100.37◦ 38.85◦ cropland 5/12/2012–9/17/2012

To obtain the daily LE, half-hourly LE measured by the EC instruments was calculated, and the energy
non-closure problem was fixed using the Bowen ratio closure method developed by Twine et al. (2000) [32].
Technical details of the data processing procedure can be found in Liu et al. (2013, 2018) [33,34].

2.2. Remotely Sensed Data

2.2.1. MODIS LE Product

The MODIS LE product (MOD16) was modified and updated by Mu et al. [35,36] from the
Penman–Monteith equation [37] adapted by Cleugh et al. [38]. The MOD16 algorithm logic separates
daytime and nighttime LE, divides canopy and soil into wet and dry components, and modifies
the vegetation cover with the fraction of absorbed photosynthetically active radiation. The latest
version 6 of MOD16 was released in 2017 and is an eight-day composite product at 500 m pixel
resolution [39]. Since MOD16 uses a sinusoidal tiling system, a reprojection was carried out onto the
Universal Transverse Mercator (UTM) projection to match with the Landsat scenes using the MODIS
Reprojection Tool. MODIS tile h25v05 for 2012 covering the study area was selected as the input.

2.2.2. Landsat-Based LE Product

The Landsat L1T data from the Landsat7 Enhanced Thematic Mapper Plus (ETM+) sensor
are geometrically and radiometrically calibrated and projected under the UTM coordinate system,
with a pixel size of 30 m × 30 m taken over a period of 16 days. We acquired these data from the United
States Geological Survey for the period of June to September 2012 with p133r33 scenes. The Landsat
ecosystem disturbance adaptive processing system (LEDAPS) tool [40] was employed to remove
the radiation error. LEDAPS outputs may include some possible residual cloud and shadow pixels;
hence, to match with the ground observations and reduce the risk of undetected pixel contamination,
only Landsat scenes with less than 30% cloud coverage were exploited in this study.

We produced the Landsat-based LE product using the modified satellite-based Priestley–Taylor
(MS–PT) algorithm [41]. This was developed on the basis of the Priestley–Taylor model and exhibits
great agreement with the field-measured LE from 16 EC flux towers in China. Constrained by the
normalized difference vegetation index (NDVI) and apparent thermal inertia (ATI), it avoids the



Remote Sens. 2019, 11, 1787 5 of 19

computational complexities of aerodynamic resistance parameters. The inputs of the MS–PT algorithm
only require NDVI, the air temperature (Ta), the diurnal air temperature range (DT) for ATI, and the
net radiation (Rn). We calculated NDVI from the Landsat data and obtained Ta, DT, and Rn from the
China Meteorological Forcing Dataset [42,43], which integrates multiple surface meteorological and
environmental data sources with a spatiotemporal resolution of 0.1◦ and 3 h. To take full use of this
meteorological reanalysis dataset, we applied the daily gridded data in 2012 based on the previous
work of Zhang et al. [44]. Appendix B provides detailed descriptions of the MS–PT algorithm.

3. Methodology

3.1. The MKF Method

The data at different spatial resolutions were organized in an autoregressive tree structure (Figure 2).
All the grids covered the same area but each level of the tree served the a different resolution [45]. Each
node s had a “parent” pa(s) and “children” ch(s). The scale that only consisted of one pixel was the
“root” node. There are two models required in the MKF method: (1) state conversion model and (2)
measurement model.

Firstly, the state conversion model represents how the multiscale stochastic process converts from
coarse scale to fine scale and can be expressed using Ref. [46]

ys= Asypa(s)+Ws (1)

where ys is the estimated value at the scale s, and ypa(s) is the variable at the parent node. As estimates
the state transition from the parent to children. Ws controls the scale variability and follows a normal
distribution N (0, Q(s)). Accordingly, there is an equation describing the variable at node s from its
children node ch(s) [47].

Secondly, the measurement model links the satellite measurement to the “true” data:

zs= Csys+εs (2)

where zs is the measurement variable at node s with white noise εs which has a normal distribution N (0,
R(s)). Cs is a measurement matrix and is set to the identity matrix because both satellite measurement
and the variable are LE and cover the same area in this study.

The state conversion model of Equation (1) and the measurement model of Equation (2) form
the general framework of the MKF method. Chou et al. [48] extended a tree-like data structure to
describe this algorithm. The multiresolution variables are computed from a fine-to-coarse sweep first,
in which estimates are recursively propagated from the fine scale to the next coarser scale, and then a
coarse-to-fine sweep, which implements from the root scale to the finest scale. The fine-to-coarse sweep
is ascending to fill in the data gaps at each scale from the finer variables. The descending coarse-to-fine
sweep integrates both fine and coarse variables and updates information at each scale. A technical
description of the MKF method is given in Appendix A.

Our study requires several steps to implement the integration using the MKF method (Figure 3).
First, the LE products are compared against the LE measured by the eddy covariance (EC) method to
evaluate the uncertainties. Second, a basic assumption of the MKF method is zero-mean in the spatial
process of each variable, and thereby it is required to extract the trend surface of the LE products.
Building on the detrended LE data, we obtain the observation error εs at the finest scale using the
standard deviation of the relative difference between the finest data and the ground observations
derived from the HiWATER-MUSOEXE thematic experiment. For the observation error at other scales,
we estimate the relative difference between the current nodes and the aggregated data from their
children nodes. The errors were postulated to be invariant to time and location in the study area to
simplify the problem. Third, starting from the finest scale, the fine-to-coarse sweep is implemented
to fill all data gaps at each scale. When proceeding to the root node, the descending coarse-to-fine
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sweep is applied to update the variables into the optimal estimation at each scale. Landsat-based LE
product serves at the finest scale, and MOD16 is in the middle of the tree structure in this study. Finally,
we add the trend surface back to the optimal estimation, and then two LE products can be smoothed
and consistent at different resolutions.
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3.2. Assessment Metrics

The performance of the MKF method is assessed with three criteria for quantification in this
study: Bias, the root-mean-square error (RMSE), and the relative RMSE in percentage terms (RMSE
%). The bias describes the mean difference between the observed values and the estimated values.
The RMSE reflects how reliable the model is; the larger the RMSE, the lower the model performance.
The RMSE % provides the relative error of the model and is sensitive to outliers. These criteria are
given by

bias =

∑n
i=1(X obs,i −Xest,i

)
n

(3)
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RMSE =

√∑n
i=1 (X obs,i −Xest,i

)2

n
(4)

RMSE % =

√√√√∑n
i=1

(
Xobs,i−Xest,i

Xobs,i

)2

n
×100% (5)

where Xobs and Xest describe the observed values and estimated values, respectively.

4. Results and Discussion

4.1. Integration of Satellite-Derived LE Products

The MKF method is designed to address variables having an expectation of zero mean in the
spatial process at each scale. However, the LE products generally cannot satisfy the requirement of the
MKF method, and hence, it is necessary to select a proper detrending method to extract the spatial
trend surface from the original data. Previous research has presented several ways to do so, such as
spline fitting and lognormal space [49,50]. These methods are quite time-consuming [51], and thus,
Shi et al. [52] found a simple average way that is suitable for the MKF method after comparing two
detrending methods. We applied this method to extract the trend surface and added the updated
spatial residual back to the trend surface to generate the integrated LE data.

The fine-to-coarse sweep and the coarse-to-fine sweep of the MKF method were implemented on
the Landsat-based LE product and the MOD16 product. Building on the availability of the clear scenes
with less than 30% contaminated pixels, the original LE products and the corresponding integrated
results were compared for time series from DOY (day of year) 177 to DOY193 and DOY 217 to DOY 249
for 2012 in the midstream of the HRB (Figure 4). Eight integration cases in total were exhibited in this
time range. Cloud/shadow pixels and data gaps were masked with dark blue color (0 value) in two LE
products. One may note that the same Landsat scenes might be shared by the adjacent DOY cases.
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241, and DOY 249 in 2012. The order, from left to right, is the LE from original MODIS, MKF-integrated
MODIS, original Landsat, and MKF-integrated Landsat. Dark blue color means no data.

For MOD16, there were approximately 27–52% obvious data gaps before the integration, mostly
in barren or sparsely vegetated areas. After employing the MKF method, this decreased to less than
0.4% on average and MOD16 became consistent and smooth compared to the original. Moreover,
the spatial distribution of MOD16 is more in line with that of the Landsat, which means two LE
products remain consistent across different resolutions. Generally, data at finer resolution provide
more detailed information of the spatial random processes, whereas coarser data represent average
information. Landsat is capable of capturing details of the LE spatial distribution and fills the gaps
for MOD16. However, there are still few missing values in MOD16 and we noticed that those abrupt
changes mainly came from the margin of the original data gaps, because all of the children nodes were
calculated and transferred to their sharing parent nodes, rather than just a single child node. Owing to
the scale effect and the spatial heterogeneity, the original data gaps could have a negative impact on
the integration performance.

For the Landsat-based LE product, MKF integration lowers Landsat data in the DOY 233, DOY
241, and DOY 249 cases due to the large difference between Landsat and MOD16. This hints that data
at coarser resolutions could also bring information to finer data. The MKF method could adjust data
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at all scales to maintain consistency and smoothness. However, there are smaller changes than for
MOD16, indicating that the fine-to-coarse sweep, which aims to fill the gaps, plays a major role, and
the coarse-to-fine sweep did not show significant effects within the implementation of the MKF-based
integration. This is due to the fact that the original data gaps of MOD16 were filled from the Landsat
in the ascending process, MOD16 did not adjust the variables much for the finer scale, and Landsat
retained the values of the ascending process when descending.

4.2. Comparison before and after MKF

4.2.1. Spatial Assessment of the MKF Integration Performance

Integration performance was compared by aggregating Landsat into a MODIS-like scale to unify
the matrix size. We drew the histogram of the difference between the aggregated Landsat and MOD16
before and after the MKF method to present the integration performance. The difference was calculated
as MOD16 minus aggregated Landsat. Owing to a number of the data gaps, the missing pixels
from MOD16 were all removed to avoid potential errors and only valid pixels were concerned when
calculating the difference between the aggregated Landsat and MOD16. The filled pixels of MOD16
after MKF integration were verified individually.

The distribution of the difference between the two LE products is indicated by gray bars (Figure 5),
which were relatively scattered showing large inconsistency before the integration. After the MKF
method, the red bars were significantly concentrated, and the difference was restricted to ±10 W/m2 in
most cases. The outliers with absolute difference larger than 20 W/m2 were more than approximately
14% of the total, whereas the numbers of those outliers dropped to less than 1% after the integration.
This hints that the two LE products were made more consistent across different resolutions through
the MKF method.
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(f) DOY 233; (g) DOY 241; (h) DOY 249.

To further quantify how well the MKF method performs, several assessment criteria were
used (Table 2). Compared to the original difference between the aggregated Landsat and MOD16,
the difference after MKF integration was decreased and the RMSE greatly reduced, by 50.7% on average.
The lower RMSE % also implied fewer outliers. Thus, it is safe to conclude that the MKF method is
able to smooth data and reduce the inconsistency of different LE products across different resolutions.
However, the absolute bias increased after MKF integration, which is due to the fact that the differences
of the two original LE products were substantially scattered and positive values offset negative values.
After integration, the bias was more concentrated and persistent relying on the physical structure of
the algorithm. Hence, we contend that the integration performance would be limited if the inputs
largely deviate from each other.

Table 2. Statistical comparison of the assessment criteria before and after MKF.

DOY
MOD16 VS Aggregated Landsat

Before MKF After MKF

Bias RMSE RMSE (%) Bias RMSE RMSE (%)

177 1.13 32.99 38.60 −1.22 5.37 6.29
185 −4.83 28.57 39.53 −7.49 11.35 15.70
193 −11.06 24.05 35.18 −13.12 16.25 23.77
217 −8.42 24.77 28.09 −11.52 17.17 19.48
225 −8.20 29.64 31.97 −10.51 13.50 14.57
233 −11.93 35.58 49.92 −13.10 17.60 24.69
241 −10.32 35.92 49.81 −11.30 17.16 23.79
249 −9.16 24.56 52.83 −10.33 14.46 31.11

The unit for bias and RMSE is W/m2.
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4.2.2. Evaluation of the MKF Performance Using Ground Observations

Two groups of data validations were plotted in scatterplots showing the accuracy of the LE
products before and after MKF (Figure 6). The original missing pixels from MOD16 were still excluded
to avoid potential error.

Remote Sens. 2019, 11, x FOR PEER REVIEW 11 of 19 

 

4.2.2. Evaluation of the MKF Performance Using Ground Observations 

Two groups of data validations were plotted in scatterplots showing the accuracy of the LE 

products before and after MKF (Figure 6). The original missing pixels from MOD16 were still 

excluded to avoid potential error.  

  
(a) (b) 

  
(c) (d) 

Figure 6. Validations of LE products versus ground observations before and after MKF. (a) MOD16 

before MKF; (b) MOD16 after MKF; (c) Landsat-based LE before MKF; (d) Landsat-based LE after 

MKF. 

After the MKF-based integration, MOD16 was highly improved with a decrease in RMSE% 

from 36.87% to 27.44%, a decrease in RMSE from 26.59 W/m2 to 21.22 W/m2, a fall in bias from 9.33 

W/m2 to 9.27 W/m2, and an increase in R2 from 0.46 to 0.58. Likewise, the RMSE% of the integrated 

Landsat data decreased from 42.98% to 40.42%, the RMSE fell from 34.15 W/m2 to 32.5 W/m2, the 

bias decreased from 4.33 W/m2 to 4.3 W/m2, and the R2 improved from 0.63 to 0.67. The slight 

improvement illustrates that the coarse-to-fine sweep of the MKF method offered few updates for 

Landsat, and the uncertainty of the original LE products might be further propagated to the 

integrated LE data. 

The original missing pixels, after being filled, were compared against ground observations 

(Figure 7). These missing pixels were mainly distributed in three sites: Shenshawo sandy desert, site 

5, and site 11, covering barren land and cropland. After MKF-based integration, the filled pixels of 

MOD16 exhibited that the RMSE% was 38.14%, the RMSE was 30.04 W/m2, the bias was 7.82 W/m2, 

and the R2 was 0.57. Note that there is obvious underestimation of MOD16, which mainly comes 

from cropland, and was actually introduced by Landsat data that underestimated cropland during 

the fine-to-coarse sweep of the MKF method. 

Figure 6. Validations of LE products versus ground observations before and after MKF. (a) MOD16
before MKF; (b) MOD16 after MKF; (c) Landsat-based LE before MKF; (d) Landsat-based LE after MKF.

After the MKF-based integration, MOD16 was highly improved with a decrease in RMSE% from
36.87% to 27.44%, a decrease in RMSE from 26.59 W/m2 to 21.22 W/m2, a fall in bias from 9.33 W/m2 to
9.27 W/m2, and an increase in R2 from 0.46 to 0.58. Likewise, the RMSE% of the integrated Landsat
data decreased from 42.98% to 40.42%, the RMSE fell from 34.15 W/m2 to 32.5 W/m2, the bias decreased
from 4.33 W/m2 to 4.3 W/m2, and the R2 improved from 0.63 to 0.67. The slight improvement illustrates
that the coarse-to-fine sweep of the MKF method offered few updates for Landsat, and the uncertainty
of the original LE products might be further propagated to the integrated LE data.

The original missing pixels, after being filled, were compared against ground observations
(Figure 7). These missing pixels were mainly distributed in three sites: Shenshawo sandy desert, site
5, and site 11, covering barren land and cropland. After MKF-based integration, the filled pixels of
MOD16 exhibited that the RMSE% was 38.14%, the RMSE was 30.04 W/m2, the bias was 7.82 W/m2,
and the R2 was 0.57. Note that there is obvious underestimation of MOD16, which mainly comes
from cropland, and was actually introduced by Landsat data that underestimated cropland during the
fine-to-coarse sweep of the MKF method.
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Other than filling gaps and yielding consistent LE data across different resolutions, the MKF method
therefore exhibited a capacity for improving the accuracy for LE products through the validations
above. Given that the overestimation showed better agreement with EC ground observations than the
underestimation in MKF-integrated MOD16, and there was similar and less-changed underestimation
in Landsat, it implied that the data uncertainty also propagated during the MKF implementation.
For maximum accuracy of the integrated results, we propose that the inputs for MKF integration
cannot have great differences among each other.

4.3. Discussion

4.3.1. Uncertainty Analysis

Three problems are associated with the integrated result validations: The mechanism of MKF
integration, scaling effects, and the errors from inputs, including of the original LE products and the EC
ground observations. First, integrating and adjusting pixel values in the MKF method suggests a high
dependence on the weighted values derived from the uncertainty at each scale, which implies that the
smaller the uncertainty of an estimate, the larger the influence of that estimate in the integrating process.
In this study, the uncertainties that came from satellite characteristics and the estimated algorithms
were invariant in temporal and spatial variations to simplify the problem and hence, the matrix of the
weighted values might be imperfect.

Second, the mismatch in scale among different datasets might lead to uncertainty of the
MKF-integrated result evaluation. The ground measurements represent a point-based value, and the
footprint of the flux tower site is approximately several hundred meters, while the spatial resolution of
the Landsat-based LE product is only 30 m [53]. The direct evaluation with the satellite-based images
may be unreasonable. It is possible that the spatial uncertainty is further reinforced in heterogeneous
areas such as the midstream of the HRB. The abrupt changes in integrated MOD16 indicated the
original data gaps were also considered as the children nodes when transferring to the next scale under
scaling effects.

Finally, the input errors are an important issue. Landsat-based LE products exhibited the
discrepancies of different land cover types and underestimated in the growing season, especially for
cropland and wetland (e.g., 1–17 sites and Zhangye wetland) situated in the irrigated artificial oasis.
Yao et al. (2014) [54] evaluated the ability of the MS–PT algorithm using the ground observations
from 40 global flux towers; results showed that the R2 varied from 0.4 to 0.7 and the RMSE varied
from approximately 37.5 W/m2 to 44.4 W/m2 for cropland and wetland. This is consistent with our
validation results (i.e., R2 is 0.67 and RMSE is 32.5 W/m2). Neglecting the differences in parameters
from different biome types and complex terrain may cause the errors [55], and such findings are in
accordance with previous studies over northeast China [44]. The errors could be reduced by 5–25% if
calibrating the Priestley–Taylor coefficients controlled by the ground observations towards different
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biome types and climatic zones [56]. For MOD16, underestimation also exists because the soil moisture
constraint in MOD16 applied relatively humidity (RH) and vapor pressure deficit (VPD) as indicators
of water stress [44]. During the irrigation period, the soil water content in the surface and root layers is
generally high and the overestimation of water stress, parameterized by RH and atmospheric VPD,
brought about the underestimation of the soil evaporation in the arid and semi-arid midstream of the
HRB [57]. Researchers drew similar conclusions in China [58], the United States [59], eastern Asia [60],
and Brazil [61] when evaluating MOD16. Large errors and uncertainty may be introduced by these
approximations and assumptions. Moreover, the integration evaluation greatly relies on the accuracy of
EC ground observations, which were considered as true LE values in this study. However, Wang et al.
(2015) [62] reported 16% uncertainty in LE observations derived from the HiWATER–MUSOEXE flux
matrix. Even though we corrected the energy imbalance, errors that were caused by complexity in wind
variation, footprint representation, and sampling variability are still unclear [23,63]. These corrections
still cause large errors of EC ground observations in results [64].

4.3.2. Superiority and Recommendation for the MKF integration

We propose that the MKF method is scalable to other areas and applicable to serve other
integrations of satellite LE products suffering from the issues mentioned in this study for two reasons,
namely, high efficiency and comprehensive consideration of multiple datasets’ advantages across
different resolutions. The MKF method executes mere seconds to complete an integration case and is
very time efficient, whereas optimal interpolation usually requires several hours [26]. Additionally,
the great superiority of the MKF method is integrating multiple satellite datasets at different resolutions.
Since data at different resolutions capture various information, we filled the data gaps and retained
those data consistent with their own resolution in this study. Previous research showed that the MKF
method has the capacity to fill Albedo data gaps derived from a multi-angle imaging spectroradiometer
(MISR) and to maintain their consistency in spatial processes [25].

For integrating multiple satellite datasets at different resolutions and taking full use of the MKF
method, we recommend that one original input should be relatively precise, at least due to mutual
propagation because the performance of the MKF method highly depends on how accurate the
uncertainty estimation of the datasets is and how largely those datasets deviate from each other.
Moreover, we evaluated two LE products with ground observations and estimated the weighted values
for each scale based on the uncertainty of each product. To mitigate the scaling effects and extend
this approach to other areas, especially for heterogeneous land surfaces, the observation uncertainty
matrix might be more accurate for the integration process when referring to a “true” LE map instead of
point-based values. This forms the foundation of our ongoing research.

5. Conclusions

Accurate and spatiotemporally consistent satellite-driven LE products are essential to quantify
and improve regional water budgets, especially for arid and semi-arid areas. Current individual LE
products, however, exhibit spatiotemporal discontinuity and uncertainties due to sensor characteristics
or the physical structure of the LE estimating algorithm. This study showcased our efforts to overcome
the current limitations by integrating satellite-driven LE products at different resolutions.

We presented an integration study of the midstream of the HRB of northwest China using
the MKF method, which aims to improve current LE products from multiple datasets at different
resolutions and produce spatiotemporal continuous LE products. We integrated the MOD16 product
and Landsat-based LE product and demonstrated the merits of this approach in integrating datasets
across different resolutions.

Our comparison and validation results indicated that the data gaps of MOD16 were filled,
the integrated LE products were more continuous in their spatial distribution, and the accuracies
of LE products were improved. The MKF method thereby shows great potential to take full use of
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data at various resolutions and to generate consistent LE products in other areas that suffer from the
same issues.

This study used ground observations to estimate the uncertainties of LE products and to further
acquire weighted values as background values for scale conversion. However, scaling effects might
lead to negative influences for MKF integration. Future work will focus on accurately evaluating the
uncertainties of the LE products as well as estimating and generating more precise LE products for
heterogeneous land surfaces.

Author Contributions: J.X. and Y.Y. designed the work and prepared the manuscript. K.T. revised the manuscript.
Y.L. and S.L. corrected and improved the manuscript. K.S., K.J., and X.Z. provided the data and conducted the
remotely sensed image processing. X.C. and X.B. contributed by providing additional analysis to the discussion.

Funding: This work was partially supported by the Strategic Priority Research Program of the Chinese Academy
of Sciences (No. XDA20100101) and the Natural Science Fund of China (No. 41671331).

Acknowledgments: We thank Tongren Xu, Zhongli Zhu, and Ziwei Xu from Faculty of Geographical Science,
Beijing Normal University, China, for their suggestions to improve this manuscript. MOD16 products were obtained
online (https://lpdaac.usgs.gov/products/mod16a2v006/). Landsat data were provided at https://landsat.usgs.gov/.
The ground observations of heat fluxes are downloaded freely via Heihe Data Center (http://www.heihedata.org/).

Conflicts of Interest: The authors declare no conflicts of interest.

Appendix A. Details of the MKF Method

The MKF method is performed in two steps through the autoregressive tree structure:
The fine-to-coarse sweep ascends from the leaves to the root for the state estimates ŷ(s|s+) (define s+ is
a descendant of s) and its variance P(s|s+); and the coarse-to-fine sweep descends from the root to the
leaves for the finally updated estimates ŷ(s) and P(s).

Appendix A.1. Initialization

Each node s of variables at the first scale is initialized before the two sweeps, namely [45]:

y(s|s+) = 0 (A1)

P(s|s+) = P∗(s) (A2)

where P*(s) presents the variance of the unconditioned state before applying the MKF algorithm. One
can note that variables are required to be zero mean in the spatial process, and hence, the surface
extraction is also implemented in this step.

Appendix A.2. Fine-to Coarse Sweep

The fine-to-coarse sweep is to incorporate the state conversion predicted values ŷ(s|s+) to the
scale s and the observed values z(s) at scale s by the following equation [65]:

ŷ(s|s)= ŷ(s|s+)+K(s)(z (s) −C(s)ŷ(s|s+)) (A3)

where Cs is the measurement matrix and K(s) is Kalman gain given by Ref. [66]:

K(s) = P(s|s+)C(s)V−1(s) (A4)

Here, V(s) is the innovation covariance:

V(s) = C(s)P(s|s+)CT(s) + R(s) (A5)

https://lpdaac.usgs.gov/products/mod16a2v006/
https://landsat.usgs.gov/
http://www.heihedata.org/
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Every child node provides an estimate to their parent nodes, where the children of a node s are
denoted by s∂i, i = 1, . . . , q. According to the state conversion model, ŷ(s∂i|s∂i) can be estimated from
each child to predict y(s):

ŷ(s|s∂i) = A(s∂i)ŷ(s∂i|s∂i) (A6)

All the predicted nodes from the lower scale are integrated into the parent nodes and the integrated
ŷ(s|s+) takes the form:

ŷ(s|s+) = P(s|s+)

q∑
i=1

P−1(s|s∂i)ŷ(s|s∂i) (A7)

The optimal estimator consists of a weighted sum of the estimates from its children. It is implied
from (A7) that the larger the uncertainty P(s) of an estimate, the smaller the adjustment influence of
that estimate in the ascending sweep. Through (A1) to (A7), predicted values from the state conversion
model and the observations from the measurement model are recursively integrated.

Appendix A.3. Coarse-to-Fine Sweep

After arriving to the root node with the fine-to-coarse sweep, the coarse-to-fine descending sweep
starts at the next finer scale from the root node, continuing to the finest scale. This process aims to
obtain the final updated estimate and have the similar form given by:

ŷ′(s)= ŷ(s|s)+J(s)ŷ′(pa(s)) − ŷ(pa(s)
∣∣∣s)) (A8)

where J(s) is a weighting coefficient, namely:

J(s) = AT(s)P(s|s)P−1(pa(s)
∣∣∣s) (A9)

Appendix B. Details of the MS-PT Algorithm Logic

The MS-PT algorithm developed by Yao et al. [41] separates LE into the sum of four parts:
The unsaturated soil evaporation (LEds), the saturated wet soil surface evaporation (LEws), the canopy
transpiration (LEc), and the canopy interception evaporation (LEic). Each part can be calculated by:

LE = LEds+LEws+LEv+LEic (A10)

LEds = ∂(1− f wet) f sm
∆

∆+γ
(R ns−G) (A11)

LEw s= ∂ fwet
∆

∆+γ
(R ns−G) (A12)

LEc = ∂(1 − f wet) f c fT
∆

∆+γ
Rnc (A13)

LEic = ∂ fwet
∆

∆+γ
Rnc (A14)

fsm= ATIk= (
1

DT

)DT/DTmax

(A15)

fwet= f sm
4 (A16)

fc =
NDVI −NDVImin

NDVImax−NDVImin
(A17)

where ∂ is the Priestley–Taylor coefficient; ∆ is the slope of the saturation water vapor pressure curve;
γ is the psychrometric constant; fwet is the wet surface fraction; fsm is the soil moisture constraint; fT is
the plant temperature constraint; Rns and Rnc are the net radiation into soil and vegetation, respectively;
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G is the soil heat flux; DT represents the diurnal air temperature range and DTmax describes the
maximum DT (40 ◦C); fc is the vegetation cover fraction; and NDVImax and NDVImin are the maximum
and the minimum NDVI, with the values of 0.95 and 0.05, respectively in this algorithm [67].

References

1. Liang, S.; Wang, K.; Zhang, X.; Wild, M. Review on Estimation of Land Surface Radiation and Energy Budgets
From Ground Measurement, Remote Sensing and Model Simulations. IEEE J. Sel. Top. Appl. Earth Obs.
Remote Sens. 2010, 3, 225–240. [CrossRef]

2. Yao, Y.; Liang, S.; Yu, J.; Chen, J.; Liu, S.; Lin, Y.; Fisher, J.B.; McVicar, T.R.; Cheng, J.; Jia, K.; et al. A simple
temperature domain two-source model for estimating agricultural field surface energy fluxes from Landsat
images. J. Geophys. Res. Atmos. 2017, 122, 5211–5236. [CrossRef]

3. Gao, G.; Chen, D.; Xu, C.Y.; Simelton, E. Trend of estimated actual evapotranspiration over China during
1960–2002. J. Geophys. Res. Atmos. 2007, 112, 8. [CrossRef]

4. Wang, K.; Dickinson, R.E. A review of global terrestrial evapotranspiration: Observation, modeling,
climatology, and climatic variability. Rev. Geophys. 2012, 50, RG2005. [CrossRef]

5. Farahani, H.J.; Howell, T.A.; Shuttleworth, W.J.; Bausch, W.C. Evapotranspiration: Progress in Measurement
and Modeling in Agriculture. Trans. ASABE 2007, 50, 1627–1638. [CrossRef]

6. Cheng, J.; Kustas, W.P. Using Very High Resolution Thermal Infrared Imagery for More Accurate
Determination of the Impact of Land Cover Differences on Evapotranspiration in an Irrigated Agricultural
Area. Remote Sens. 2019, 11, 18. [CrossRef]

7. Bastiaanssen, W.G.M.; Noordman, E.J.M.; Pelgrum, H.; Davids, G.; Allen, R.G. SEBAL Model with Remotely
Sensed Data to Improve Water-Resources Management under Actual Field Conditions. J. Irrig. Drain. Eng.
2005, 131, 85–93. [CrossRef]

8. Kool, D.; Agam, N.; Lazarovitch, N.; Heitman, J.L.; Sauer, T.J.; Ben-Gal, A. A review of approaches for
evapotranspiration partitioning. Agric. For. Meteorol. 2014, 184, 56–70. [CrossRef]

9. Yuan, W.P.; Liu, S.G.; Yu, G.R.; Bonnefond, J.M.; Chen, J.Q.; Davis, K.; Desai, A.R.; Goldstein, A.H.; Gianelle, D.;
Rossi, F. Global estimates of evapotranspiration and gross primary production based on MODIS and global
meteorology data. Remote Sens. Environ. 2010, 114, 1416–1431. [CrossRef]

10. Mallick, K.; Bhattacharya, B.K.; Rao, V.U.M.; Reddy, D.R.; Banerjee, S.; Venkatesh, H.; Pandey, V.; Kar, G.;
Mukherjee, J.; Vyas, S.P. Latent heat flux estimation in clear sky days over Indian agroecosystems using
noontime satellite remote sensing data. Agric. For. Meteorol. 2015, 149, 1646–1665. [CrossRef]

11. Liu, S.; Xu, Z.; Song, L.; Zhao, Q.; Yong, G.; Xu, T.; Ma, Y.; Zhu, Z.; Jia, Z.; Zhang, F. Upscaling
evapotranspiration measurements from multi-site to the satellite pixel scale over heterogeneous land
surfaces. Agric. For. Meteorol. 2016, 230–231, 97–113. [CrossRef]

12. Jia, Z.; Liu, S.; Xu, Z.; Chen, Y.; Zhu, M. Validation of remotely sensed evapotranspiration over the Hai River
Basin, China. J. Geophys. Res. Atmos. 2012, 117, 13113. [CrossRef]

13. Yao, Y.; Liang, S.; Li, X.; Chen, J.; Liu, S.; Jia, K.; Zhang, X.; Xiao, Z.; Fisher, J.B.; Mu, Q.; et al. Improving global
terrestrial evapotranspiration estimation using support vector machine by integrating three process-based
algorithms. Agric. For. Meteorol. 2017, 242, 55–74. [CrossRef]

14. Di, S.C.; Li, Z.L.; Tang, R.; Wu, H.; Tang, B.H.; Lu, J. Integrating two layers of soil moisture parameters into
the MOD16 algorithm to improve evapotranspiration estimations. Int. J. Remote Sens. 2015, 36, 4953–4971.
[CrossRef]

15. Yang, Y.; Long, D.; Shang, S. Remote estimation of terrestrial evapotranspiration without using meteorological
data. Geophys. Res. Lett. 2013, 40, 3026–3030. [CrossRef]

16. Xiong, Y.J.; Zhao, S.H.; Tian, F.; Qiu, G.Y. An evapotranspiration product for arid regions based on the
three-temperature model and thermal remote sensing. J. Hydrol. 2015, 530, 392–404. [CrossRef]

17. Tongren, X.; Zhixia, G.; Shaomin, L.; Xinlei, H.; Yangfanyu, M.; Ziwei, X.; Youlong, X.; Jingfeng, X.; Yuan, Z.;
Yanfei, M. Evaluating Different Machine Learning Methods for Upscaling Evapotranspiration from Flux
Towers to the Regional Scale. J. Geophys. Res. Atmos. 2018, 123, 8674–8690. [CrossRef]

18. Ma, Y.; Shaomin, L.; Song, L.; Xu, Z.; Zhu, Z. Estimation of daily evapotranspiration and irrigation water
efficiency at a Landsat-like scale for an arid irrigation area using multi-source remote sensing data. Remote
Sens. Environ. 2018, 216, 715–734. [CrossRef]

http://dx.doi.org/10.1109/JSTARS.2010.2048556
http://dx.doi.org/10.1002/2016JD026370
http://dx.doi.org/10.1029/2006JD008010
http://dx.doi.org/10.1029/2011RG000373
http://dx.doi.org/10.13031/2013.23965
http://dx.doi.org/10.3390/rs11060613
http://dx.doi.org/10.1061/(ASCE)0733-9437(2005)131:1(85)
http://dx.doi.org/10.1016/j.agrformet.2013.09.003
http://dx.doi.org/10.1016/j.rse.2010.01.022
http://dx.doi.org/10.1016/j.agrformet.2009.05.006
http://dx.doi.org/10.1016/j.agrformet.2016.04.008
http://dx.doi.org/10.1029/2011JD017037
http://dx.doi.org/10.1016/j.agrformet.2017.04.011
http://dx.doi.org/10.1080/01431161.2015.1040136
http://dx.doi.org/10.1002/grl.50450
http://dx.doi.org/10.1016/j.jhydrol.2015.09.050
http://dx.doi.org/10.1029/2018JD028447
http://dx.doi.org/10.1016/j.rse.2018.07.019


Remote Sens. 2019, 11, 1787 17 of 19

19. Cheng, G.; Li, X.; Zhao, W.; Xu, Z.; Feng, Q.; Xiao, S.; Xiao, H. Integrated study of the water–ecosystem–
economy in the Heihe River Basin. Natl. Sci. Rev. 2014, 1, 413–428. [CrossRef]

20. Li, X.; Cheng, G.; Ge, Y.; Li, H.; Han, F.; Hu, X.; Tian, W.; Tian, Y.; Pan, X.; Nian, Y. Hydrological Cycle in the
Heihe River Basin and Its Implication for Water Resource Management in Endorheic Basins. J. Geophys. Res.
Atmos. 2018, 123, 890–914. [CrossRef]

21. Yao, Y.; Liang, S.; Li, X.; Hong, Y.; Fisher, J.B.; Zhang, N.; Chen, J.; Cheng, J.; Zhao, S.; Zhang, X. Bayesian
multimodel estimation of global terrestrial latent heat flux from eddy covariance, meteorological, and satellite
observations. J. Geophys. Res. Atmos. 2014, 119, 4521–4545. [CrossRef]

22. Feng, F.; Li, X.; Yao, Y.; Liang, S.; Chen, J.; Zhao, X.; Jia, K.; Pintér, K.; Mccaughey, J.H. An Empirical
Orthogonal Function-Based Algorithm for Estimating Terrestrial Latent Heat Flux from Eddy Covariance,
Meteorological and Satellite Observations. PLoS ONE 2016, 11, e0160150. [CrossRef]

23. Fisher, J.B.; Tu, K.P.; Baldocchi, D.D. Global estimates of the land–atmosphere water flux based on monthly
AVHRR and ISLSCP-II data, validated at 16 FLUXNET sites. Remote Sens. Environ. 2008, 112, 901–919.
[CrossRef]

24. Chou, K.C.; Willsky, A.S.; Nikoukhah, R. Multiscale systems, Kalman filters, and Riccati equations. Autom.
Control. IEEE Trans. 1992, 39, 479–492. [CrossRef]

25. He, T.; Liang, S.; Wang, D.; Shuai, Y.; Yu, Y. Fusion of Satellite Land Surface Albedo Products Across Scales
Using a Multiresolution Tree Method in the North Central United States. IEEE Trans. Geosci. Remote Sens.
2014, 52, 3428–3439. [CrossRef]

26. Wang, D.; Liang, S. Using multiresolution tree to integrate MODIS and MISR-L3 LAI products. IEEE Int.
Geosci. Remote Sens. Symp. 2010, 38, 1027–1030. [CrossRef]

27. Cheng, G.D.; Xiao, H.L.; Zhong-Min, X.U.; Jin-Xiu, L.I.; Ming-Feng, L.U. Water Issue and Its Countermeasure
in the Inland River Basins of Northwest China—A Case Study in Heihe River Basin. J. Glaciol. Geocryol. 2006,
28, 406–413. [CrossRef]

28. Mcvicar, T.; Roderick, M.L.; Donohue, R.J.; Li, J.; Thomas, G.V.N.; Paul, G.T.; Jürgen, G.; Deepak, J.; Youcef, H.;
Natalie, M.; et al. Global review and synthesis of trends in observed terrestrial near-surface wind speeds:
Implications for evaporation. J. Hydrol. 2012, 416, 182–205. [CrossRef]

29. Li, X.; Liu, S.; Xiao, Q.; Ma, M.; Jin, R.; Che, T.; Wang, W.; Hu, X.; Xu, Z.; Wen, J. A multiscale dataset for
understanding complex eco-hydrological processes in a heterogeneous oasis system. Sci. Data 2017, 4,
170083. [CrossRef]

30. Xu, Z.; Liu, S.; Xin, L.; Shi, S.; Wang, J.; Zhu, Z.; Xu, T.; Wang, W.; Ma, M. Intercomparison of surface
energy flux measurement systems used during the HiWATER-MUSOEXE. J. Geophys. Res. Atmos. 2013, 118,
13140–13157. [CrossRef]

31. Li, X.; Cheng, G.; Liu, S.; Xiao, Q.; Ma, M.; Jin, R.; Che, T.; Liu, Q.; Wang, W.; Qi, Y. Heihe watershed allied
telemetry experimental research (HiWater) scientific objectives and experimental design (EI). Bull. Am.
Meteorol. Soc. 2013, 94, 1145–1160. [CrossRef]

32. Twine, T.E.; Kustas, W.P.; Norman, J.M.; Cook, D.R.; Houser, P.R.; Meyers, T.P.; Prueger, J.H.; Starks, P.J.;
Wesely, M.L. Correcting eddy-covariance flux underestimates over a grassland. Agric. For. Meteorol. 2000,
103, 279–300. [CrossRef]

33. Liu, S.M.; Xu, Z.W.; Zhu, Z.L.; Jia, Z.Z.; Zhu, M.J. Measurements of evapotranspiration from eddy-covariance
systems and large aperture scintillometers in the Hai River Basin, China. J. Hydrol. 2013, 487, 24–38.
[CrossRef]

34. Liu, S.; Li, X.; Xu, Z.; Che, T.; Xiao, Q.; Ma, M.; Liu, Q.; Jin, R.; Guo, J.; Wang, L.; et al. The Heihe Integrated
Observatory Network: A Basin-Scale Land Surface Processes Observatory in China. Vadose Zone J. 2018,
17, 180072. [CrossRef]

35. Mu, Q.; Heinsch, F.A.; Zhao, M.; Running, S.W. Development of a global evapotranspiration algorithm based
on MODIS and global meteorology data. Remote Sens. Environ. 2007, 111, 519–536. [CrossRef]

36. Mu, Q.; Zhao, M.; Running, S.W. Improvements to a MODIS global terrestrial evapotranspiration algorithm.
Remote Sens. Environ. 2011, 115, 1781–1800. [CrossRef]

37. Monteith, J.L. Evaporation and environment. Symp. Soc. Exp. Biol. 1965, 19, 205–234.
38. Cleugh, H.A.; Leuning, R.; Mu, Q.; Running, S.W. Regional evaporation estimates from flux tower and

MODIS satellite data. Remote Sens. Environ. 2007, 106, 285–304. [CrossRef]

http://dx.doi.org/10.1093/nsr/nwu017
http://dx.doi.org/10.1002/2017JD027889
http://dx.doi.org/10.1002/2013JD020864
http://dx.doi.org/10.1371/journal.pone.0160150
http://dx.doi.org/10.1016/j.rse.2007.06.025
http://dx.doi.org/10.1109/9.280747
http://dx.doi.org/10.1109/TGRS.2013.2272935
http://dx.doi.org/10.1109/IGARSS.2010.5650491
http://dx.doi.org/10.1007/s11442-006-0415-5
http://dx.doi.org/10.1016/j.jhydrol.2011.10.024
http://dx.doi.org/10.1038/sdata.2017.83
http://dx.doi.org/10.1002/2013JD020260
http://dx.doi.org/10.1175/BAMS-D-12-00154.1
http://dx.doi.org/10.1016/S0168-1923(00)00123-4
http://dx.doi.org/10.1016/j.jhydrol.2013.02.025
http://dx.doi.org/10.2136/vzj2018.04.0072
http://dx.doi.org/10.1016/j.rse.2007.04.015
http://dx.doi.org/10.1016/j.rse.2011.02.019
http://dx.doi.org/10.1016/j.rse.2006.07.007


Remote Sens. 2019, 11, 1787 18 of 19

39. Running, S.; Mu, Q.; Zhao, M. MOD16A2 MODIS/Terra Net Evapotranspiration 8-Day L4 Global 500m SIN
Grid V006. NASA EOSDIS Land Process. DAAC 2017. [CrossRef]

40. Masek, J.G.; Vermote, E.F.; Saleous, N.E.; Wolfe, R.; Hall, F.G.; Huemmrich, K.F.; Gao, F.; Kutler, J.; Lim, T.K.
A Landsat surface reflectance dataset for North America, 1990–2000. IEEE Geosci. Remote Sens. Lett. 2006, 3,
68–72. [CrossRef]

41. Yao, Y.; Liang, S.; Cheng, J.; Liu, S.; Fisher, J.B.; Zhang, X.; Jia, K.; Zhao, X.; Qin, Q.; Zhao, B. MODIS-driven
estimation of terrestrial latent heat flux in China based on a modified Priestley–Taylor algorithm. Agric. For.
Meteorol. 2013, 171–172, 187–202. [CrossRef]

42. Yang, K.; He, J.; Tang, W.; Qin, J.; Cheng, C.C.K. On downward shortwave and longwave radiations over
high altitude regions: Observation and modeling in the Tibetan Plateau. Agric. For. Meteorol. 2010, 150,
38–46. [CrossRef]

43. Chen, Y.; Yang, K.; Jie, H.; Qin, J.; Shi, J.; Du, J.; He, Q. Improving land surface temperature modeling for dry
land of China. J. Geophys. Res. Atmos. 2011, 116, D20104. [CrossRef]

44. Zhang, L.; Yao, Y.; Wang, Z.; Jia, K.; Chen, X. Satellite-Derived Spatiotemporal Variations in Evapotranspiration
over Northeast China during 1982–2010. Remote Sens. 2017, 9, 1140. [CrossRef]

45. Vyver, H.V.D.; Roulin, E. Scale-recursive estimation for merging precipitation data from radar and microwave
cross-track scanners. J. Geophys. Res. Atmos. 2009, 114, D08104. [CrossRef]

46. Gupta, R.; Venugopal, V.; Foufoula-Georgiou, E. A methodology for merging multisensor precipitation
estimates based on expectation-maximization and scale-recursive estimation. J. Geophys. Res. Atmos. 2015,
111, D02102. [CrossRef]

47. Luettgen, M.R.; Willsky, A.S. Likelihood calculation for a class of multiscale stochastic models, with
application to texture discrimination. IEEE Trans. Image Process. 1995, 4, 194–207. [CrossRef]

48. Chou, C.K. A Stochastic Modeling Approach to Multiscale Signal Processing. Mass. Inst. Technol.
1991. Available online: https://pdfs.semanticscholar.org/6350/caa3c42a2c12b0342706fe53197820d58ade.pdf
(accessed on 30 July 2019).

49. Tustison, B.; Foufoula-Georgiou, E.; Harris, D. Scale-recursive estimation for multisensor Quantitative
Precipitation Forecast verification: A preliminary assessment. J. Geophys. Res. Atmos. 2002, 107. CIP-1-CIP
2–14. [CrossRef]

50. Gorenburg, I.P.; Mclaughlin, D.; Entekhabi, D. Scale-recursive assimilation of precipitation data. Adv. Water
Resour. 2001, 24, 941–953. [CrossRef]

51. Yue, W.; Zhu, J. On estimation and prediction for multivariate multiresolution tree-structured spatial linear
models. Stat. Sin. 2006, 16, 981–1020. [CrossRef]

52. Shi, L.; Liang, S.; Cheng, J.; Zhang, Q. Integrating ASTER and GLASS broadband emissivity products using a
multi-resolution Kalman filter. Int. J. Digit. Earth 2016, 9, 1098–1116. [CrossRef]

53. Baldocchi, D. Breathing of the terrestrial biosphere: Lessons learned from a global network of carbon dioxide
flux measurement systems. Aust. J. Bot. 2008, 56, 1–26. [CrossRef]

54. Yao, Y.; Liang, S.; Zhao, S.; Zhang, Y.; Qin, Q.; Cheng, J.; Jia, K.; Xie, X.; Zhang, N.; Liu, M. Validation
and Application of the Modified Satellite-Based Priestley-Taylor Algorithm for Mapping Terrestrial
Evapotranspiration. Remote Sens. 2014, 6, 880–904. [CrossRef]

55. Yao, Y.; Liang, S.; Li, X.; Chen, J.; Wang, K.; Jia, K.; Cheng, J.; Jiang, B.; Fisher, J.B.; Mu, Q.; et al. A satellite-based
hybrid algorithm to determine the Priestley-Taylor parameter for global terrestrial latent heat flux estimation
across multiple biomes. Remote Sens. Environ. 2015, 165, 216–233. [CrossRef]

56. Anderson, M.C.; Norman, J.M.; Kustas, W.P.; Houborg, R.; Starks, P.J.; Agam, N. A thermal-based remote
sensing technique for routine mapping of land-surface carbon, water and energy fluxes from field to regional
scales. Remote Sens. Environ. 2008, 112, 4227–4241. [CrossRef]

57. Hu, G.; Li, J. Monitoring of Evapotranspiration in a Semi-Arid Inland River Basin by Combining Microwave
and Optical Remote Sensing Observations. Remote Sens. 2015, 7, 3056–3087. [CrossRef]

58. Liu, Z.; Shao, Q.; Liu, J. The Performances of MODIS-GPP and -ET Products in China and Their Sensitivity to
Input Data (FPAR/LAI). Remote Sens. 2014, 7, 135–152. [CrossRef]

59. Velpuri, N.M.; Senay, G.B.; Singh, R.K.; Bohms, S.; Verdin, J.P. A comprehensive evaluation of two MODIS
evapotranspiration products over the conterminous United States: Using point and gridded FLUXNET and
water balance ET. Remote Sens. Environ. 2013, 139, 35–49. [CrossRef]

http://dx.doi.org/10.5067/MODIS/MOD16A2.006
http://dx.doi.org/10.1109/LGRS.2005.857030
http://dx.doi.org/10.1016/j.agrformet.2012.11.016
http://dx.doi.org/10.1016/j.agrformet.2009.08.004
http://dx.doi.org/10.1029/2011JD015921
http://dx.doi.org/10.3390/rs9111140
http://dx.doi.org/10.1029/2008JD010709
http://dx.doi.org/10.1029/2004JD005568
http://dx.doi.org/10.1109/83.342185
https://pdfs.semanticscholar.org/6350/caa3c42a2c12b0342706fe53197820d58ade.pdf
http://dx.doi.org/10.1029/2001JD001073
http://dx.doi.org/10.1016/S0309-1708(01)00033-1
http://dx.doi.org/10.1007/s00440-005-0472-1
http://dx.doi.org/10.1080/17538947.2016.1170897
http://dx.doi.org/10.1071/BT07151
http://dx.doi.org/10.3390/rs6010880
http://dx.doi.org/10.1016/j.rse.2015.05.013
http://dx.doi.org/10.1016/j.rse.2008.07.009
http://dx.doi.org/10.3390/rs70303056
http://dx.doi.org/10.3390/rs70100135
http://dx.doi.org/10.1016/j.rse.2013.07.013


Remote Sens. 2019, 11, 1787 19 of 19

60. Kim, H.W.; Hwang, K.; Mu, Q.; Lee, S.O.; Choi, M. Validation of MODIS 16 global terrestrial evapotranspiration
products in various climates and land cover types in Asia. Ksce J. Civ. Eng. 2012, 16, 229–238. [CrossRef]

61. Ruhoff, A.L.; Paz, A.R.; Aragao, L.E.O.C.; Mu, Q.; Malhi, Y.; Collischonn, W.; Rocha, H.R.; Running, S.W.
Assessment of the MODIS global evapotranspiration algorithm using eddy covariance measurements and
hydrological modelling in the Rio Grande basin. Int. Assoc. Sci. Hydrol. Bull. 2013, 58, 1658–1676. [CrossRef]

62. Wang, J.; Zhuang, J.; Wang, W.; Liu, S.; Xu, Z. Assessment of uncertainties in eddy covariance flux
measurement based on intensive flux matrix of HiWATER-MUSOEXE. IEEE Geosci. Remote Sens. Lett. 2015,
12, 259–263. [CrossRef]

63. Wilson, K.; Goldstein, A.; Falge, E.; Aubinet, M.; Baldocchi, D.; Berbigier, P.; Bernhofer, C.; Ceulemans, R.;
Han, D.; Field, C. Energy balance closure at FLUXNET sites. Agric. For. Meteorol. 2002, 113, 223–243.
[CrossRef]

64. Finnigan, J.J.; Clement, R.; Malhi, Y.; Leuning, R.; Cleugh, H.A. A Re-Evaluation of Long-Term Flux
Measurement Techniques Part I: Averaging and Coordinate Rotation. Bound. Layer Meteorol. 2003, 107, 1–48.
[CrossRef]

65. Fieguth, P.W.; Karl, W.C.; Willsky, A.S.; Wunsch, C. Multiresolution optimal interpolation and statistical
analysis of TOPEX/POSEIDON satellite altimetry. Geosci. Remote Sens. IEEE Trans. 1995, 33, 280–292.
[CrossRef]

66. Kannan, A.; Ostendorf, M.; Karl, W.C.; Castanon, D.A.; Fish, R.K. ML parameter estimation of a multiscale
stochastic process using the EM algorithm. IEEE Trans. Signal. Process. 2002, 48, 1836–1840. [CrossRef]

67. Zhang, K.; Kimball, J.S.; Mu, Q.; Jones, L.A.; Goetz, S.J.; Running, S.W. Satellite based analysis of northern ET
trends and associated changes in the regional water balance from 1983 to 2005. J. Hydrol. 2009, 379, 92–110.
[CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1007/s12205-012-0006-1
http://dx.doi.org/10.1080/02626667.2013.837578
http://dx.doi.org/10.1109/LGRS.2014.2334703
http://dx.doi.org/10.1016/S0168-1923(02)00109-0
http://dx.doi.org/10.1023/A:1021554900225
http://dx.doi.org/10.1109/TGRS.1995.8746009
http://dx.doi.org/10.1109/78.845950
http://dx.doi.org/10.1016/j.jhydrol.2009.09.047
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Study Area and Data 
	Study Area and Ground Observations 
	Remotely Sensed Data 
	MODIS LE Product 
	Landsat-Based LE Product 


	Methodology 
	The MKF Method 
	Assessment Metrics 

	Results and Discussion 
	Integration of Satellite-Derived LE Products 
	Comparison before and after MKF 
	Spatial Assessment of the MKF Integration Performance 
	Evaluation of the MKF Performance Using Ground Observations 

	Discussion 
	Uncertainty Analysis 
	Superiority and Recommendation for the MKF integration 


	Conclusions 
	Details of the MKF Method 
	Initialization 
	Fine-to Coarse Sweep 
	Coarse-to-Fine Sweep 

	Details of the MS-PT Algorithm Logic 
	References

