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Abstract: Presently, operational ocean color satellite sensors are designed with a legacy perspective
for sampling the open ocean primarily in the visible domain, while high spatial resolution sensors
such as Sentinel-2, Sentinel-3, and Landsat8 are increasingly used for observations of coastal and
inland water quality. Next-generation satellites such as the NASA Plankton, Aerosol, Cloud and ocean
Ecosystem (PACE) and Surface Biology and Geology (SBG) sensors are anticipated to increase spatial
and/or spectral resolution. An important consideration is determining the minimum signal-to-noise
ratio (SNR) needed to retrieve typical biogeochemical products, such as biomass, in aquatic systems,
and whether legacy sensors can be used for algorithm development. Here, we evaluate SNR and
remote-sensing reflectance (Rys) uncertainty for representative bright and dim targets in coastal
California, USA. The majority of existing sensors fail to meet proposed criteria. Despite these
limitations, uncertainties in retrieved biomass as chlorophyll or normalized difference vegetation
index (NDVI) remain well below a proposed threshold of 17.5%, suggesting that existing sensors
can be used in coastal systems. Existing commercially available in-water and airborne instrument
suites can exceed all proposed thresholds for SNR and R;s uncertainty, providing a path forward for
collection of calibration and validation data for future satellite missions.

Keywords: signal-to-noise ratio; ocean color; inland waters; kelp; chlorophyll; normalized difference
vegetation index

1. Introduction

Ocean color remote sensing provides a cost-effective, synoptic method for deriving
information about the ecologically relevant constituents of the coastal ocean and inland waters [1].
These observations are used to infer ocean health, species composition, water quality, carbon cycling,
fluxes of key variables, and biodiversity [2]. The coastal zone, or transition between land and ocean
biomes, is the largest ecotone on Earth [3], and therefore an important target for remote sensing.
There has been a steady call for better remote sensing methods and increased resolution at the coastal
transition zone: The National Research Council [4] noted “simply sustaining the current capabilities of
ocean color remote sensing will fall short of supporting the array of [required] ocean color applications;”
and the 2017 NASA Decadal Survey [5] challenges the community of practice to support humanity’s
ability to thrive by using Earth observations to support our economy, national security, public safety,
and quality of life.

Ocean color provides a depth-integrated, but nonetheless near-surface, measurement of the biotic
and abiotic constituents that interact with light in aquatic environments. The challenge is to interpret
the signature [6-9]. The magnitude of water-leaving radiance (Ly(A), W m~2 nm~! sr~!, abbreviated to
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L. for convenience) is highly variable, ranging from dim values in clear, deep water to bright values at
water’s edge and in turbid or productive waters. The spatial (~1 km) and temporal (~daily) resolution
from legacy satellite platforms such as SeaWiFS, MODIS, and VIIRS is of marginal use in coastal
waters [10]. Low signal-to-noise ratio (SNR) measurements of L,, in the blue and red spectral domains
result in negative values using standard reprocessing, leading to poor discrimination of pigments from
colored dissolved organic matter (CDOM) and poor estimates in the ultraviolet (UV). Aerosol and trace
gas plumes from continental sources complicate the task of atmospheric correction, as does cloud cover.
Atmospheric correction schemes are also problematic for productive coastal waters. Issues include
the use of nonzero near-infrared (NIR) reflectance and poor SNR values, complicating atmospheric
correction based on short-wave infrared (SWIR) wavelengths [11-13].

Next-generation satellites such as the Plankton Aerosol, Cloud and ocean Ecosystem (PACE)
Ocean Color Instrument (OCI) and proposed missions such as the Hyperspectral Infrared Imager
(HysplIRI; [14]), now replaced by the NASA Surface Biology and Geology (SBG) sensor, are expected
to extend measurements into shorter wavelengths. The UV is potentially useful for discriminating
red tides [15], identifying point sources for pollution [16], and improving atmospheric correction,
particularly in turbid coastal waters [17-19]. However, most existing calibration/validation (cal/val)
sensors, as well as spectral radiometers, exhibit poor performance in the UV. All of these issues make
aquatic remote sensing challenging.

There is also increasing demand for high (~10 s of meters) spatial resolution and increased
(~5-10 nm) spectral resolution. For example, Muller-Karger et al. [2] identified a requirement for a new
generation of satellite sensors with (1) spatial resolution on the order of 30-100 m, (2) spectral resolution
on the order of 5-10 nm, (3) radiometric quality with SNR > 800, and (4) temporal resolution of hours
to days. This so-called H4 imaging (high spatial, temporal, and spectral resolution, as well as high
radiometric quality) does not currently exist, but in preparation for future missions existing satellites
and airborne sensors may serve as reasonable proxies. For example, the multispectral imager (MSI)
aboard Sentinel-2 has 10-60 m native spatial resolution, while the ocean land imager aboard Landsat8
has 30 m native resolution. The “classic” airborne visible infrared imaging spectrometer (AVIRIS-C;
referred to hereafter as AVIRIS) provides both high spatial (~5-60 m) and spectral (~400-2500 nm)
resolution, and has been the platform of choice for simulating HyspIRI products [20]. A fundamental
question that has not been carefully addressed is whether some combination of existing airborne and
satellite sensors (Figure 1) are appropriate for development and intercomparison of algorithms capable
of utilizing H4 sensing in coastal and inland waters (c.f. [2,21]).

Mouw et al. [21] summarized some of the issues with remote sensing of coastal and inland waters,
noting that there is often a tradeoff between high SNR and dynamic range for ocean sensors, and that
ocean color sensors often saturate over bright targets, such as turbid coastal and inland waters, due to
limited dynamic range. SNR recommendations were therefore for an SNR of >100-200 for SWIR, >600
for NIR, and >1000 for UV-VIS bands, so long as they do not saturate over clouds or bright targets.
Muller-Karger et al. [2] recommended SNR > 800 for the UV to visible range (UV-VIS). Wang and
Gordon [22] specifically evaluated NIR and SWIR bands for atmospheric correction, and identified
minimum requirements of ~200-300 for NIR and ~100 for SWIR, with recommendations of ~600 and
~200 respectively. Qi et al. [23] argued that for the open ocean, SNR of at least 400 for visible bands and
>600 for NIR bands are necessary, which is consistent with [22]. As also noted by [23], SNR values listed
for at-sensor radiances are difficult to interpret given the wide range of typical at-sensor radiance (Ltyp)
values, particularly for coastal and inland waters, and it would be more useful to present values in
terms of Ly, remote sensing reflectance (Rys, sr1), or water-leaving reflectance (py ). Indeed, the PACE
Science Definition Team report [24] provides requirements for uncertainty estimates of water leaving
reflectance as both percent and absolute values, in addition to SNR for Liyy.
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Figure 1. Airborne and satellite sensors considered for simulating H4 sensing, showing band placement
and bandwidth. This analysis focuses primarily on the visible (VIS) and near-infrared (NIR) from
400-850 nm, while next-generation sensors such as PACE will extend into the ultraviolet (UV) and
most sensors include short wave infrared (SWIR) for atmospheric correction.

The goals of this manuscript were threefold. First, directly compare commonly used legacy
airborne and spaceborne sensors with spatial and/or spectral resolution comparable to H4 sensing
for representative coastal targets. Second, use the radiometric uncertainty values to estimate the
uncertainty in deriving chlorophyll and kelp biomass as proxies for widely used algorithms that might
be applied to H4 sensors. Finally, determine whether existing commercially available airborne and
in-water instrumentation can provide high quality estimates of L, (and therefore R;s and py,) that
exceed proposed SNR and uncertainty estimates for cal/val activities at spatial and temporal scales
relevant to coastal and inland waters.

2. Materials and Methods

2.1. Field Sites and Targets

The sites chosen for this analysis (Table 1) were based on satisfying the following three criteria:
(a) The sites provide a wide range in Ltyp (at-sensor radiance used for derived products), and are, thus,
representative of common coastal and inland water targets; (b) the locations were the targets of data
collection (in-water, airborne, and satellite) from multiple platforms, and are well characterized as part
of historical and ongoing remote sensing studies; and (c) the sites are spatially large enough to use a
geostatistical approach to calculate SNR (Figure 2; [25]).

Lake Tahoe is situated between California and Nevada (USA) in the Sierra Nevada mountains.
It is the third largest alpine lake globally and is representative of a low-biomass (mesotrophic) inland
water body. It has historically been used for estimation of chlorophyll [26] and for vicarious calibration
and uncertainty estimates for simulated SeaWiFS bands [27]. The high altitude (1895 m elevation)
and typically clear atmospheric conditions simplify atmospheric correction [28,29]. As part of the
Coastal High Acquisition Rate Radiometers for Innovative Environmental Research (C-HARRIER)
campaign, in-water and airborne data were collected for Lake Tahoe on 13 September 2017 (see below
for instrument details). The HyspIRI Airborne Preparatory campaign routinely imaged Lake Tahoe
from 2013-2015, with less frequent collections from 2016-2018.
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Table 1. Summary of data collection and processing parameters.

Sensor Date Resolution (m) Atmospheric Correction Source
Lake Tahoe
A HysplIRI Preparatory Campaign
AVIRIS 10-Apr-14 14.6 (ATREM) JPL
OLI 27-Sep-17 30 iCOR USGS
MSI 14-Sep-17 10, 20, 60 iCOR ESA
OLCI 14-Sep-17 300 iCOR ESA
RE 27-Sep-17 5 FLAASH Planet Labs
C-AERO 13-Sep-17 4.4 Not Necessary GSFC

San Francisco Bay
HysplIRI Preparatory Campaign

AVIRIS 2-Oct-17 16.2 (ATREM) JPL
OLI 2-Sep-17 30 iCOR USGS
MSI 17-Sep-17 10, 20, 60 iCOR ESA

OLCI 13-Sep-17 300 iCOR ESA
RE 9-Sep-17 5 FLAASH Planet Labs
C-AERO 8-Sep-17 4.4 Not Necessary GSFC
Coal Oil Point

AVIRIS 27-Jun-17 16.9 FLAASH JPL
OLL 16-Jun-17 30 iCOR USGS
MSI 26-Jun-17 10, 20, 60 iCOR ESA

RE 3-Jul-17 5 FLAASH Planet Labs
Elkhorn Slough
PRISM 24-Jul-12 0.5 ATREM JPL

San Francisco Bay, California, USA was chosen as a complementary site to Lake Tahoe because
it was also routinely imaged during the HyspIRI Airborne Preparatory campaign, and also because
it was included in the C-HARRIER campaign on 8 September 2017. High-resolution imagery and
in-water data were collected from Grizzly Bay, while lower resolution imagery from the same time
frame were obtained (for the Ocean Land Colour Imager (OLCI) aboard Sentinel-3) using San Pablo
Bay, which is physically adjacent to Grizzly Bay. San Francisco Bay represents an optically complex
eutrophic end member, and has been imaged extensively for aquatic vegetation, landcover, and water
quality (e.g., [30-33]).

Coal Oil Point is situated in the middle of the Santa Barbara Channel (SBC), California, USA,
within the Campus Point State Marine Conservation Area. Coal Oil Point is part of the SBC Long Term
Ecological Research (LTER) program, which has extensively studied ocean and land processes’ influence
on giant kelp ecosystems via in situ and remote sensing approaches (e.g., [34-37]). This particular
portion of the SBC was chosen for the presence of a large, relatively homogenous, and persistent giant
kelp bed.

In addition to the target sites used for in-water, airborne, and satellite remote sensing, an additional
site was included for in-water data only that provides an ultra-oligotrophic environment. Crater
Lake, Oregon, USA is a deep caldera (594 m maximum depth) at a reference elevation of 1882 m [38].
It is considered to be one of the “clearest” natural waters in existence, rivaling the Sargasso Sea [39].
We used measurements from this location (27 July 2015) as a clear water end member for comparison
to [23], who provided an estimate of the best R;s uncertainty estimates from field measurements in
clear oceanic waters.
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Figure 2. Imagery from Lake Tahoe, San Francisco Bay, and Coal Oil Point (California, USA) were used
for analysis. Representative examples of the truecolor (RGB) regions are shown, with the white boxes
denoting the data used for SNR calculations. The inset (greyscale) boxes show the data used for a
representative wavelength in the blue region of the spectrum. Top row, left to right: map of the region;
Lake Tahoe from AVIRIS, OLI, MSI. Bottom row: Coal Oil Point from AVIRIS; Grizzly Bay from OLI;
San Pablo Bay from MSI; San Pablo Bay from OLCL

2.2. In-water, Airborne, and Satellite Sensors

For this study, matched low-altitude flights (Lowest Safe Altitude (LSA), ~100 m above the
surface) and near-surface profiling were used to collect above- and in-water optical measurements,
respectively, using state-of-the-art microradiometers with 10 decades of dynamic range and 15 Hz
sampling. For the objectives considered here, the principal differences between the two embodiments
are as follows: (a) The above-water Compact-Airborne Environmental Radiometers for Oceanography
(C-AERO) instrument suite has a narrow field of view (2.5° full angle) and wavelengths spanning
320-1640 nm; and (b) the in-water Compact-Optical Profiling System (C-OPS) instrument suite was
equipped with the Compact-Propulsion Option for Profiling Systems (C-PrOPS) accessory, wherein two
small digital thrusters are combined with hydrobaric buoyancy control to provide a vertical sampling
resolution of 1 mm or less, thereby allowing all data products to be derived from 313-875 nm [40].
In-water ancillary data were collected for each field deployment, including surface measurement
of total chlorophyll-a (TChla) using high performance liquid chromatography (HPLC; [41]), and
CDOM by absorption spectroscopy [42]. The radiometric and ancillary data were processed using
the Processing of Radiometric Observations of Seawater using Information Technologies (PROSIT)
software package to provide estimates of L., and R from in-water and above-water measurements.
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While a full atmospheric correction was not applied given the low flight altitude, skylight reflectance
was removed as per standard NASA above-water reflectance protocols [40].

2.3. AVIRIS Imagery

Images for Lake Tahoe, Grizzly Bay, and Coal Oil Point were obtained from the NASA Jet
Propulsion Laboratory (JPL) AVIRIS site, and specifically from the HyspIRI Airborne Preparatory
campaign website for Lake Tahoe and Grizzly Bay. Data were downloaded as Level 2 (L2) reflectances
with a standard atmospheric correction applied [43]. Data for Lake Tahoe and Grizzly Bay were
from 10 April 2014 and 2 October 2015, respectively (Table 1). Imagery was kept at native pixel
and wavelength resolution of 14.6 and 16.2 m respectively (both at ~10 nm spectral resolution from
400-2500 nm). For the Lake Tahoe image, the data were subsequently spatially binned using ENVI
(Harris Geospatial) to 60 m resolution. An AVIRIS image for Coal Oil Point in the Santa Barbara Channel
was obtained from the NASA Jet Propulsion Laboratory for 27 June 2017. Data were downloaded as
Level 1 (L1) orthocorrected at-sensor radiance, and subsequently atmospherically corrected using the
Fast Line-of-sight Atmospheric Analysis of Hypercubes (FLAASH; Harris Geospatial) software.

2.4. Landsat8 Operational Land Imager

The Operational Land Imager (OLI) imagery was accessed from the USGS EarthExplorer portal.
Images were chosen as close in time to the in-water measurements after taking into account cloud cover
and atmospheric conditions. The three selected images were from 16 June 2017, 2 September 2017, and
27 September 2017 for Coal Oil Point, Grizzly Bay, and Lake Tahoe, respectively. The L1C data were
atmospherically corrected using the iCOR plugin [44] for the SNAP (European Space Agency; ESA)
software package.

2.5. Sentinel-2, Sentinel-3 Imagery

MSI (Sentinel-2) and OLCI (Sentinel-3) imagery were accessed from the European Space Agency
as L1 files and processed using iCOR in SNAP. S2A-MSI data were from 26 June 2017, 14 September
2017, and 17 September 2017 for Coal Oil Point, Lake Tahoe, and San Francisco Bay. To meet constraints
of uniformity and sufficient number of pixels, San Pablo Bay (adjacent to Grizzly Bay, which is located
in Suisun Bay) was used for the analysis.

2.6. RapidEye Imagery

Data from the RapidEye-2 sensor were obtained from Planet Labs, Inc. as Level 3A orthorectified
TIFF images. The data were atmospherically corrected using FLAASH. Images were obtained for
9 September 2017, 27 September 2017, and 3 July 2017 for Grizzly Bay, Lake Tahoe, and Coal Oil
Point, respectively.

2.7. PRISM Imagery

Neither AVIRIS Next Generation (AVIRIS-NG) nor the JPL Portable Remote Imaging Spectrometer
(PRISM) were available for our selected sites, but one image for Elkhorn Slough, California, USA using
PRISM was analyzed to evaluate modern airborne sensors capable of supporting H4 imaging. Data were
obtained from JPL as Level 2 atmospherically corrected data as described by [45]. The deep-water
channel in Figure Video 2 [45] was used for analysis.

2.8. Calculation of Signal-to-Noise Ratios and Uncertainty

The signal-to-noise ratio (SNR) of a sensor can be estimated as the ratio of the mean signal for an
invariant target to the standard deviation of the signal. The SNR of an orbital or airborne sensor is
often measured in the laboratory, based on a standard target with (typically) spectrally uniform albedo
of 5% for instruments designed to image water [46]. Estimates of SNR convolve multiple sources
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of uncertainty (noise), which can include instrument artifacts and uncertainties revealed as part of
instrument characterization (discussed in greater detail by [23]). An alternative method, referred
to as “geostatistical SNR”, applies a semivariogram to a spatially uniform target from field data.
This provides an SNR that is relevant to the investigator [25] and can include the effects of atmospheric
correction, if applicable (C-AERO is flown at LSA during clear-sky conditions, and in the principal
plane of the sun, to minimize atmospheric effects as well as glint), thus providing SNR for L., rather
than at-sensor radiance. For this method to be applicable, it is assumed that the data exhibit stationarity
and isotropy, and that the selected region of an image does not change spatial resolution [25].

Here we apply a geostatistical SNR approach, generally following the methodology outlined
in [25]. For each sensor a representative region of the image was identified that meets the above criteria.
For C-AERO, which collects data along a linear transect, the data were comprised of a narrow swath or
transect across the target region. For the imaging sensors, a two-dimensional matrix was used (see
Figure 2 for representative examples). SNR was determined for each wavelength by calculating the
semivariance, y(h) over the distance between pixel pairs (h) using the MATLAB (Mathworks Inc.)
packages variogram and variogramfit. A theoretical semivariogram was calculated with the data to
estimate the nugget, sill, and range (c.f. [25,47]). The SNR was then calculated as the mean signal (z,
water-leaving radiance in this case) divided by the square root of the nugget variance (Cy):

z
VG

The non-zero intercept, or nugget (1, or Cy), determines the degree of unresolved variability,
or noise, and is the non-zero limit of 'y}, when h approaches zero, where & is the lag and vy, is the
semivariance as a function of the lag. The range (1) determines how quickly in space the variability
reaches a global maximum, while the sill (C1) determines the total resolved variance, and the range
beyond which pixel proximity does not correlate with the spatial structure of the data. Various
theoretical variogram models can be used depending on the structure of the data. Three of these

SNR =

M

theoretical models are formulated as:

]’12

Y =C¢o+cy [1- eXP(—;) )
h

Y =c¢o+c1 [1 - exp(—;)] 3)
co+ci(l), h<a

Vi —{ o+ali) @)
co+c, h>a

where (2) is a Gaussian, (3) is an exponential, and (4) is a bounded linear model. For this analysis
the top-performing model was determined based on the r? value of the fit, with the majority of
the semivariograms exhibiting r? values greater than 0.8; some wavelengths for AVIRIS data were
discarded when no model could be fit with reasonable results. As discussed by [47], real data may be
more complex than these theoretical models, with multiple nodes or inflections at distances less than
saturation. We note that the geostatistical approach would classify spatial variability in Ry for a given
scene as noise when it may in fact be real variability (structure) in the environment. For this analysis,
this bias was primarily in the OLCI-derived SNR, given the large (300 m) pixel size at native resolution.
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2.9. Uncertainties in R,s and Derived Geophysical Products

Following determination of SNR, we also calculated Ry;s uncertainty by converting the
water-leaving radiance to corresponding R;s values and converting the percent noise of the mean
signal to the corresponding Rs value. Following [48], the same weightings in a 3-band configuration
were used for calculation of chlorophyll (chla) from OLI and MSI. For kelp, the NDVI was calculated.
The relevant algorithms are:

log,,(chla)= ag + Z fai(loglo(Rbg) (5)

where Ry, is the ratio of maximum blue to green reflectance, and a0-a4 are weighting functions for
instrument-specific bands (c.f. [48-51]), and for NDV]I,

NDVI = (R —Rie) /(RNR 4RI (6)

where R}¢4, RNIR

are the remote-sensing reflectances for each band and sensor combination (c.f. [35]).
These data were then used to propagate uncertainty using the standard OCx band-ratio algorithm

for chlorophyll retrievals following [23], and for NDVI for the kelp targets using the following equation:

2 2
SNDVI = 2RRG \/ ( L ) + ( ! ) (7)
(REIR + Rigd)z SNRNIR SNRI'ed

where chla and SNDVI are the calculated uncertainties with units of mg m=2 for chla and dimensionless
units (-1 to 1) for NDVI.

3. Results

3.1. Minimal Uncertainty from Field Observations

Comparison of SNR, or uncertainty, for different sensors benefits from an initial comparison to
the lowest uncertainty field measurements as an objective standard. Previous analyses [23,52] used a
skylight-blocked approach (SBA) to measure above-water reflectance in very clear (oligotrophic) marine
waters. This approach estimated that the “state-of-the-art” uncertainties from these measurements
were ~1% for typical blue water Rys (443 nm) of 0.01 sr~!, and suggested this value (1% uncertainty) as
an achievable minimum uncertainty for field measurements. Here, we provide data obtained from
C-OPS with C-PrOPS demonstrating how this uncertainty estimate varies as a function of water clarity
and type (Figure 3). We confirm that uncertainty of ~0.0001 sr~! is achievable across a wide wavelength
range (313-875 nm) and water masses, providing a realistic baseline for comparison of airborne and
satellite-derived uncertainty estimates. The average uncertainty from C-OPS with C-PrOPS across
the three sites was 0.42% with a maximum value of 1.35% at 380 nm, demonstrating an ability to
routinely provide high-quality in-water observations from ultra-oligotrophic to optically complex
estuarine waters.
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Figure 3. Remote-sensing reflectance (Rys) uncertainty (sr~!) calculated from field measurements using
a Compact-Optical Profiling System (C-OPS) profiling radiometer (circles) for oligotrophic (open),
mesotrophic (grey), and eutrophic (black) sites corresponding to Crater Lake, OR; Grizzly Bay, CA;
and Lake Tahoe, CA. For comparison, values from [23] are shown (squares) for the skylight-blocked
approach (SBA) approach from oligotrophic marine waters.

3.2. Airborne and Satellite-Derived Uncertainty

Comparison of SNR and Rys uncertainty for the airborne and satellite platforms shows consistent
performance across sites (Figure 4). It is assumed that an SNR of two is the absolute minimum
requirement for scientifically relevant data. It is often assumed that the at-sensor signal for aquatic
targets is ~5% of Liyp. Consequently, for a proposed at-sensor SNR of 400-1000, the corresponding
atmospherically corrected SNR should be 20-50. Given that there are other potential sources of variance,
doubling that minimum SNR to 40-100 provides a reasonable new threshold. For the NIR and SWIR
domains, the signal would typically be much less than 5%, but previously recommended SNR targets
are also lower.

At native resolution (i.e., without spatial binning) RapidEye-2 exhibited the lowest SNR
performance and correspondingly highest Ry uncertainty, followed by AVIRIS with a strong bias
towards degraded performance in the blue for Rys uncertainty, and a peaked increase in SNR at ~500 nm
with a rapid drop-off towards the blue and red wavelengths. AVIRIS also suffered from data loss
below ~400 nm and above ~750 nm after atmospheric correction because of negative radiances. OLI,
MSI, and OLCI are comparable, with higher SNR values in the visible and fairly low R.s uncertainty
(~0.0002-0.0006 sr~!). C-AERO consistently out-performed the other sensors (Figure 5) with very low
R;s uncertainty, approaching that of in-water measurements (Figure 3) with SNR values >100 across all
wavelengths, exceeding 1000 for the UV and blue wavelengths in mesotrophic waters.
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Figure 4. Signal-to-noise ratio (SNR) and uncertainty of Ry for dim and bright targets. (a) SNR for Lake
Tahoe (dim target); (b) SNR for San Pablo bright targets; (c) corresponding uncertainty for Lake Tahoe;
(d) uncertainty for bright targets. Symbols for panels (c,d) follow panels (a,b). The solid horizontal
lines in panels (c,d) denote recommended uncertainty levels (values should be below the lines).
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Figure 5. Signal-to-noise ratio (circles) and R;s uncertainty (squares) for C-AERO from Grizzly Bay
(grey) and Lake Tahoe (black).
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Atmospherically corrected PRISM data were only available for Elkhorn Slough. SNR and
uncertainties were improved in comparison to AVIRIS (Figure 6), with much better performance in
the blue part of the spectrum (<500 nm) as expected, because PRISM is blue-optimized for aquatic
retrievals [53,54]. The fairly low SNR (comparable to AVIRIS) is largely due to the calculations being
based on native resolution; AVIRIS pixels were ~20 m resolution while PRISM were 0.5 m (Table 1).
Spatial binning of the PRISM data would be expected to substantially increase the observed SNR.
Comparison of radiometric uncertainty demonstrates that PRISM exhibits ~2-10x less Ry uncertainty
compared to AVIRIS when processed similarly (Figure 6). The apparent discrepancy between SNR and
Rrs uncertainty for AVIRIS and PRISM can be accounted for by examining the data for each scene.
Ly values for AVIRIS were ~2x higher in the visible than for PRISM. Therefore, there was more signal
in the AVIRIS image and the resulting uncertainty was also larger. The L,, for AVIRIS was on average
2.86x higher than for PRISM, while the Rys uncertainty was 2.61x higher. The mean uncertainties
were 2.49% for PRISM and 17.5% for AVIRIS, resulting in an average percent noise that was ~7x
higher for AVIRIS compared to PRISM despite the comparable SNR. Despite the improvement in
Rys uncertainty with PRISM there was still a loss of data (negative radiances) below ~380 nm after
atmospheric correction.
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Figure 6. Comparison of AVIRIS (Grizzly Bay; dark grey) and PRISM (Elkhorn Slough; black) Rys
uncertainty, with the corresponding water-leaving radiance (L) values for each region (dashed black:
PRISM,; light grey: Grizzly Bay). Missing data below ~350 nm and above ~750 nm were caused by
negative radiances after atmospheric correction.

For kelp at Coal Oil Point, only four sensors were evaluated based on spatial resolution
requirements and data availability: AVIRIS, RapidEye-2, OLI, and MSI. Kelp provides a bright
target compared to typical aquatic scenes, so the data are presented as percent uncertainty for Ry to
simplify the comparison across all wavelengths (Figure 7). The SNR and radiometric uncertainty for
the kelp were comparable to that of the optically bright San Francisco Bay and Elkhorn Slough results
(not shown). For the four sensors, the same general pattern was observed with poorest performance
from RapidEye-2 and comparable performance for OLI, MSI, and AVIRIS (Figure 7). OLI was the
only sensor able to meet the PACE specified percent uncertainty ranges of 20% for 350-400 nm, 5% for
400-600 nm, and 10% for 660-710 nm. AVIRIS was below the threshold for 400-600 and 650-710 nm,
but suffered from data loss (negative radiances) after atmospheric correction for wavelengths less
than ~500 nm, and would not meet the 10% threshold if the PACE guidelines of 10% uncertainty were
extended from 710 to 900 nm.
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Figure 7. Percent R;s uncertainty for a kelp target at Coal Oil Point. Solid horizontal lines indicate the
recommended percent uncertainty from the Plankton Aerosol, Cloud and ocean Ecosystem (PACE)
Science Definition Team. Data below ~490 nm for AVIRIS were removed because of negative radiances
after atmospheric correction.

3.3. Derived Chlorophyll and NDVI

Data for all sensors were converted to R;s and then used to calculate chla for C-AERO, AVIRIS,
OLI, MS], and OLCI, and NDVI (for kelp) using AVIRIS, OLI, MSI, and RapidEye-2. In-water validation
data were not available for sensors other than C-AERO, so 6chla, and NDVI, are presented as percent
uncertainty due to the estimated error and not in direct comparison with measured in-water values.
Reported uncertainty is, therefore, only an indication of the sensor performance and does not account
for potential uncertainties or biases in the underlying algorithm, except for the C-AERO data.

For the two C-AERO flights, measured TChla was 0.444 mg m~2 (Lake Tahoe) and 2.251 mg m~>
(Grizzly Bay), which would classify these waterbodies as mesotrophic and eutrophic, respectively [55].
The corresponding C-AERO data using the OC3M algorithm were 0.419 mg m~> and 4.818 mg m~>
chla respectively, or 5.73% and 114.06% relative percent difference (RPD). The larger RPD for Grizzly
Bay is presumed to be related to the optical complexity and spatial heterogeneity of the target [31]
rather than the sensor. When OC3M was applied to the closest temporally and spatially coincident
data from C-AERO and C-OPS for Grizzly Bay (same data collection but for a region of the Bay not
used for the SNR calculation, because the flight line was shorter), the calculated values were 8.076 and
9.191 mg m2 chla, respectively, or an RPD of 12.13%. For comparison, and noting that these values are
not true matchups, calculated chla for Lake Tahoe for AVIRIS, OLI, MSI, and OLCI was 0.118, 0.568,
0.620, and 0.240 mg m~3, respectively, while for Grizzly Bay it was 3.576, 2.751, and 3.516 mg m~> for
AVIRIS, OLI, and MSI, and 17.708 mg m™3 for San Pablo Bay from OLCL

A comparison of estimated biomass as chla and NDVI from the sensors for Lake Tahoe,
San Francisco Bay, and Coal Oil Point is provided in Figure 8. As summarized by [23], typical
global chlorophyll uncertainty is ~5%, while the acceptable total uncertainty for chla retrievals in the
open ocean have been set at 35%, i.e., approximately 25% each for the inversion of remote and in situ
optical measurements [56]. For coastal California, a recent assessment provided average errors of
~11%-14% when using in situ matchups with coincident satellite overpasses [57].
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Figure 8. Percent uncertainty for chla (black: Lake Tahoe; dark grey: San Francisco Bay) or NDVI (light
grey: Coal QOil Point).

Assuming that dchla and SNDVI can be partitioned into the combined uncertainty of instrument
and atmospheric correction error (evaluated here), algorithm performance, matchup requirements,
and uncertainty in field measurements [57], a reasonable threshold is that no more than half the
combined uncertainly should be attributable to the sensor and atmospheric correction. This would
provide a first-order threshold of between 2.5%-17.5% uncertainty, with the caveat that the algorithm
performance may be much worse than typical open ocean uncertainty in complex coastal waters
(e.g., RPD > 100% for Grizzly Bay when relaxed spatial/temporal matchup criteria were employed).
With the exception of AVIRIS for dchla at native spatial resolution, dchla and 6NDVI uncertainties
were well within this proposed threshold of 17.5% uncertainty.

4. Discussion

Numerous investigators have estimated at-sensor SNR for existing satellite sensors, including
similar geostatistical analysis for OLI and MSI [58,59]. The results obtained here for those two sensors
were actually better than expected, with an average SNR in the visible bands (for bright and dim
targets) of ~28 for OLI and ~48 for MSI compared to at-senor SNR of ~124 and ~110 [59] for the same
sensors, which would be reduced to ~6 if 5% of the signal were attributed to L,y. This improved SNR
is not attributable to the semivariogram method, because we obtained comparable at-sensor SNR
values (data not shown) when processing the scenes without atmospheric correction. We note that for
OLI, MSI, and OLCI, the iCOR atmospheric package was used. This processing scheme tiles the full
scene into 15 X 15 km regions to calculate aerosol optical thickness (AOT), with the assumption that
the atmosphere is still homogenous at this scale, while high spectral variation is maintained [44,60].
This effectively smooths and increases the SNR of the NIR/SWIR bands used for atmospheric correction,
a method which was also recommended by [23] to improve SNR for NIR/SWIR bands. Despite
this correction, OLCI generally performed less capably than expected (evaluated using SNR, Ry
uncertainty, and derived chla), given the larger pixel size (300 m) and same atmospheric correction.
This is likely due to violation of the homogeneity requirement. San Pablo Bay was chosen (rather than
Grizzly Bay) given the small physical size of the bays being evaluated and the large pixel size, but
San Pablo Bay is still spatially heterogeneous (e.g., Figure 2). As would be expected, uncertainty in
derived chla decreased in Lake Tahoe compared to San Pablo Bay for OLCI, consistent with spatial
heterogeneity increasing with increasing pixel size. The geostatistical approach would treat underlying
environmental variability at this coarse spatial resolution as “noise”, suppressing the calculated SNR
for OLCL.
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For AVIRIS, [25] reported SNR was ~20-160 for sediment-laden water in the visible bands (also
using San Francisco Bay) with peak values in the green. Our results peaked at 580 nm with a range in
the visible of 6.3-60.5, consistent with bright water exhibiting ~37.5% albedo, and generally consistent
with [25]. We note that AVIRIS, PRISM, and RapidEye used a pixel-by-pixel atmospheric correction,
limiting potential improvement from NIR and SWIR smoothing.

While SNR is a frequently presented metric of sensor performance, less commonly reported are
radiometric uncertainties expressed as Rys (sr™1). Here we estimated both SNR and R uncertainty using
the same methods and for similar targets, allowing direct comparison of the sensors. The comparison
of PRISM data from Elkhorn Slough with AVIRIS data for Grizzly Bay (Figures 3 and 6) shows that at
native resolution, geostatistical SNR were similar for the two sensors. However, the R;s uncertainty is
5-10 times lower for PRISM compared to AVIRIS, with much better performance in the blue part of the
spectrum. Given the desire to document uncertainty in all derived products, it is arguably more useful
to report instrument performance as Rys uncertainty rather than as an SNR.

Regardless of the selected metric, direct comparison of the sensors with comparable targets
identifies the challenge in meeting proposed SNR and/or uncertainty estimates for existing and
next-generation sensors in real-world scenarios. The three most common uses of airborne remote
sensing for ocean color investigations are vicarious calibration, algorithm validation, and basic research.
From the perspective of SNR, establishing a set of thresholds or limits based solely on the calibration
and characterization uncertainty of the sensor with no other influences (e.g., environmental) provides
a starting point for comparative analyses, as follows: (1) For a theoretical research limit, there must be
more calibrated signal than noise, which is SNR = 2; (2) for a theoretical validation limit, the noise
must be within 15% of the calibrated signal, which is SNR = &; (3) for a theoretical calibration limit,
the noise must be within 5% of the calibrated signal, which is SNR = 50. For existing and proposed
satellites, similar SNR thresholds have been proposed, ranging from SNR = 30-100 (after accounting
for the albedo of typical aquatic targets), as described above. The PACE Science Definition Team [24]
provides comparable R;s uncertainty values of 0.0057 or 20% for py, (350—400 nm), 0.0020 or 5% for
Pw (400-600 nm), and 0.0007 or 10% for py, (660-710 nm). For dim targets, such as Lake Tahoe, all
of the existing image-based sensors struggle to meet either criteria, particularly in the UV and blue
wavelengths. C-AERO easily meets these requirements, but it is also designed as a point-sensor
for calibration and validation activities. Bright targets, such as San Francisco Bay, exhibit better
performance for image-based sensors, with PRISM, OLI, MSI, and OLCI all meeting the proposed
Rys uncertainty thresholds for the majority or all of the bands, and C-AERO again easily satisfying
the requirements.

In regards to calibration, validation, and research, none of these existing image-based remote
sensors have a performance that could support an operational calibration limit. Operational validation
is possible for several sensors over turbid waters or for a reduced spectral range over blue or turbid
waters (PRISM, MSI, OLCI, OLI, and AVIRIS). Research activities for an operational limit are not
limited in turbid waters except for AVIRIS at shorter wavelengths. For operational research over blue
waters, the principal limitations are for OLI, OLCI, and AVIRIS, which are restricted primarily to
wavelengths spanning the UV, blue, and green domains. For very bright targets, such as kelp, AVIRIS
and OLI can achieve reasonable SNR and uncertainty levels (Figure 7), while MSI shows degraded but
reasonable performance.

RapidEye provides the worst performance for kelp, but a significant tradeoff is the 5 m spatial
resolution it provides. For this analysis we specifically analyzed all sensors at native pixel resolution.
Spatial binning would, of course, improve SNR and uncertainty, and has been recommended in the past
to improve SNR and to remove artifacts such as striping (e.g., [48,49,58,59,61]), but this also defeats the
point of having high spatial resolution imagery (e.g., [48]). Using giant kelp (Macrocystis pyrifera) and
bull kelp (Nereocystis luetkeana) as relevant examples, historical aerial kelp surveys conducted by the
California Department of Fish and Wildlife employed 2 m pixel resolution. Cavanaugh et al. [35] were
able to reproduce the giant kelp canopy area in southern California using 10 m SPOT data, while [34]
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recently extended the record by merging 30 m historical Landsat and OLI data. However, as noted in
previous analyses, monitoring of smaller or less dense kelp beds requires higher spatial resolution
imagery [62].

Stekoll et al. [63] successfully used airborne imagery to map bull kelp in the Northern California
Current, but studies of bull kelp’s temporal and spatial trends remain largely absent from the published
literature despite the success in monitoring giant kelp. This lack of research is likely due to observation
and environmental challenges, e.g., the small patch sizes formed by bull kelp for a brief (few months)
period during autumn require high spatial resolution and sufficient SNR not available through existing
sensors. Thus, while global 60-100 m spatial resolution may be sufficient to capture aquatic water
column properties, important ecological targets would likely be missed at that resolution, and global
spatial resolution of 10-30 m is both technically possible and preferred [64].

While SNR and Ry uncertainty are one set of quantitative metrics, it is also important to consider
how sensor design influences retrieval of higher-level products such as chla and NDVI For the
instrument systems tested, uncertainties were obtained for water column chla and kelp NDVI that
would be compliant with our proposed maximum of 17.5% uncertainty, with the exception of AVIRIS
at native resolution (Figure 8). This is in striking contrast to the often substandard quantitative
radiometric performance for the same sensors. We note that we did not assess algorithm or sensor
biases associated with the data retrievals given the lack of direct matchups for all sensors, and that these
biases may be substantial for regional assessments [65]. Our results are consistent with the numerous
publications that have applied these sensors to coastal and inland waters successfully, demonstrating
that commonly used band-ratio algorithms are reasonably robust even when using less-than-optimal
data. Comparable radiometric and biogeochemical uncertainties across sensors also suggest that
existing sensors have similar enough spatial, spectral, temporal, and radiometric characteristics to
form virtual constellations or sensor webs [48,66,67], improving the temporal return rate of existing
high spatial resolution sensors such as MSI and OLIL.

We did not assess variability in atmospheric correction schemes because our focus was on using
standard (research or operational) products. We note, however, that there were obvious atmospheric
correction issues with several of the data sets, while one instrument suite (C-AERO) completely
avoids a need for atmospheric correction (because the flight altitude is so low). Regarding the former,
there were substantial data dropouts (zero or negative Lyy) for AVIRIS and PRISM, especially in the blue
and UV wavelengths but also in the red and NIR. This is particularly problematic for next-generation
sensors such as PACE, because it would be challenging to provide calibration or validation data from
existing platforms other than in-water sensors and C-AERO, and it would be impossible to apply a
large majority of the hyperspectral airborne data already collected, e.g., HyspIRI [14], to algorithm
development activities if the full spectrum is required without first substantially improving the
atmospheric correction for aquatic targets. Conversely, improvements to atmospheric correction would
immediately improve existing data (e.g., [68]) and likely contributed to better than anticipated SNR for
OLI and MSL

Looking forward, this analysis suggests that present operational sensors provide adequate
sensitivity to apply typical band-ratio algorithms to assess high spatial resolution capabilities. Existing
platforms could also be used in a virtual constellation or sensor web to simulate high(er) temporal
resolution. Of the two remaining components in H4 remote sensing, existing sensors, for the most
part, do not meet the requirements for high spectral resolution and high fidelity. In particular, AVIRIS
uncertainties are unacceptably high for moderately dim targets, while standard atmospheric processing
of AVIRIS results in significant spectral data loss, even over bright targets such as kelp. Next-generation
airborne sensors such as PRISM and AVIRIS-NG can address these shortcomings, but have yet to be
widely and routinely deployed for aquatic remote sensing.

While in-water measurements remain the standard for calibration and validation activities
(e.g., [23,40]), we also demonstrate that C-AERO, which is based on commercial off-the-shelf technology,
can provide equivalent high-fidelity data, which meet or exceed proposed criteria for H4 remote
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sensing, with the caveat that in the current configuration C-AERO is multispectral rather than
hyperspectral. C-AERO provides an ability to collect calibration, validation, and research-quality
data rapidly over much larger spatial areas than is possible using traditional in-water measurements,
so long as point-based rather than image-based sensing is acceptable, and is particularly relevant for
next-generation sensors that extend into the UV and SWIR wavelengths.

5. Conclusions

We provide a direct comparison of AVIRIS, OLI, MSI, OLCI, and RapidEye (with limited
evaluation of PRISM) and demonstrate that presently operational airborne and satellite sensors
capable of two-dimensional imaging are comparable in SNR and Rys uncertainty for typical coastal
targets. C-AERO, which produces one-dimensional transects, provides the highest SNR and lowest
Rys uncertainties. Despite the poor radiometric performance of the imaging sensors compared to
recommended thresholds, the derived biogeochemical products, chla and NDVI, are retrieved with
compliant accuracy. None of the existing imaging sensors can consistently produce data compatible
with H4 remote sensing requirements, but aspects of H4 remote sensing can be addressed with
existing data. Next-generation airborne sensors such as PRISM and AVIRIS-NG should immediately be
prioritized over AVIRIS-Classic, which exhibits poor performance for aquatic targets. Finally, existing
commercial off-the-shelf technology (C-AERO) exceeds all radiometric requirements for calibration
and validation of multi-wavelength sensors extending into the UV, NIR, and SWIR, providing an
ability to rapidly and inexpensively collect data at spatial and temporal scales relevant to coastal and
inland waters.
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