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Abstract: Incomplete datasets curtail the ability of archaeologists to investigate ancient landscapes,
and there are archaeological sites whose locations remain unknown in many parts of the world. To
address this problem, we need additional sources of site location data. While remote sensing data
can often be used to address this challenge, it is enhanced when integrated with the spatial data
found in old and sometimes forgotten sources. The Survey of India 1” to 1-mile maps from the
early twentieth century are one such dataset. These maps documented the location of many cultural
heritage sites throughout South Asia, including the locations of numerous mound features. An initial
study georeferenced a sample of these maps covering northwest India and extracted the location of
many potential archaeological sites—historical map mound features. Although numerous historical
map mound features were recorded, it was unknown whether these locations corresponded to extant
archaeological sites. This article presents the results of archaeological surveys that visited the locations
of a sample of these historical map mound features. These surveys revealed which features are
associated with extant archaeological sites, which were other kinds of landscape features, and which
may represent archaeological mounds that have been destroyed since the maps were completed
nearly a century ago. Their results suggest that there remain many unreported cultural heritage sites
on the plains of northwest India and the mound features recorded on these maps best correlate with
older archaeological sites. They also highlight other possible changes in the large-scale and long-term
distribution of settlements in the region. The article concludes that northwest India has witnessed
profound changes in its ancient settlement landscapes, creating in a long-term sequence of landscapes
that link the past to the present and create a foundation for future research and preservation initiatives.

Keywords: historical maps; heritage sites; GIS; landscape archaeology; Survey of India; South Asia;
Indus Civilization; archaeological survey

1. Introduction

Archaeological site locations are an essential dataset for investigating the long-term and large-scale
transformations of cultural and social landscapes. Wilkinson [1] argued that as social processes change,
they materialize different ‘signature landscapes,’ the comparison of which can reveal the dynamics of
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past human societies. Past settlement landscapes associated with early cities and polities are particularly
extensive by their nature. Investigating these landscapes therefore requires data from across large areas,
but the process of locating ancient cultural heritage sites through archaeological survey is expensive in
terms of both time and resources. Surveys are best employed in concert with other spatial research
methods, which can be used to build up datasets that allow research over long periods of time and
over extensive areas [2–4]. Historical maps are one such dataset, offering information from a range of
periods that can complement remote sensing-based approaches to identifying cultural heritage sites [5].
This article presents the results of archaeological field surveys designed to ground truth a GIS-based
analysis of 1” to 1-mile maps produced by the Survey of India from the early twentieth century,
and reveals a sequence of ancient landscapes that have not previously been reported or recognized.

South Asia has been home to complex societies for over four millennia [6–11], but analysis of
its signature landscapes remains in a preliminary state. One reason for this lacuna is that settlement
distribution data from past societies in South Asia are incomplete [4,12–14]. In many parts of the
world, remote sensing approaches have extended the spatial and temporal range of archaeological
investigations, allowing researchers to examine larger areas and identify potential archaeological
sites [1,15–18]. However, systematic remote sensing data are constrained to the last 40 years or so
and early aerial photography that covers a longer time-span is not available for many study areas.
This limitation is an acute problem, especially in regions that have undergone extensive development
in the last century. Historical maps can therefore enhance remote sensing datasets. The colored
Survey of India 1” to 1-mile maps, produced from the start of the twentieth century, are of high-quality
and documented the location of towns, canals, roads, and topographic features, with the aim of
improving military intelligence and increasing colonial control [5]. These maps advanced British
imperial ambitions, but they also preserved a wealth of information about the landscapes these early
surveyors encountered. They can be used to identify landscape transformations at particular points
in the past, such as the historical transformations that unfolded as the city of Dera Ghazi Khan was
destroyed by changes in the Indus River’s floodplain [19].

This article presents the results of archaeological surveys that were carried out as part of the
TwoRains project, an integrated research project that considers the relationship between the Indus
Civilization and climate change in northwest India. A previous study of a selection of these historical
maps has revealed the location of nearly nine-thousand historical map mound features distributed
across much of the modern Indian states of Haryana and Punjab (Figure 1) [5]. Given the early date
at which these maps were composed, variability between individual maps, and ambiguity in their
symbologies, some of the features they recorded may not have been archaeological sites or may no
longer be present. The total number of reported archaeological sites located through archaeological
surveys in the area covered by the Survey of India maps has grown steadily since the 1960s [4,20–23],
but a generous count would yield only around two-thousand reported sites in northwest India. Many
of these locations were recorded prior to the use of global positioning systems (GPS) devices, and a large
proportion of the reported geographical coordinates could be inaccurate or duplicates [4]. These data are
of high potential value for archaeological investigation and preservation initiatives, but it is unknown
what proportion of the mound features seen in the 1” to 1-mile maps are extant archaeological sites,
other kinds of landscape features, or sites and features that have since been destroyed. For those that
are extant sites, it is unknown to which chronological period(s) they may belong. Before this important
dataset can be integrated with remote-sensing approaches to contribute to debates about settlement
distributions and signature landscapes in northwest India, it must be ground truthed strategically to
ensure its accuracy and precision. Toward this end, two seasons of extensive archaeological survey
were carried out to ground truth a sample of these historical map mound features. The results of these
surveys reveal the location of numerous heritage sites, making them available for future study and
preservation, and provide crucial insights into the scale and dynamism of the region’s archaeological
landscapes. They also provide substantial corpus of location data that can be used to augment future
remote sensing studies and provide important spectral signatures for specific types of archaeological
sites for the implementation of ongoing automated site detection procedures.
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1.1. Historical Maps, GIS and Remote Sensing

Historical maps have the potential to complement other spatial research techniques, such as
remote-sensing, thereby facilitating holistic investigations of archaeological landscapes [5,24–26].
Geographical information systems (GIS)-based methods are essential to transforming old and sometimes
forgotten documents into spatial data for multi-method analyses that include sources that are difficult
to compare as discrete documents [27–31]. GIS allows maps, plans and other features to be transformed
into digital vector data with spatial coordinates—points, lines and polygons that can store additional
attribute values along with x, y and z coordinates. Vector data can be extracted from historical
documents and integrated with those from other sources (e.g., [32]), such as remote sensing data
(e.g., [19,26]), and importantly, can be combined with digital navigation tools to facilitate archaeological
fieldwork. Many GIS tools are open source and open access, and can be combined with other accessible
data sources such as Google Earth Imagery, dramatically improving the resolution of cultural heritage
landscape data in many parts of the world [33–35].

Unlocking the potential of the Survey of India 1” to 1-mile map series to facilitate landscape
research in northwest India requires a multi-stage GIS-based approach. In an initial phase of research,
64 maps were geo-referenced (Figure 1), geo-rectified, and systematically searched for symbols that
may refer to archaeological sites. This initial study provided the underlying data that was used in
the present article, and is described at length in a separate article (e.g., [5]). In this foundational
study, map scans were georeferenced using tools found in either ArcGIS or QGIS. A minimum of
20 ground control points were created by comparing mapped features such as canals, railroads and
village blocks to world imagery sources. Second order polynomial and the “adjust” transformation
in ArcMap were then used to transform the scans. Low root mean square errors were attained
through these transformations. These georeferenced maps were then searched systematically for
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features of archaeological potential. Many archaeological sites in South Asia, especially those that were
established following the emergence of its first sedentary agro-pastoral communities, take the form of
elevated mounds that rise above the surrounding plains (Figure 2). These kinds of landscape features
were typically denoted by Survey of India cartographers using shading, form-lines, hachures, or a
combination of the three (Figures 3 and 4) [5]. Systematic georeferencing and examination of these
maps made it possible to extract the location of a large number of such features, which were tabulated
along with the spot-height, symbol-type, and approximate size category of the feature in question
(1: 0–200 meters, 2: 200–400 meters, 3: >400 meters). The resulting table included almost 9,000 of these
historical map mound features, many of which could correspond to archaeological sites [5].Remote Sens. 2019, 11, x FOR PEER REVIEW 5 of 26 
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Once the utility of the historical map mound features has been established through ground
truthing, these data can be integrated into studies that incorporate aerial imagery and remote sensing
approaches to address some of the limitations of these techniques. Archaeologists have employed
aerial imagery for archaeological prospection and documentation for over a century [36,37]. Satellite
and aerial remote sensing approaches have revolutionized the search for archaeological sites in
many areas [1,18,38]. These site discovery techniques greatly enhance researchers’ ability to locate
archaeological sites that are associated with different periods in the past [1,15–18,39,40], particularly
those located in remote or inaccessible regions [41–45]. While remote sensing approaches have been
employed in South Asia [46–49], their applications remains limited, and the most popular sources
of data for remote sensing analysis (e.g., Corona, Gambit and Hexagon Key Hole program, Landsat,
ASTER, Ikonos, Copernicus) have a range of limitations, the most important being that they were only
acquired from the 1950s onward and only specific areas were covered [5]. The potential of remote
sensing approaches is also constrained in areas undergoing rapid large-scale development, which can
bring about substantial transformations in the present landscape. In northwest India, the flattening of
the landscape in service of irrigation agriculture can make it difficult to distinguish archaeological sites
from other landscape features that have similar remote sensing signatures. Integrating historical maps
into investigations of these landscapes can help address both limitations [5].

1.2. Archaeological Survey in Northwest India

The plains of northwest India stretch across the states of Rajasthan, Haryana and Punjab. The region
played a key role in the formation of the Indus Civilization (c. 2600–1900 BC) [11,50], which emerged
across the Indus River Basin and surrounding regions, and was one of the world’s earliest urban
societies. The Indus Civilization was comparable in scale and complexity to contemporaneous polities
in southern Mesopotamia and Egypt [9], though there is evidence that it encompassed a larger and
more varied geographical area [21,50]. Five large sites have been located across the Indus Civilization’s
extent, each of which has been identified as a city [6,7,10,51–53], and each city lies in a contrasting
environmental setting, suggesting that environmental diversity played an important role in South
Asia’s first urbanization [50]. The great majority of the Indus Civilization’s settlements appear to have
been smaller than 20 hectares, indicating the importance of its rural communities [50,52,54–56].

The fact that northwest India continued to play an important role in the long-term social trajectory
of South Asia long after Indus settlements had been abandoned has often been overlooked. Surveyors
cannot (and should not try to) choose the chronological periods associated with the sites that they
encounter. Investigations that have focused on Indus sites have also produced the locations of hundreds
of sites from later periods, such as the historical Early Historic and Medieval periods. In some cases
(e.g., [57,58]), the number of these later sites, which tend to be larger and better preserved than
their protohistoric counterparts, far exceeds that of Indus-related sites reported. This pattern is not
surprising, as the plains of northwest India have provided a rural hinterland to many of South Asia’s
subsequent polities, states, and empires. The region formed an important geographical link between
major population centers in the Gangetic Basin and the Indus plains in later phases. By the Early
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Historic period, large-scale cities had been re-established on the plains of northwest India, likely
including Indraprastha, an early settlement that is argued to have become today’s Delhi [59]. A series
of successive polities, including Ashoka’s Mauryan Empire (324–187 BC), extended their influence over
increasingly extensive territories, bringing them under the political control of capitals based thousands
of kilometers away [60]. At the start of the long Medieval period, major cities such as Agroha [61] were
established in the region (Figure 3). Each of these societies materialized signature landscapes that built
upon and transformed the landscape of its predecessors.

Though there has been a significant number of extensive archaeological surveys across the extent
of the Indus Civilization [20,54,55,57,62–64], northwest India remains arguably the most surveyed
part. The region marks the Indus Civilization’s easternmost extent, though there is no environmental
boundary between the plains of northwest India and those of Pakistan’s Punjab province to the west,
where Harappa is located along a major tributary of the Indus River. The distribution of villages
across northwest India begins at the northern edge of the Thar Desert, where dunes co-occur with
arable inter-dunal areas, and continues into wetter parts of Haryana and Punjab, both of which
receive water from winter and summer rainfall systems [50]. Northwest India was a key setting in the
Indus Civilization’s de-urbanization. A weakening of the Indian summer monsoon appears to have
prompted a two centuries-long process beginning c. 2100 BC, after which there is evidence that the
number of small settlements in northwest India increased in some areas [65,66], though the increase
did not have a uniform impact on the entire region and some areas were favored over others [4,50].
This pattern suggests that the region was particularly conducive to rural resilience and long-term
sustainability [50,67].

Two major phases of archaeological survey generated most of northwest India’s substantial site
location dataset [4]. Suraj Bhan [68,69] led a period of extensive archaeological surveys, and many
subsequent scholars, including Amar Singh [70], adopted Suraj Bhan’s approach, contributing hundreds
of site location reports to the corpus of Indus settlement location data. Much of this work was initially
presented in Indian Archaeology: A Review, and ultimately collated in early studies of the Indus
Civilization’s settlement distribution [20]. By this time, ‘village-to-village’ survey techniques had
become well-established in Indian universities, which undertook efforts to survey the entire region
one administrative unit at a time—be they districts, blocks, or tehsils [4]. Additional surveys were
undertaken by MPhil and PhD students beginning in the 1990s. Many of these have not been formally
published, and exist only as single-copy manuscripts in university libraries, though there have been
efforts to synthesize this work and make it available to broader scholarship (e.g., [22,23,71]). Excavations
at sites throughout northwest India [69,72–80] established their contemporaneity with the Indus cities
in Punjab and Sindh in Pakistan. Most significant was the identification of Rakhigarhi as one of the
Indus Civilization’s five known cities [69].

A second period of archaeological surveys began with the advent of GPS technology. The Indus
Project, for example, undertaken by the Research Institute for Humanity and Nature in Kyoto,
collaborated with South Asian institutions to undertake a series of surveys, including reconnaissance in
northwest India (e.g., [78,81]). At the same time, the Land, Water and Settlement (hereafter LWS) project
began an extensive investigation of the small-scale sites that typify Indus settlement in northwest
India [12]. LWS conducted two extensive surveys, one in the region immediately surrounding
Rakhigarhi [64] and one over a broad area surrounding the course of the Ghaggar River in northern
Haryana [57]. As the use of GPS became well integrated into archaeological survey techniques,
the number of reported sites continued to rise in northwest India, and major survey projects were
carried out throughout the region [71,82–86]. These projects resulted in an aggregate dataset of around
two-thousand site locations, which had been reported with the aid of GPS in northwest India and
spanned all of the periods in which the region was known to have been occupied [4]. Even these
locations, which were more precise than those that had been collected prior to 2010, are not without
their problems, as the data were collected by different teams using different methods [4], and there are
a number of simple reporting errors in the dataset [57,64].
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1.3. Survey of India Maps and Northwest India

The initial analysis of the Survey of India 1” to 1-mile map series for the TwoRains project produced
a corpus of nearly nine-thousand mound features distributed across a large part of northwest India that
could be archaeological sites [5] (Figure 5). There is little or no apparent patterning in the distribution of
particular types of features, with concentrations of shaded, hachure, and form-line features occurring
to varying degrees across the maps. The area covered by the maps does not directly correspond to
that covered by archaeological surveys, and reveals historical map mound features in areas that were
ostensibly un-surveyed. Confirmation that many of these historical map mound features are extant
archaeological sites could transform knowledge of South Asia’s ancient landscapes.
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2. Materials and Methods

A sample of 779 historical map mound features found in the initial study tabulation [5] were visited
in the field to determine whether an archaeological site was present and assess the age of any material
culture visible on the surface of the possible mounds. These field surveys constituted the second phase
of research aimed at developing the historical maps as a data source for subsequent studies of South
Asia’s archaeological landscapes (Figure 6). They were undertaken over two field seasons in 2017
and 2018. The survey team conducted extensive surveys across areas where many historical map
mound features are located [58,87]. These surveys were systematic and comprehensive, drawing on
an arbitrary hexagonal grid of 100-square-kilometre regional grid units (RGUs) and incorporating
additional locations from previous surveys, Google Earth imagery, and local informants into its
regional sampling strategy. The survey’s workflow was digital; field activities were organized using
QGIS (qgis.org), locations were visited by navigating to them using the Android App AlpineQuest,
and all data (including locations and notes specific to each location) were collected via Open Data Kit
(opendatakit.org). During fieldwork, historical map mound features that fell within a sampled RGU
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were selected using a GIS and exported with their geographical coordinates as comma-separated-values
(.csv) files. These tables were then imported into AlpineQuest, which projected these locations on
Google Satellite and Google Maps basemap layers. This integrated cross-platform process allowed
the team to identify a route to each location in the field, and assess the presence or absence of an
archaeological site.
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The survey sought to address a range of questions by linking the settlement distributions produced
by previous surveys projects so that large areas could be analyzed. The four objectives were to: (1) verify
and enhance the results of earlier surveys by re-visiting previously identified sites [58]; (2) identify new
archaeological sites through village-to-village survey in areas of poor coverage; (3) check the signatures
of archaeological sites in remote-sensing data and remote-sensing-derived datasets; and (4) visit the
locations of historical map mound features to determine whether they corresponded to archaeological
mounds. This paper addresses the fourth objective, explicitly considering how well the mound features
identified on the historical maps corresponds to present site locations.

2.1. Study Area

The surveys included areas where many historical map mound features were located (e.g., 44O9).
In some of these areas, few or no archaeological sites have been previously reported, which suggests that
there are vast numbers of archaeological sites that are yet to be surveyed in northwest India. Areas where
few historical map mound features have been reported were also surveyed (e.g., 53C2). The surveys
examined patterns recorded in the distribution of mound features, such as a linear concentration
running from the southwest to northeast of some maps (e.g., 44O9), and dense concentrations of
mound features located around Tohana (44O14). There was also a linear concentration extending away
from Tohana and a similar linear concentration to the north and west that progresses across multiple
map sheets, indicating that the maps may depict some underlying patterns in settlement distribution.
The concentration of historical map mound features declines toward the southwest of the survey area
(Figure 7), as the heavily irrigated agricultural land of Haryana gives way to the sand dunes on the
margins of Rajasthan.
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2.2. Filtering Criteria

The RGUs that make up the study area were compiled into a single GIS that was used to implement
the field survey (Figure 7). For each RGU, layers that included historical features and previously
reported sites within a particular RGU were generated and then visited in the field (Figure 8). After
compiling the historical map mound features table for a particular RGU, the data were then filtered
to ensure that features belonging to a range of categories and were distributed throughout the RGU
were visited.

The survey procedures progressed over the course of the two survey seasons. In the initial phase
of the survey, all historical map mound features that were in the size-2 or size-3 categories (>200 meters
across) were assessed [58]. Next, a sub-sample of features in the size-1 category that were distributed
throughout the RGU were visited until ten were found to lack traces of archaeological sites. This often
meant that every historical feature identified in an RGU was visited, but in some instances, several
size-1 historical features were not tested. It became clear that the smallest historical map mound
features were rarely associated with extant archaeological sites, so in 2018 the filtering criteria were
modified [87]. The survey continued to ground truth all size-2 and size-3 features, but the size-1
features were reviewed for a second time prior to visiting them in the field. The corresponding Survey
of India 1” to 1-mile map was rechecked, and features with symbols that apparently did not correspond
to archaeological sites (i.e., when a landscape feature was present hachure features adjacent to villages
were sometimes ponds (n = 12) and shaded features were often dunes (n = 42)) were omitted from field
visits. Instead of completing the testing at 10 negative location visits, the team continued to survey
these ‘medium-probability’ locations until all had been visited. Once a sufficient number of features
had been tested, the team marked the RGU as complete.
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2.3. Field Assessments

Most of the land in northwest India is presently organized into square 1-acre plots, which are
divided by irrigation ditches that are watered either by large-scale canals or pumps from tube wells
(Figure 9). While the scale of crop production is today quite large, most agricultural work is completed
using hand tools. As such, pedestrian-level access to most fields is generally good. Access to fields and
to some ground surfaces was provided by access roads and irrigation ditches. In some instances, there
were obstacles interrupting potential transects through fields, so the field assessment process retained
a degree of flexibility. In both survey seasons, high crops limited visibility, but it was possible to assess
at least a portion of the surface of most sites for artifacts.

Upon arrival at a potential archaeological site, the team approached the location on foot, and at
least two team members walked in diverging transects for approximately 500 meters along open
land (i.e., along field boundaries, irrigation ditches, crop rows or exposed sections), searching for
archaeological features or artifacts. In some parts the survey area, there was a relatively high density
of artifacts on the surface, especially at intact mounds. In other areas, modern potsherds were found
scattered throughout the fields, particularly near pump-houses. Across the entirety of the survey area,
there were low densities of heavily worn pottery sherds that were not indicative of any particular
period in the past. These worn sherds were often indistinguishable from modern ceramics, though
they may have been scattered through the fields as a result of the destruction of nearby archaeological
sites. An expansive area of northwest India could thus be classified as a continuous ‘archaeological site,’
but to do so would not advance knowledge of South Asia’s past landscapes. To compensate, the team
defined an archaeological site as a minimum of two artifacts or features of verifiable antiquity within
five meters of one another. Prior to these TwoRains surveys, archaeological sites were defined implicitly,
resulting in inconsistent site definitions that make it difficult to interpret and compare the results of
individual survey projects. The two-artifact threshold the TwoRains team employed is admittedly
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arbitrary, designed as a baseline to prevent the classification of isolated finds of worn potsherds that
are far outside of their original contexts as archaeological sites. Ultimately, a shift toward the recording
of artifact densities would be preferable (e.g., [88]), but such a high level of documentation is resource
intensive, and the aim of the ground truthing surveys was to assess a large sample of the historical
map mound features across an extensive area.
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Upon encountering an artifact at the location of a historical map mound feature, the team searched
a circular area within a five-meter radius. If a second artifact was encountered, then the location
was recorded as an archaeological site and documented in detail. If possible, a ‘center point’ was
set for a full transect test (Figure 10). A formal surface collection was then completed at that center
point—all material within a 1 m-radius was collected for analysis—and a photograph of the surface
was taken. A range of information was then collected using the digital tablet, including the site’s
geographical coordinates, description, shape, overall preservation, visibility conditions, the nearest
present settlement, and preservation threat level. Any apparent site use or disturbance was recorded,
as were crops growing in the immediate vicinity, and the periods of occupation indicated by the
artifacts at the center point. In instances where a location was visited and no artifacts were found,
its coordinates were recorded and notes were completed before the team moved to the next test location.
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If the size, shape, and condition of the site allowed, transect tests were then undertaken (Figure 10).
Perpendicular transects (north–south and east–west) that met at the center point were established
using AlpineQuest, and additional surface collections were made at either 50 or 100 meter-intervals,
depending on the size and shape of the site. The transects were completed in halves—the team first
walked away from the center-point along one of the transects, and upon reaching either an impassable
obstacle (e.g., an irrigated field or a structure) or completing a surface collection that yielded no
artifacts, the team would walk to a surface collection unit on the adjacent transect an equivalent distance
from the last surface collection completed (Figure 10). This approach facilitated the identification
of the boundary of a site, while collecting a representative cross-section of artifacts from its surface.
An assessment of all the material collected from each site was then completed at the field camp, which
clarified the periodization initially established in the field.

Completed ODK forms from both the assessment were then uploaded into an instance of ODK
Aggregate hosted on a Google Cloud Server. These were exported as .csv tables and then downloaded
to the field laptops. These data were used in a quantitative analysis that identified the proportions of
features in each symbol category that were in fact archaeological sites. The results were added to a GIS
to examine patterns in the distribution of archaeological sites against patterns in the distribution of
different kinds of historical map mound features.
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3. Results

At a glance, the landscape the survey team encountered was flat and level, punctuated by tree-lines
surrounding modern roads and villages situated on gentle rises. Occasional dunes rise gently in
various areas, and their low summits are typically located far from canals or watercourses. These
features are most often located in the least agriculturally developed parts of northwest India. In recent
decades, the region has become progressively homogenous agriculturally, with a large portion of the
land area consisting of low-lying farms divided into 1-acre-plots that produce irrigated crops (i.e., rice
and wheat). The present landscape is characterized by four ongoing social processes: large-scale
irrigation canal construction, maintenance and use; small-scale mechanized efforts to level the land to
improve irrigation; growth of the villages that intersperse agricultural land; and the rapid expansion
of developing towns and cities and their associated infrastructure (e.g., highways, power stations)
(Figure 11). A rapidly developing landscape of towns and cities interconnected by major newly
constructed interstate highways therefore cuts across this village landscape. The study area exhibits
low levels of relief not just because of the floodplain character but also because of decades of agricultural
production. This flattening process has been exacerbated by millennia of seasonal flooding, which
have resulted in significant infilling [89,90].
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Figure 11. Modern signature landscapes. (A) Villages and local roads, (B) rapidly developing highway
infrastructure and towns. Towns and highway infrastructure derived from Open Street Map (2019);
Basemap: Google Earth Satellite Imagery (2019); Coordinate Reference System: World Geodetic
System 1984.

Despite the homogenizing forces of agricultural and urban development, there is notable
environmental variation within the study area [50,89]. The northern RGUs, including those around Jind
and Tohana, and those immediately north of Sirsa (Figure 12), are irrigated by modern large-scale canals.
The areas adjacent to those canals were particularly low-lying. From Agroha to Tohana, there has been
less levelling for irrigation and a wider variety of environmental features were encountered, including
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extensive dunes with gentle slopes that rose from the southwest of the study area. Site preservation
was still impacted by the construction of highways interlinking the cities of Tohana, Barwala, and Hisar.
As the landscape becomes increasingly characterized by these dune features toward the southwest, the
number of preserved cultural heritage sites decreases. A different set of survey techniques may thus be
necessary to recover archaeological site locations in these areas.
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A total of 199 historical map mound features were associated with an extant archaeological site
in the present landscape (Table 1). There are clusters of sites around Sirsa, Tohana, and Jind. Each
corresponds to a cluster of historical map mound features (Figure 12). The total number of features
where archaeological sites were present (n = 199) equates to around 25% of the total tested historical
map mound features. The majority (n = 169) of these site locations had not been reported by previous
surveys, though many of the site locations reported prior to 2009 did not include specific or precise
geographical coordinates, and it is possible that some of these sites had been visited by archaeologists in
the past. Re-visitation of previously documented sites allowed the team to update reported coordinates
and assess the current status of the site’s preservation. Still, there were numerous sites that fell within
areas surveyed by previous projects that reported no sites, especially in the corridor from Tohana to
Agroha. An additional 64 sites that do not appear to be associated with historical map mound features
were also identified.
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Table 1. Site presence/absence at ground truthed historical features, and proportions of tested features
in each category with extant archaeological sites.

Feature Type Total
Positive % (n)

Size 3
Positive % (n)

Size 2
Positive % (n)

Size 1
Positive % (n)

combined 40 (5) 50 (2) 33.33 (3) 0 (0)
form line 38.17 (393) 54.05 (37) 58.62 (116) 25.83 (240)
shaded 13.64 (154) 5.56 (18) 15.79 (76) 13.33 (60)
hachure 11.45 (227) 0 (1) 40 (25) 7.96 (201)

totals by size 37.93 (58) 41.36 (220) 17.17 (501)

The survey area included only a small number of well-preserved mounds, as the majority of the
region’s archaeological sites have undergone some degree of levelling to improve irrigation or earth
mining for brick manufacture. Intact archaeological sites included the sprawling Medieval site of
Uklanamandi (L329), and the well-preserved Early Historic mound near the village of Khasam in the
same area (L279). The most common type of site encountered was an elevated mound that had been
cut into terraces as landowners level square acre plots, producing multiple tiers [87]. Some sites had
been completely removed, and were detectable only as occasional scatters of artifacts in irrigation
ditches, or as a thin layer of artifacts in a section.

Size-2 form-line features most often corresponded to archaeological sites in the present landscape.
Archaeological sites were identified at nearly 60% of the locations associated with this category of
historical map mound features (Table 1). A complete table of tested locations is available in Table S1.
Size-3 form-line features were also frequently archaeological sites (54%), as were features that combined
form-lines with other elements (40%), though few of the latter fell within the sampled area (n = 5).
Size-2 hachure features also often corresponded to archaeological sites in the present landscape (40%),
but size-1 hachure features were rarely archaeological sites (8%). Overall shaded features were only
rarely archaeological sites (13.64%) and indeed appear to most likely refer to sandy topographical
features, such as dunes, which are themselves often undergoing removal (Figure 13).
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Figure 13. Dune surface encountered during the survey.

While most size-1 features were not associated with extant archaeological sites, the number
of size-1 form-line features that were was relatively high (n = 62, 26%). Overall, size-1 form-line
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features were twice as likely to be associated with extant archaeological sites than the shaded (13%) or
hachure (8%) features in the same category. Together with the general observation that larger map
features most often corresponded to extant archaeological sites in the present landscape, the strong
association between form-line features and extant archaeological sites reveals that form-lines were
the surveyors’ preferred symbol for depicting the kinds of topographical features that most often
corresponded to archaeological sites in the areas assessed. When hachure features did correspond
to features in the present landscape, they sometimes turned out to be mounds adjacent to ponds in
modern villages, presumably related to pond excavation (Figure 14). Ponds corresponded to two
poorly printed form-line features that did not turn out to be archaeological sites. Shaded features in all
size categories often turned out to be sand dunes or natural topographic features. All features in the
size-1 category—archaeological sites and sand dunes alike—appear more likely to have been removed
as the landscapes of the region have been transformed over the last century.Remote Sens. 2019, 11, x FOR PEER REVIEW 16 of 26 

 

 

Figure 14. Many hachure features were extant ponds, as seen here. 

Given the relative strength and predictability of the relationships between particular kinds of 
historical map features and archaeological sites in the present landscape, it was possible to prepare a 
calibrated heat-map using QGIS that weights the raster interpolation using the probability that each 
historical map mound feature type corresponds to an archaeological site (Figure 15). The ‘weight 
points by’ function was used to assign each category a value associated with the probability its 
symbol and size category was an archaeological site. Form-line size-2 features were weighted 58.62, 
hachure size-2 features were weighted 40, and so forth (see Table 1 for probabilities). The resulting 
map predicts the location of additional sites across northwest India, including areas that have yet not 
been surveyed. The concentrations of historical map mound features in the southern half of the study 
area corresponded to known clusters of archaeological sites, strongly suggesting other hot spots also 
correspond to archaeological sites. These results indicate that there remain many archaeological sites 
to identify and preserve. There are also sizable voids surrounding many of these concentrations, 
suggesting either that some parts of the landscape lacked significant numbers of archaeological sites 
in the early twentieth century, or that the surveyors who carried out work on certain maps were less 
concerned with documenting mound features in those areas. It is thus worth considering the 
correlation between the patterns revealed by the historical maps and previously surveyed 
archaeological sites more closely.  
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Given the relative strength and predictability of the relationships between particular kinds of
historical map features and archaeological sites in the present landscape, it was possible to prepare a
calibrated heat-map using QGIS that weights the raster interpolation using the probability that each
historical map mound feature type corresponds to an archaeological site (Figure 15). The ‘weight
points by’ function was used to assign each category a value associated with the probability its symbol
and size category was an archaeological site. Form-line size-2 features were weighted 58.62, hachure
size-2 features were weighted 40, and so forth (see Table 1 for probabilities). The resulting map
predicts the location of additional sites across northwest India, including areas that have yet not been
surveyed. The concentrations of historical map mound features in the southern half of the study
area corresponded to known clusters of archaeological sites, strongly suggesting other hot spots also
correspond to archaeological sites. These results indicate that there remain many archaeological sites
to identify and preserve. There are also sizable voids surrounding many of these concentrations,
suggesting either that some parts of the landscape lacked significant numbers of archaeological sites
in the early twentieth century, or that the surveyors who carried out work on certain maps were less
concerned with documenting mound features in those areas. It is thus worth considering the correlation
between the patterns revealed by the historical maps and previously surveyed archaeological sites
more closely.
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Figure 15. Weighted heat map of elevated mound features from the historical maps. Each feature was
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sites (see Table 1). Basemap: Google Earth Satellite Imagery (2019); Coordinate Reference System:
WSG 1984.

4. Discussion

The Survey of India 1” to 1-mile maps contain considerable unrecognized information about
northwest India’s past landscapes, suggesting that there are numerous areas filled with unreported
archaeological sites. Moreover, comparing the locations of sites predicted by the weighted heat map
with site distributions from other recent projects [82–84,86,91], offers some indication of how surveying
historical map mound features from across the entire area covered by the historical maps may help
researchers re-discover these ancient landscapes. There are clear discrepancies between concentrations
of historical map features and concentrations of reported archaeological sites from different periods
(Figures 16 and 17), which imply the presence of a chronological sequence that links the present
landscape with its historical and proto-historical antecedents.

Aside from a single concentration east of the city of Sirsa, the distribution of reported historical
period sites does not align with concentrations of historical map mound features likely to be
archaeological sites. Reported historical period sites are instead concentrated southwest of the town
of Budhlada. Lighter concentrations appear near Sangrur and immediately southeast of Ratia, and
there is an apparent void in high-probability historical map mound features surrounding the town
Sunam, but there have been many historical sites reported in this area. The distribution of reported
proto-historic sites—those associated with the Indus Civilization and the later ‘Painted Grey Ware’
period—is far more similar to the distribution of likely historical map mound features (Figure 17).
Notable concentrations of proto-historical sites co-occur with the distribution of historical map mound
features in the areas between Tohana and Bhuna, east of Ratia, and around Malerkotla. Another
concentration of proto-historic sites is found in an area north of Hansi. Areas with large concentrations
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of predicted archaeological sites are therefore more likely associated with the proto-historical phases
(the Indus Civilization and its post-urban phase) than with historical phases.

To test the robustness of this correlation, the regional grid for the ground truthing surveys was
extended to encompass all areas were both site reports and historical mapping data are available.
Three values were calculated for these hexagonal bins (Table S2). The first was a total number of
predicted sites (A), which multiplies the total number of historical map mound features by a modifier
determined by the probability that features of its symbol and size class were extant archaeological
sites. The total number of proto-historic sites (B) and historic sites (C) aggregated from all survey data
were also included in the counts ((A),(B),(C) in Figure 18). The number of predicted sites based on the
historical features often exceeds what has been reported, which indicates that additional sites remain
to be found. The Pearson’s correlation coefficient between A and B is 0.35, indicating a weak positive
correlation between the number of predicted sites and the number of reported proto-historic sites.
However, this correlation coefficient yields a p-value of 0.00000465, indicating its statistical significance
at the 95% confidence interval. The correlation coefficient between A and C is, on the other hand, 0.1,
indicating a much weaker relationship, and its p-value is 0.27—it is not statistically significant. This
test supports the conclusion that predicted sites derived from the ground truthing results are more
likely to be proto-historical than historical, indicating that they are more likely older and potentially
related to landscapes of the Indus Civilization.
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It would be presumptuous to take the potential phasing of any predicted site concentrations that
have not been assessed in the field for granted, but this discussion highlights the potential of the
historical maps to augment large-scale remote sensing studies and conduct targeted surveys of likely
proto-historic landscapes. There are likely many Indus-associated settlements yet to be identified in
several areas, such as the corridor running from Khanauri to Nabha and in the predicted hot spots
surrounding the cities of Maur, Bathinda, and Phul. Visiting these concentrations will be particularly
important for testing the easterly distribution of Indus-related settlements. The distribution of historical
map mound features also thus provides the least information about the region’s more recent landscapes,
such as those of the Medieval period. This is likely because the settlement distributions in these
historical periods, especially during the Medieval period, are more closely associated with today’s
settlement landscapes. The distribution of settlements in the Medieval period is the basis of the region’s
modern village settlement system.

There remain many archaeological sites—proto-historic and historic—to locate and analyze in
northwest India. This means, by extension, that current debates about landscape transformation in
South Asia are built upon incomplete datasets. The predicted distribution of archaeological sites based
on the ground truthing surveys can augment future studies, directing survey teams to areas where a
large number of potential sites await documentation. They can also be compared to features identified
using other techniques, such as remote-sensing, to bring more information about South Asia’s ancient
landscapes into view.

Just as settlement patterns shifted prior to the emergence of today’s landscapes, so too has
the environment of northwest India undergone considerable transformation across the millennia
considered here. These variable environments made human settlement in this region more resilient to
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climate change [50]. Northwest India has an incredibly complex hydrology, which features thousands
of kilometers of paleo-channels that have been active water courses at different points in the region’s
past [92]. Moreover, there are several more localized environments, complete with a very wide range of
water features and land types, that appear to have offered communities many subsistence opportunities
in the past [67,89,93].
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Figure 18. Extended grid based on the RGU sample grid. Each hexagon contains three values (A, B, C):
its predicted number of sites (A), reported number of proto-historical sites (B), and reported number
of historical sites (C) in each hexagonal grid unit that have been both mapped and surveyed (SI 2).
Basemap: Google Earth Satellite Imagery (2019); Coordinate Reference System: World Geodetic
System 1984.

Undocumented concentrations of mound features should not be used as the sole data-source for
organizing future surveys. There are some areas where the number of predicted sites is less than the
number of reported sites. One such area is the void in the historical maps north of the city of Patiala,
which is home to many reported Medieval period sites. These are also areas where archaeological sites
have likely been removed as the landscape has developed over the past century. While the historical
map mound feature type most likely to correspond to an archaeological site was the size-2 form-line
feature, 48 (of 116) such features were not associated with an extant archaeological site. One area where
archaeological mounds have likely been removed is nearby Sirsa. The land in this area has undergone
intensive leveling, in part as a result of the flooding of the Ghaggar River. There are also concentrations
of reported archaeological sites that are not found on the historical maps. This is unsurprising, as the
maps vary in the degree to which they document mound features. Areas where there are discrepancies
between predicted and reported sites should ultimately should be surveyed as comprehensively as
possible using other techniques, including village-to-village survey, which has the potential to reveal
archaeological sites that were not included on the historical map mound features. A goal for future
research will be to ascertain why some of these sites were overlooked in the Survey of India mapping
process. Ultimately, it will likely be necessary to conduct additional comprehensive and systematic
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surveys that interrogate the site concept, as there were certainly many ways of living in northwest
India’s complex environments in the past.

The locations that were tested that did not turn out to be extant archaeological sites produced a
valuable kind of data in and of themselves. While most of these locations today are nothing more than
agricultural fields, some symbols turned out to be other types of landscape features—ponds, marshes
and areas of positive relief. These features undoubtedly shaped human-environment interactions in the
region and played an important role in its transformation over time. This varied landscape of marshes
and dunes interspersed with fields contrasts with the present landscape of homogenized, levelled
cultivated land that is farmed intensively to produce multiple crops per year. The historical maps can
thus link the region’s intersecting signature landscapes into an overarching long-term trajectory. Future
work that re-analyses the historical maps to identify these varied features would be extremely useful.

5. Conclusions

Historical map mound features from the Survey of India 1” to 1-mile maps offer a glimpse into a
long and dynamic history of landscape change, connecting the multiple interlocking and interacting
signature landscapes of South Asia to one another, and revealing how these dynamics have brought
about today’s settlement landscapes. The present landscape itself is an outcome of social processes
that were constrained by and built upon those that came before it and is thus an outcome of long-term
processes that occurred over a very large area. Northwest India has been a major locus of human
settlement for millennia and has been the site of a sequences of cultural landscapes. Archaeological
survey coverage in the region is incomplete, and it is clear that many important cultural heritage sites
remain unrecognized. Once georeferenced and searched for mound features, the Survey of India 1” to
1-mile map series constitutes an invaluable resource for understanding these past landscapes. This
paper has presented the results of a survey that ground truthed these maps and found that around
a quarter of all historical map mound features corresponded to archaeological sites in the present
landscape, and that this correspondence varied by feature size and type. These type-wise proportions
were used to create a weighted heatmap of the likelihood that mound features lying in areas outside of
the ground truth survey could be archaeological sites, and this procedure has revealed that the mound
features on the historical maps most often reflect pre- and proto-historic, rather than early historic and
medieval landscapes. As the present landscape has undergone significant transformations, it is likely
that many of the historical map mound features that did not correspond to an extant archaeological
site may represent sites that have been destroyed, oftentimes quite recently. There should be no doubt
that there remain many historical features to test in the field, and many unresolved questions about
South Asia’s dynamic ancient landscapes to resolve.
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