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Abstract: Semantic segmentation is a fundamental means of extracting information from remotely
sensed images at the pixel level. Deep learning has enabled considerable improvements in efficiency
and accuracy of semantic segmentation of general images. Typical models range from benchmarks
such as fully convolutional networks, U-Net, Micro-Net, and dilated residual networks to the more
recently developed DeepLab 3+. However, many of these models were originally developed for
segmentation of general or medical images and videos, and are not directly relevant to remotely
sensed images. The studies of deep learning for semantic segmentation of remotely sensed images
are limited. This paper presents a novel flexible autoencoder-based architecture of deep learning
that makes extensive use of residual learning and multiscaling for robust semantic segmentation of
remotely sensed land-use images. In this architecture, a deep residual autoencoder is generalized to a
fully convolutional network in which residual connections are implemented within and between
all encoding and decoding layers. Compared with the concatenated shortcuts in U-Net, these
residual connections reduce the number of trainable parameters and improve the learning efficiency
by enabling extensive backpropagation of errors. In addition, resizing or atrous spatial pyramid
pooling (ASPP) can be leveraged to capture multiscale information from the input images to enhance
the robustness to scale variations. The residual learning and multiscaling strategies improve the
trained model’s generalizability, as demonstrated in the semantic segmentation of land-use types in
two real-world datasets of remotely sensed images. Compared with U-Net, the proposed method
improves the Jaccard index (JI) or the mean intersection over union (MIoU) by 4-11% in the training
phase and by 3-9% in the validation and testing phases. With its flexible deep learning architecture,
the proposed approach can be easily applied for and transferred to semantic segmentation of land-use
variables and other surface variables of remotely sensed images.

Keywords: residual learning; autoencoder; multiscale; atrous spatial pyramid pooling; semantic
segmentation; remotely sensed land-use images

1. Introduction

Semantic segmentation refers to “object segmentation and recognition” [1] at the pixel level that is
“semantically meaningful” [2]. In the remote sensing (RS) domain, semantic segmentation is crucial for
extracting meaningful location-specific land-use results from images to obtain important information
for land cover monitoring, urban planning, traffic routing, crop monitoring, etc. [3–5].

As a classical machine learning method, artificial neural network consists of a collection of
connected artificial neurons that loosely simulate the neurons in a biological brain, and the network
aims to learn to perform tasks by considering examples, not by being programmed with task-specific
rules [6]. Based on artificial neural network, deep learning uses multiple layers to progressively extract
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higher level features from the raw input [7]. Recently, through technological advances, deep learning
has generated results comparable to or in some cases superior to human experts [8–10]. For semantic
segmentation, by enabling efficient learning and powerful feature representations, deep learning has
considerably improved the prediction’s reliability for many computer vision applications involving
general images and videos [11,12] as well as medical images [13,14]. As an efficient means of deep
learning to analyze visual imagery like semantic segmentation, convolutional neural network (CNN)
employs a mathematical linear operation called convolution in at least one of its layers in place of
general matrix multiplication used in the fully connected neural network to assemble complex patterns
using smaller and simpler patterns with less hand-engineered requirement [15].

As for recent developments of semantic segmentation, in 2015, the concept of a fully convolutional
network (FCN) was first proposed [16], in which the fully connected layer connected to the last
convolutional layers in a CNN is replaced with a low-resolution convolutional layer to improve
computing efficiency using CNN. In contrast to previous naïve approaches using convolutional layers
as image-patch classifiers or feature extractors for pixelwise classification, FCNs offer considerably
improved learning efficiency for semantic segmentation and have driven most recent advances in this
field [12]. In addition, SegNet, a deep convolutional encoder-decoder architecture, was also proposed
in 2015 [17] to save storage space by copying the pooling indices from the encoding to the decoding
layers. Additionally, dilated convolutions were proposed in 2015 [18] to enlarge the receptive field,
at the cost of possible degradation of the resolution for semantic segmentation. DeepLab Versions 1
and 2 were developed in 2014 [19] and 2016 [20], respectively, to leverage dilated convolutions, atrous
spatial pyramid pooling (ASPP) and fully connected conditional random fields (CRFs) to improve
the accuracy of semantic segmentation for general images. To overcome the drawbacks of massive
memory requirements and low-resolution output for dilated layers, RefinedNet was proposed in 2016
using residual building blocks and an encoder-decoder structure [21]. Then, a pyramid scene parsing
network was proposed in 2017 [22] to assist in segmentation by using multilevel pooling modules
and auxiliary loss. Subsequently, the use of a large kernel in a global convolutional network (GCN)
was proposed in 2017 [23] to improve classification for segmentation. Moreover, enhanced ASPP and
multiple atrous convolutions were added to DeepLab Version 3+ in 2017 [24].

Although multiple methods of deep learning, as mentioned above, have been developed for
the semantic segmentation of general images and videos (e.g., natural scenes, medical images),
the applications of these methods for remotely sensed images have been limited [25]. These methods
were not designed specifically for remotely sensed images, and the training samples for general
images and remotely sensed images show considerable differences in terms of the physical sensors
used to acquire them, the bands they capture, their sensed contents, the targets of recognition, etc.
For example, many pretrained models are based on RGB (red, green, and blue) or RGB-D (RGB and
depth) channels and were not designed for, and thus cannot be directly used for or transferred to,
segmentation of remotely sensed images. Several studies used CNN [26,27] or generative adversarial
network [28] to identify ships or oil spills by semantic segmentations of synthetic aperture radar or
hyperspectral images. CNN was used to extract the roads based on aerial images [29,30]. However,
in total, such studies are very limited given the difference between general and RS images, and diversity
and insufficiency in RS training samples [31]. Furthermore, domain-specific knowledge (e.g., spatial
dependency [32] and multiscaling) related to remote sensing and the geosciences has not, or only
partially, been considered and embedded in these models. Although fully connected CRFs [33] may be
used to encode such domain knowledge, only limited related studies [34,35] have been reported in the
field of remote sensing.

In this paper, the author presents a novel autoencoder-based architecture of deep learning
with residual learning and multiscaling to improve the semantic segmentation of remotely sensed
land-use images. In this architecture, in addition to classic residual units within each encoding
and decoding layer [36,37], residual connections are established through identity mapping shortcuts
from the encoding layers to the corresponding decoding layers in a nested way. In the author’s
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previous work, similar nested residual connections have been used in multilayer perceptrons (MLPs),
resulting in considerably improved performance compared with nonresidual MLPs for regression and
spatiotemporal predictions of meteorological parameters [38], aerosol optical depth and particulate
matter of diameter <2.5 µm (PM2.5) [39]. In this architecture, residual interconnections are established
to lengthen the paths for the backpropagation of errors to improve the efficiency of residual learning,
and multiscaling via ASPP or resizing is also incorporated to make the trained model robust to scale
variations. Using the 2017 satellite land-use dataset from the Kaggle competition presented by the
Defence Science and Technology Laboratory of the United Kingdom [40] and the high-resolution
images from a large QuickBird scene of the city of Zurich acquired in 2002 [41], the accuracy of
the proposed method has been evaluated, and the Jaccard index and mean intersection over union
metrics are reported. With its flexible architecture of deep learning, the proposed method can be
easily generalized to the semantic segmentation of other land-use or surface variables in remotely
sensed images.

In summary, this paper makes the following contributions to the literature: (1) the generalization
of residual connections within and between all encoding and decoding layers to a fully convolutional
architecture to improve learning for the semantic segmentation of remotely sensed land-use images,
(2) the fusion of multiscale information via ASPP or resizing to improve robustness to scale variations,
and (3) an evaluation of the influence of residual learning and multiscaling on segmentation through
comparisons of multiple models.

2. Related Work

To introduce the proposed approach, the related work about residual learning (Section 2.1),
and multiscaling (Section 2.2) was briefly described and a summary of semantic segmentation via deep
learning was presented in Section 2.3.

2.1. Residual Learning

Studies show the important role played by hidden shortcuts (defined as a shorter route than a
regular route between two neurons) in the human brain for coordinated motor behavior and reward
learning [10] as well as recovery from damage [42]. With help from such shortcuts, regular neural
connections can efficiently accomplish complex functionalities. Although the mechanism for shortcuts
in the human brain is not clear, similar ideas have been used in the domain of deep learning (e.g.,
residual CNNs [36,37] and highway neural networks [43]). Previous studies have also demonstrated
powerful shallow representations for image recognition based on residual vectors [44,45].

A traditional residual CNN consists of many residual units. Figure 1 shows a typical residual unit
(a) and multiple stacked residual units (b) in a residual CNN. Here, the identity mapping shortcuts are
implemented in the form of a continuously stacked sequence to establish residual connections and
consequently enable the backpropagation of errors in learning, very similar to ensembles of relatively
shallow networks [46]. Residual learning has effectively improved learning and model performance in
many applications, including but not limited to classification [36,37], image superresolution [47], image
compression [48], semantic segmentation [30,49], video understanding [50], the action segmentation of
videos [51], and the spatiotemporal estimation of citywide crowd flows [52], vehicle flows [53] and
influenza trends [54].

Except for a few studies, including that of Tran et al. (2017) [55], who used cascaded simple
residual autoencoders for residual learning, most existing studies of residual CNNs have been based on
the residual unit structure (Figure 1) presented by He et al. (2016) [36]. These residual units effectively
mitigate the issues of saturation and degradation of accuracy with an increasing number of hidden
layers and improve model performance, as demonstrated in many applications.
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information. Chen et al. [20,24,62] designed ASPP to capture multiscale context information. In 
ASPP, multiple atrous (dilated) convolutions at different atrous rates (r) are used to extract feature 
representations in a multiscale context (Figure 2) and are concatenated with other layers to improve 
the robustness of the trained models to variations in scale. 

 

Figure 2. A typical atrous spatial pyramid pooling (ASPP) architecture based on Chen et al. [20]. 

Figure 1. A typical residual unit (a) and stacked residual units (b) in a residual convolutional neural
network (CNN).

2.2. Multiscaling and ASPP

Multiscaling refers to variation in scale (resolution) in the image input due to different spatial,
temporal, or/and measurement contexts. A CNN has an architecture that consists of multiple
convolutional layers of a fixed resolution and size. These convolutional layers (filters) implicitly
learn to detect features at a prespecified scale with an assumed degree of invariance. Consequently,
the resulting models might be difficult to generalize to different scales [11]. The introduction of
multiscale CNNs can result in trained models that can better adapt to scale variations in the input than
single-scale CNNs, and can generate robust predictions for images at different scales. Raj et al. [56]
designed two CNNs of different scales, one with shallow convolution and the other with a fully
convolutional VGG (Visual Geometry Group)-16 architecture, and merged their predictions to generate
a single output. Roy et al. [57] designed four multiscale CNNs with the same architecture used by
Eigen et al. [58] and concatenated them in a sequential way to predict depths, normals and semantic
segmentation labels. Bian et al. [59] designed n FCNs at different scales based on a two-stage learning
approach, with the advantage of the ability to efficiently add newly trained models.

Recently, based on an autoencoder with an encoder-decoder structure (called Micro-Net),
Raza et al. [60] resized the inputs to different scales corresponding to different encoding layers and
concatenated the resized layers to improve the performance. In addition, dilated convolutions,
also called atrous convolutions, which are derived from Kronecker-factor convolutional filters [61],
leverage upsampling (controlled by the atrous rate) to exponentially expand the receptive field with
no loss of resolution. Thus, such convolutions actually act as feature filters for multiscale information.
Chen et al. [20,24,62] designed ASPP to capture multiscale context information. In ASPP, multiple
atrous (dilated) convolutions at different atrous rates (r) are used to extract feature representations in a
multiscale context (Figure 2) and are concatenated with other layers to improve the robustness of the
trained models to variations in scale.
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2.3. Semantic Segmentation via Deep Learning

In previous decades, methods of pixelwise classification based on hand-engineered features were
the mainstream approaches for semantic segmentation, and classical machine learning methods such
as mutual boosting [63], random forests [64] and support vector machines [65] were used. In addition,
plain [66], higher-order [67] and dense [68] CRFs were developed as context models to capture complex
relationships among interconnected pixels. Then, a CNN could be used as an image-patch classifier to
capture the neighborhood context [69,70]. However, these methods are highly demanding in terms of
computing resources and do not consider information from a sufficiently wide context for semantic
segmentation [12].

In recent years, FCNs [16] have driven considerable advances in semantic segmentation in
terms of learning efficiency and performance [12]. Based on the FCN architecture, upsampling
(e.g., bilinear interpolation) was introduced (called UP_FCN) to obtain high-resolution images from
the coarse-resolution predictions, and end-to-end training was conducted for the high-resolution
output [71]. Dilated convolutions were also proposed to achieve finer resolutions without the
introduction of additional parameters [19,22]. Furthermore, skip connections were leveraged to
help UP_FCN or similar models to capture low-level visual information that could not otherwise
be captured. Typical examples of networks with skip connections include FCNs [16], U-Net [72]
and GCNs [23]. Many authors have also considered the incorporation of CRFs into the UP_FCN
architecture, i.e., the incorporation of a priori domain knowledge to improve the robustness of the
trained models. For example, Chan et al. [19] used mean-field inference to obtain a sharp boundary
based on a dense CRF, and Zheng et al. [73] unified a CNN with CRFs by means of a recurrent neural
network (RNN) to simulate CRF iterations within an end-to-end training procedure. Arnab et al. [74]
further derived CRFs with higher-order potentials, thus achieving significant improvements over the
CRF_RNN architecture. In addition, residual learning has been used in a limited way in CNNs for
semantic segmentation [30,49] based on given differences between the encoding and decoding layers.
Multiscaling in the UP_FCN architecture is also emerging as a means of enhancing the trained models’
robustness to scale variations [19,56,57,59,60], as previously mentioned.

However, although many advanced techniques have been proposed and corresponding models
have been developed to achieve cutting-edge performance, many of these models (e.g., DeepLab [19,
20,24,62]) are based on feature representations extracted using extensively pretrained models (as the
encoding part of such a model), such as AlexNet [75], VGG-16 [76], GoogLeNet [77], or ResNet [36].
These pretrained models are often based on general or natural scene images consisting of RGB or RGB-D
channels and thus are not designed for remotely sensed images, as aforementioned. Consequently,
they cannot be directly used for the semantic segmentation of remotely sensed images. Therefore,
to allow these advanced techniques (e.g., residual learning and multiscaling) to be effectively leveraged
for the semantic segmentation of remotely sensed images, it is important to consider both suitably
flexible UP_FCN architecture of deep learning and sufficiently qualified training samples of RS images.

3. Deep Residual Autoencoder with Multiscaling

This section presents the proposed flexible autoencoder-based architecture (Section 3.1) for the
semantic segmentation of remotely sensed images, which extensively leverages residual learning
(Section 3.2) to improve the learning efficiency and takes advantage of the multiscaling (Section 3.3) of
the input images/features to make the trained model robust to scale variations. The implementation
and evaluation of the proposed architecture are described in Sections 3.4 and 3.5.

3.1. Autoencoder-Based Architecture

The presented architecture (Figure 3) is based on an autoencoder with residual connections and
multiscaling via ASPP or resizing. In this architecture, the rectified linear unit (ReLU) activation
function and batch normalization (BN) are mainly used in the hidden layers, as shown.
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As a type of neural network, an autoencoder aims to learn an efficient data coding scheme or
representation for a set of data [78,79], typically with the objective of dimensionality reduction, in either
a supervised or an unsupervised manner. Through learning, an autoencoder can filter out signal
“noise” and encode a representation that is as close as possible to the original input. Informative
latent representations extracted by an autoencoder can effectively improve classification and semantic
segmentation performance [80]. Notably, an autoencoder has a symmetrical structure, with the
encoding layers and the corresponding decoding layers having the same numbers of nodes or the same
dimensions, thus satisfying the requirement for nested residual connections.

3.2. Two Types of Residual Connections

An autoencoder-based architecture with nested residual connections was first proposed for an
MLP in the author’s previous work [39]. Such deep residual MLPs show better learning efficiency and
performance than regular MLPs do in practical applications [38,39,81]. Here, the concept of nested
residual connections is generalized to an FCN for semantic segmentation. Unlike the residual units
(Figure 1) in a traditional residual CNN, the nested residual connections realize identity mapping from
each encoding layer to its corresponding symmetrical decoding layer (Figure 3). Therefore, all the
residual connections are organized in a nested way from the outermost connection to the innermost
connection, as shown in Figure 3. In addition to the nested residual connections, traditional residual
units [36] are also incorporated within each encoding or decoding layer to boost the efficiency of
residual learning to the greatest possible extent, as shown in Figure 3.

Residual connections require that both layers to be connected have the same number of nodes
(for an MLP) or the same feature map dimensions (for a CNN). Consider a decoding layer l and its
corresponding decoding layer L; xl and yl denote the input and output, respectively, for layer l, and xL
and yL denote the input and output, respectively, for layer L. Here, the concept of identity mapping is
used to establish residual connections. Thus, we have the following formula for the output of layer, L
to illustrate the back-propagation of the errors in a residual connection:

yL = xl + fL(xL, WL)

= xl + fL(gL( fl(xl, Wl)), WL)
(1)
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where fl(xl,Wl) and fL(xL,WL) are the activation functions for the shallow layer l and the corresponding
deep layer L, respectively, and xL = gL( f (xl, Wl)) where gL( f (xl, Wl)) represents the recursive function
of the shallow layer’s input, xl for the deep layer’s input, xL.

Suppose that L is the loss function. Based on automatic differentiation [82], we obtain the
derivative of the loss function with respect to the input to layer l as follows:

∂L
∂xl

= ∂L
∂ fL(yL)

∂ fL(yL)
∂yL

∂yL
∂xl

= ∂L
∂ fL(yL)

∂ fL(yL)
∂yL

(
1 + ∂ fL(gL( fl(xl,Wl)),WL)

∂xl

) (2)

According to Equation (2), introducing a residual connection (xl) for identity mapping from a
shallow layer (l) to the output of its corresponding deep layer (L) results in one constant term of 1 in the
derivative of the output (yL to xl). If a linear activation function is applied to yL (i.e., ∂ fL

(
yL

)
/∂yL = 1),

then Equation (2) can be further simplified.
Based on Equation (2), the constant term 1 can allow the error information of

∂L/∂ fL
(
yL

)
·∂ fL

(
yL

)
/∂yL (or ∂L/∂ fL

(
yL

)
if a linear activation function is used as fL) to be

directly backpropagated to the shallow layer without the need for any weight layer. Since
∂ fL(gL( fl(xl, Wl)), WL)/∂xl is not always equal to -1 to cancel out the gradient for minibatch learning,
this can effectively reduce the vanishing of gradients in the backpropagation of signal errors and hence
mitigate the accuracy degradation during learning [39]. If an activation function with fully or partially
linear feature mapping, such as a linear function, the ReLU function or the exponential linear unit
(ELU) function, is used as fL

(
yL

)
, then the simplified derivative of the loss function can ensure the

efficient backpropagation of the error information.
Although residual learning must always be based on a similar principle to that shown in

Equation (2), residual connections can be implemented in two different ways, i.e., in traditional residual
units or in a nested way. Figure 1 shows a typical residual unit consisting of two convolutional layers
and one ReLU layer, possibly with the addition of a BN layer. In such a residual unit, the output of
the first convolutional layer needs to have the same dimensional size and number of feature maps
as the output of the last convolutional layer. Thus, residual connections are implemented within a
residual unit. Since every layer in an autoencoder usually differs from its sibling and parent layers in
terms of its dimensional size and number of feature maps, the error information cannot be directly
recursively backpropagated. By contrast, the proposed residual connections [39] between the encoding
and decoding layers enable the direct backpropagation of the errors to the shallower layers in a nested
way (Figure 3).

Compared with the UP-FCN-based U-Net architecture [72], which uses skip connections from
the shallow encoding layers to capture low-resolution information via concatenation, the presented
approach uses residual connections to capture such information with fewer trainable parameters. Since
the introduction of residual connections does not increase the number of parameters and can improve
the learning efficiency, in addition to the nested residual connections, residual units are also used in
every encoding or decoding layer (thus, two or more convolutions with activation/ batch normalization
are used within each encoding/decoding layer) to improve residual learning to the greatest possible
extent. Using both types of residual connections can more efficiently boost the backpropagation of
errors and subsequent learning compared with residual units alone [30] since the introduction of a
residual connection from an encoding layer to its corresponding decoding layer considerably lengthens
the path of the total residual connection, thus extending the range of backpropagation, as indicated by
the red dotted line in Figure 4.
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Figure 4. Efficient backpropagation of errors via residual connections within and between all encoding
and decoding layers.

3.3. Incorporation of Atrous Convolutions and Multiscaling

Studies show that incorporating multiscale information can improve a trained model’s ability to
handle both local and large objects [83] and its robustness to scale variations [11], as mentioned above.
Thus, in the presented architecture, multiscale information is extracted from the input images and
fused via ASPP or resizing (Figure 3).

ASPP (Figure 2) is derived from the DeepLab model of Chen et al. [20]. In ASPP, multiple
parallel atrous convolutional layers at different sampling rates (atrous rates) are used to capture local
information at multiple resolutions (scales) and are then concatenated into a target convolutional layer.
In the presented architecture, multiple atrous convolutions are used to multiscale the input images
via ASPP to be fed to the intermediate encoding layers (via concatenation) at different scales. ASPP
involves additional atrous layers with trainable parameters that may require a massive amount of
memory space, beyond what is practically available. Consequently, the numbers of atrous layers and
feature maps in ASPP may be limited by the available computing resources.

As an alternative approach, resizing to different resolutions has also been used to multiscale
input images to achieve improved performance in the semantic segmentation of medical images [60].
Compared with ASPP, this method is relatively simple and easy to implement. Thus, this method can
also be used in the proposed architecture (Figure 3) as an alternative to ASPP if memory limitations
prevent the optimal configuration of the atrous layers in ASPP.

3.4. Sampling of the Training Set and Boundary Effects

A high-resolution remotely sensed image usually cannot be stored in the memory space available
for training. Therefore, the patch sampling method (Figure 5a) was used to obtain training samples of a
small image size [72,84]. For binary semantic segmentation, oversampling and undersampling can be
used for positive and negative instances, respectively. A small sliding window with a suitable sampling
distance can be used to sample a large image to obtain patch samples. Oversampling can be applied
for a small number of instances to increase the number of training patch samples; undersampling
can be applied for a large number of instances to decrease the number of patch samples to maintain
the balance in the number of training samples between the majority and minority classes. In terms
of implementation, for oversampling, a short sampling distance can be used to obtain the patch
samples with a proportion of overlapping areas; for undersampling, a long sampling distance can be
used to obtain the patch samples with no overlapping areas but with a long distance between them.
For multiclass semantic segmentation, oversampling or undersampling can also be used to obtain a
suitable number of samples for training, depending on sample availability.
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Considering the influence of local boundary effects [84] in semantic segmentation, a crop layer
was used to filter out the boundaries for the output (Figure 5b). To address global boundary effects,
reflections of the central region were added to the padded areas [72,84].
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3.5. Metrics and Loss Functions

To evaluate the trained model’s performance, the following metrics were used:
(1) The pixel accuracy (PA) is a basic metric computed as the ratio of the number of correctly

classified pixels to the total number of pixels.

PA =

∑k
i=0 pii∑k

i=0
∑k

j=0 pi j
(3)

where k is the number of classes and pij denotes the number of pixels of class i predicted to belong
to class j. Usually, pii represents the number of the true positives, whereas pij and pji represent the
numbers of false positives and false negatives, respectively.

(2) The Jaccard index (JI) is defined as the size of the intersection of two sets divided by the size of
their union [69]. A well-known statistic for measuring the similarity of two sets, it is also called the
intersection over union (IU or IOU) [16].

JI(c) =
|P∩G|

|P|+ |G| − |P∩G|
=

pcc∑k
i=1 pic +

∑k
j=1 pcj − pcc

(4)

where c is the target class (c=1,2, . . . ,k), P denotes the set of predicted pixels, and G denotes the set of
ground-truth pixels.

(3) The mean intersection over union (MIoU) is computed by the JI on a per-class basis and then
averaging over all classes.

MIoU =
1
k

k∑
i=1

JI(i) (5)

Although the JI or MIoU is an important metric for evaluating the results of semantic segmentation,
these metrics are not differentiable and thus cannot be used in the loss function for gradient descent
optimization. However, the normal JI can be expressed in a differentiable form for optimization in
gradient descent:
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Jn(y, ŷ) =
1
n

n∑
i=1

yi · ŷi + ε

yi + ŷi − yi · ŷi + ε
(6)

where Jn(y, ŷ) denotes the normalized Jaccard index, y denotes the ground-truth mask (yi is the ground
truth for the ith pixel), ŷ represents the predicted probability of belonging to the positive class (ŷi is the
predicted probability for the ith pixel), and ε is a small positive value that is used as a smoothing factor
to avoid overflow due to a possible denominator of 0.

For binary semantic segmentation, the following binary cross-entropy loss is used with the
normal JI:

H =
1
n

n∑
i=1

(yi log(ŷi) + (1− yi) log(1− ŷi)) (7)

Then, the total loss function for binary semantic segmentation can be defined as follows:

L = H − log Jn (8)

For multiclass semantic segmentation, the following multiclass cross-entropy loss can be used:

L = −
1
n

n∑
i=1

k∑
j=1

y( j)
i log(ŷ( j)

i ) (9)

ŷ( j)
i =

es( j)
i∑k

a=1 es(a)i

(30)

where y( j)
i denotes the ground truth for whether the ith instance belongs to class j and ŷ( j)

i represents
the predicted probability of the ith instance belonging to class j as obtained with the softmax function.

Equation (10) refers to the softmax calculation of the probability, with s( j)
i denoting the output of the

last layer before the softmax calculation.

3.6. Implementation

Regarding the core algorithm (deep residual autoencoder with multiscaling), a Keras version
of the proposed method has been developed with TensorFlow as the backend. The package has
been published as a Python package (https://pypi.org/project/resmcseg) and via GitHub (https:
//github.com/lspatial/resmcsegpub).

A workflow of implementation under geospatial context is represented in Figure 6. In this
workflow, the predictors from geospatial dataset or/and the other attributes are also considered;
re-projection and resampling used to processing geospatial dataset are also included. In total, seven
steps are summarized for this workflow graph.

https://pypi.org/project/resmcseg
https://github.com/lspatial/resmcsegpub
https://github.com/lspatial/resmcsegpub
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(1) Input predictors (X): besides the multiband or/and hyperspectral images, potential data sources
from other geographical information science (GIS) (e.g., vector data of points, lines and polygons)
and attributes database are also considered although not used in the test cases (thus presented in
the dash-dot lines in this graph). These data may help improve semantic segmentation and thus is
contained in the workflow.

(2) Preprocessing of the input predictors: preprocessing involves re-projection, resampling of the
images at different spatial resolutions using bilinear interpolation to obtain the samples at a consistent
target resolution and coordinate system, gridding of vector data, and normalization. For re-projection,
resampling and gridding, the raster library (https://cran.r-project.org/web/packages/raster) of the R
software provides the relevant functionalities. Normalization aims to remove the difference in the
value scale between different predictors to improve learning efficiency. The Python’s scikit package
(https://scikit-learn.org) provides a convenient normalization function.

(3) Input labels (y): the label data are essential for training of the models. Usually, the label data
of vector format (points, lines or polygons) are obtained manually and must be gridded into the masks
at the target resolution. A summary for the proportion of pixels for each label class can be conducted
in this step.

(4) Merging of the data, sampling and image augmentation: this involves merging of the predictor
and label data (X and y), random split of the training and test samples, patch sampling for the
training samples by oversampling or undersampling, and image augmentation. As aforementioned in
Section 3.4, patch sampling is to divide a large image into small patches for the purpose of training,
and the summary of the pixel proportion for each class can be used to determine a strategy of patch
sampling. Then, the training set (both images and masks) was randomly augmented at training time
with rotations by 45 degrees, 15–25% zooms/translations, shears, and vertical and horizontal flips.

(5) Training and testing: this involves construction, training and testing of the models and grid
search to obtain optimal hyperparameters (e.g., regularizer, network topology, multiscaling choice,
mini batch size, and learning rate). The published Python package of core algorithm, resmcseg, can be
used to construct the proposed model with flexibility of different choices of hyperparameters. With

https://cran.r-project.org/web/packages/raster
https://scikit-learn.org
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different hyperparameters and their combinations, grid search [85] can be conducted to find an optimal
solution for these hyperparameters.

(6) Prediction: this involves use of the trained models to predict the land-use mask of the new
dataset. In addition, the predicted mask can be converted into the output of vector format for use
under geospatial context.

(7) Pre-trained models in cloud: the trained models can be stored as the pre-trained models in the
cloud platform (e.g., Amazon Web Services or Google Cloud), and can be called later for predicting or
as the basic models for further training.

4. Experimental Datasets and Evaluation

This section briefly describes the two experimental datasets (Section 4.1) involved in the test,
and the evaluation of the proposed approach (Section 4.2).

4.1. Two Datasets

The presented methods were tested on two datasets.
(1) The dataset from the Defense Science and Technology Laboratory (DSTL) Satellite Imagery

Feature Detection challenge (https://www.kaggle.com/c/dstl-satellite-imagery-feature-detection) run
by Kaggle in 2017 [40]. In total, 25 satellite images were used for training, validation and testing
in this study. Each image covers 1 square kilometer of the Earth’s surface, and the images include
different channel information: the dataset includes high-resolution panchromatic images with a 31 cm
resolution, 8-band (M-band) images with a 1.24 m resolution, and shortwave infrared (A-band) images
with a 7.5 m resolution. These images were obtained by the WorldView-3 satellite. Panchromatic
sharpening [86] was used to fuse each high-resolution panchromatic image with the corresponding
lower-resolution M-band and A-band images to obtain images with a 31 cm resolution. The task was to
predict a class label for each pixel of the input image. Due to the imbalanced class distributions, much
better results could be obtained by training a separate model for each class rather than a single model
for all classes [84]. Thus, for this dataset, binary semantic segmentation was conducted separately
for each of five classes, i.e., buildings, crops, roads, trees and vehicles. Figure 7a presents one of the
DSTL images with its ground-truth mask (Figure 7b). Correspondingly, a comprehensive loss function,
as seen in Equation (8), combining the normal JI and a binary cross-entropy loss was used.
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(2) A set of 20 multispectral very-high-resolution images acquired over the city of Zurich
(Switzerland) (https://sites.google.com/site/michelevolpiresearch/data/zurich-dataset) by the QuickBird
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satellite in 2002 [41]. The average image size is 1000x1150 pixels, with 4 channels spanning the
near-infrared to visual spectrum (NIR-R-G-B). The images after panchromatic sharpening have a 0.61 m
spatial resolution. Ground-truth masks with 9 classes are provided for these images: road, trees, bare
soil, rail, buildings, grass, water, pools and other (background). Figure 8a and b present one of the
Zurich images and its ground-truth mask, respectively. For this dataset, the multiclass cross-entropy
loss, as seen in Equation (9), was used to test the performance of the proposed method for multiclass
semantic segmentation.
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Figure 8. Panchromatically sharpened image (a) and ground-truth mask (b) for a sample from the
Zurich dataset.

4.2. Training and Evaluation

For binary semantic segmentation (the DSTL dataset), oversampling for positive instances and
undersampling for negative instances were conducted to obtain the patch samples (with an input
patch size of 256x256, an output patch size of 224x224, and a border size of 16 on each side to eliminate
boundary effects during segmentation). For a class with a small number of positive instances (e.g.,
vehicles), the oversampling distance can be a small value, with a large undersampling distance for
negative instances, to obtain a sufficient and balanced number of training samples; for a class with
many samples, the oversampling distance can be a large value, with a small undersampling distance
for negative instances, to obtain balanced samples.

For multiclass semantic segmentation (the Zurich dataset), oversampling was conducted with a
distance of 150 pixels to obtain a sufficient number of instances. The sizes of the input and output
image patches were similar to those for the DSTL dataset.

The Adam optimizer with Nesterov momentum was used to train each model for 100 epochs with a
learning rate that was initially set to 0.001 and was then adaptively adjusted during the learning process.
An early stopping criterion was used. During training, each batch consisted of 15 image patches.

Four models, i.e., the benchmark U-Net, a residual autoencoder with no multiscaling, a residual
autoencoder with resizing-based multiscaling, and a residual autoencoder with ASPP-based
multiscaling, were trained and compared using the two datasets (DSTL and Zurich). To illustrate the
generalizability of the proposed method, in addition to the tests in training, an additional independent
test was conducted, i.e., no patch samples from the test images (10% of the total samples) were
used to train the model, and the independent test results for three sample images from each dataset
are presented.

5. Results

The proportional distributions of the different classes for the DSTL and Zurich datasets are
represented in Figure 9a,b, respectively, and the corresponding sampling distances are summarized
in Table 1. Using the parameters given in Table 1, each image from the two datasets was sampled to
obtain the patch samples for training, validation and testing using a sliding window. Random splitting
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was applied to divide the patch samples as follows: 60% for training, 20% for validation and 20% for
testing. The training set (both images and masks) was augmented at training time as mentioned in
Section 3.6. No augmentation was performed on the validation or test data. Performance metrics for
the training, validation and testing phases are reported.
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Table 1. Sampling schemes for the two datasets.

Dataset Class Input Size Output Size Oversampling
Distance

Undersampling
Distance

Number of
Samples

DSTL

Crops 256 224 220 350 2560
Buildings 256 224 150 400 2138

Trees 256 224 150 400 2484
Roads 256 224 120 400 2039

Vehicles 256 224 100 450 2219
Zurich All classes 256 224 150 - 2840

The performances of the four models are presented in Table 2 (the statistical boxplots of JI/MIoU
shown in Figure 10), and the learning curves in the training and validation phases are shown in
Figure 11 for the DSTL dataset and in Figure 12 for the Zurich dataset.

The results show that, compared with the baseline U-Net model, the PA of the presented residual
autoencoder with no multiscaling was improved by 1–6% in the training phase (and by 1–5% in the
validation and testing phases) except the classes of buildings and vehicles of the DSTL dataset, and
the JI or MIoU was improved by 2–11% in the training phase (and by 1–8% in the validation phase
and 1–9% in the testing phase). Thus, residual learning improved the JI or MIoU more than it did the
accuracy. The statistics (Figure 10) show that residual autoencoders (with and without multiscaling)
improved JI/MIoU averagely by about 4.1% over that of non-residual autoencoders in training (0.76 vs.
0.72), by about 2.7% in validation (0.79 vs. 0.76) and by about 2.9% in testing (0.72 vs. 0.69).

Multiscaling via ASPP was beneficial for the semantic segmentation of crops and buildings in
the DSTL dataset (further improving the JI by 2–3% in validation and by 3% in testing relative to the
results of the residual autoencoder with no multiscaling). However, multiscaling via ASPP did not
improve the performance of the residual autoencoder for the semantic segmentation of trees, roads and
vehicles in the DSTL dataset nor for the Zurich dataset. For the segmentation of trees, multiscaling via
resizing very slightly improved the JI in the training, validation and testing compared with the results
obtained with ASPP. Multiscaling via either resizing or ASPP did not always improve the performance
of the residual autoencoder. As shown in Table 2, the residual autoencoder with no multiscaling
achieved the best performance for the binary semantic segmentation of roads and vehicles in the DSTL
dataset and for multiclass segmentation in the Zurich dataset. For these segmentation tasks, the JI or
MIoU of the residual autoencoder was improved by 9-11% in training, 4-8% in validation, and 5-9% in
testing compared with the performance of U-Net. The incorporation of multiscale information did not
improve either the JI or the MIoU; in fact, both metrics decreased in value.



Remote Sens. 2019, 11, 2142 15 of 24

Table 2. Performance in the training, validation and testing phases for the two datasets (the bold font
indicates the best model among the four models).

Dataset Class Model
#Par
(million) a

Training Validation Testing

PA b JI/
MIoU c PA JI/

MIoU PA JI/
MIoU

DSTL

Crops

Baseline d 31 0.88 0.85 0.89 0.79 0.89 0.87
Residual e 28 0.90 0.87 0.90 0.80 0.91 0.88
Res+resizing f 31 0.91 0.88 0.90 0.81 0.92 0.89
Res+ASPP g 29 0.94 0.93 0.91 0.83 0.93 0.91

Buildings

Baseline 31 0.95 0.72 0.95 0.77 0.95 0.72
Residual 28 0.95 0.72 0.95 0.78 0.95 0.72
Res+resizing 31 0.95 0.72 0.95 0.77 0.95 0.72
Res+ASPP 29 0.96 0.76 0.96 0.80 0.96 0.75

Trees

Baseline 31 0.93 0.56 0.93 0.61 0.93 0.53
Residual 28 0.94 0.59 0.94 0.62 0.94 0.55
Res+resizing 31 0.94 0.61 0.94 0.65 0.94 0.58
Res+ASPP 29 0.94 0.61 0.94 0.64 0.94 0.57

Roads

Baseline 31 0.97 0.71 0.97 0.74 0.97 0.67
Residual 28 0.98 0.81 0.97 0.81 0.97 0.74
Res+resizing 31 0.97 0.73 0.97 0.74 0.97 0.68
Res+ASPP 29 0.97 0.76 0.97 0.77 0.97 0.69

Vehicles

Baseline 31 0.99 0.69 0.99 0.88 0.99 0.69
Residual 28 0.99 0.78 0.99 0.92 0.99 0.78
Res+resizing 31 0.99 0.69 0.99 0.88 0.99 0.72
Res+ASPP 29 0.99 0.72 0.99 0.90 0.99 0.69

Zurich All
classes

Baseline 31 0.88 0.78 0.86 0.78 0.87 0.69
Residual 28 0.94 0.89 0.91 0.86 0.92 0.74
Res+resizing 31 0.88 0.80 0.87 0.81 0.87 0.71
Res+ASPP 29 0.89 0.80 0.88 0.80 0.88 0.72

Notes: a #Par (million): number of trainable parameters (unit: million); b PA: pixel accuracy (PA); c JI/MIoU:
Jaccard index (JI) for binary semantic segmentation or mean intersection over union (MIoU) for multiclass semantic
segmentation; d Baseline: U-Net model; e Residual: residual autoencoder with no multiscaling; f Res+resizing:
residual autoencoder with multiscaling via resizing; g Res+ASPP: residual autoencoder with multiscaling via ASPP.Remote Sens. 2019, 11, x FOR PEER REVIEW 16 of 25 
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The learning curves for the PA and JI or MIoU metrics (Figure 11,Figure 12) also exhibit consistent
trends of better performance for the deep residual autoencoder than for the baseline U-Net model for
each binary segmentation task on the DSTL dataset and for multiclass segmentation on the Zurich
dataset. For the road and vehicle (Figure 11h,j) classes in the DSTL dataset and for the multiclass Zurich
dataset (Figure 12b), the learning curves for the JI or MIoU also shows higher values for the residual
autoencoder with no multiscaling, than those for the other three models during the later phase of training.

As shown in Table 2, the residual autoencoder with no multiscaling has the fewest trainable
parameters (approximately 28 million) among all considered models. A smaller number of model
parameters may result in less overfitting.

Figures 13 and 14 each present three images: their ground-truth masks and the masks predicted
in the independent test for the DSTL and Zurich datasets, respectively. As shown in these results,
the proposed method captured the majority of the ground-truth masks for both binary (JI: 0.80-0.94)
and multiclass (MIoU: 0.84-0.85) segmentation, illustrating its practical reliability. As demonstrated in
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these two experiments, the proposed method achieves a significant improvement over the benchmark
method, U-Net.
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6. Discussion

For limited applications of deep learning in semantic segmentation of remotely sensed images,
this paper presents a flexible novel approach to leverage extensive residual connections within and
between all encoding and decoding layers to improve learning efficiency and performance of the
trained models. Given the variation in scale for many geospatial applications, the proposed approach
also incorporates multiscaling via resizing or/and ASPP. For practical applications, multiple sources of
data including geospatial data of vector format and/or attributes can be fused (Figure 6) if available.
These auxiliary data may provide important background information as the constraints of a priori
geoscience knowledge for the models, probably helping improve generalization and reduce over-fitting.
Correspondingly, for geospatial data from multiple sources with different scales and data formats,
re-projection, resampling and gridding may be needed as the preprocessing steps to obtain qualified
training samples at a consistent target resolution and coordinate system. It must be admitted that
these preprocessing steps may introduce the variation of the input. As shown in the results of the
study cases, the variation just generated limited influence on training and prediction of the models.
This illustrates applicability of deep learning for semantic segmentation of remotely sensed images
with other potential geospatial data.

As shown in the results, the incorporation of multiscale information does not always improve
the performance of the trained model. For a minority class (a class with a small number of positive
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instances, e.g., roads and vehicles in the DSTL dataset), the incorporation of multiscale information
does not necessarily improve the model’s performance due to insufficient samples used in training
to capture variation in scale, and more positive samples may be helpful for training the multiscale
models. Inversely, for a majority class (a class with a large number of positive instances, e.g., crops and
buildings in the DSTL dataset), the incorporation of multiscale information via resizing or ASPP might
improve the model’s ability to capture local objects and its invariance to scale, as demonstrated by the
segmentation of crops and buildings in the DSTL dataset.

In multiscaling via ASPP, atrous convolutions with increasing dilation rates are used to widen
the receptive field. Multiscaling via ASPP can improve the network’s ability to capture local objects
and its robustness to scale variations [18], as shown by the results for crops and buildings in the DSTL
dataset. Traditional residual learning has previously been combined with atrous convolutions [49]
to eliminate the “degridding” effects caused by the use of atrous convolutions. Due to the limited
available computing resources, only 4 atrous convolutions (with dilation rates of 1, 4, 8, 16) were
applied in parallel with a small number of filters in these experiments, and training was also limited by
the small mini batch size (15). With more computing resources, more powerful tools such as vDNNs
(virtualized deep neural networks) [87] and more available positive image samples, the training
capabilities for multiscaling via ASPP may be enhanced to improve the robustness to scale variations.

The results show that extensive residual connections were effectively used in the autoencoder-based
FCN architecture of deep learning to improve the performance, similar to that in deep residual
MLP [38,39]. The sensitivity analysis also showed that the proposed extensive residual connections
within and between all encoding and decoding layers achieved better performance than traditional
residual connections alone for the DLST and Zurich datasets. Theoretically, as mentioned, extensive
residual connections lengthen the path for direct backpropagation of errors, thus improving the trained
model’s performance. Even without the use of multiscaling, a deep extensive residual FCN still
achieved a considerable improvement over U-Net for semantic segmentation of RS images.

It must be admitted that the proposed extensive residual learning can also be applied for images
of other types (e.g., natural scenes and medical images). However, for this study, the deep residual
autoencoder architecture was specially developed and trained for semantic segmentation of remotely
sensed land-use images. Two different datasets were used in the tests to illustrate the generalization
of the proposed method for segmentation of RS images. Given the multiscale effect for RS and
geoscience applications [88], the proposed method incorporated multiscale input for invariance to scale
variations. Based on the flexible architecture and the author’s published python package, resmcseg
(https://pypi.org/project/resmcseg) for this paper, the model can be easily adjusted in the network
topology (e.g., number of hidden layers), multi-scaling, residual connections and output type etc.
to achieve an optimal effect. The pretrained models for the two datasets have been stored in the
cloud platform and shared through the publically available interface. For practical applications under
geospatial context, the raster package of the R software provides reliable functionalities of re-projection,
resampling and gridding; the python’s scikit provides the functionalities of normalization, random
sampling and one hot encoding.

One limitation of the presented method is the lack of postprocessing of the predicted images to
remove noisy classification results at the pixel level. However, this paper’s purpose is to present a novel
flexible architecture for deep learning using extensive residual learning and multiscaling techniques
rather than to present a complete method for semantic segmentation. Overall, the validation and testing
results show that the proposed method achieved considerable improvement on two independent test
datasets. Based on geospatial domain knowledge, e.g., the Tobler’s first law of geography [32] that
“everything is related to everything else, but near things are more related than distant things”, CRFs
and semi-supervised learning may be considered as postprocessing components to fuse geospatial
context [89], model spatial dependency, and remove noisy or unreasonable predictions. In the future,
empirical geospatial domain knowledge may be incorporated by integrating CRFs with the residual
autoencoder in an end-to-end way to enhance the automation of the learning process.

https://pypi.org/project/resmcseg
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7. Conclusions

In this paper, the author presents a novel method based on a deep residual autoencoder with
multiscale fusion via ASPP or resizing to improve both the binary and multiclass semantic segmentation
of remotely sensed land-use images. Inspired by deep residual learning, residual connections are
extensively leveraged within and between all encoding and decoding layers in an encoder-decoder
FCN architecture to enhance the learning efficiency. In addition, multiscaling can be applied in the
model to make it more robust to scale variations under geospatial context when sufficient samples are
available. In an evaluation using real-world samples from the DSTL and Zurich datasets, the proposed
method improved the JI or MIoU by 4–11% in the training phase and by 3–9% in the validation and
testing phases compared with the performance of U-Net. Unlike previous semantic segmentation
methods for general images and videos, the presented architecture has been designed and developed
specifically for the binary and multiclass segmentation of remotely sensed land-use images. With
its flexible network architecture, the presented method can be adaptively modified and enhanced
with other advanced techniques, such as CRFs, semi-supervised learning and ensemble learning, for
application to the semantic segmentation of similar surface remote sensing variables.
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