
remote sensing  

Article

The Effect of Mineral Sediments on Satellite
Chlorophyll-a Retrievals from Line-Height
Algorithms Using Red and Near-Infrared Bands

Chuiqing Zeng * and Caren Binding

Water Science and Technology Directorate, Environment and Climate Change Canada, 867 Lakeshore Rd,
Burlington, ON L7S 1A1, Canada; caren.binding@canada.ca
* Correspondence: chuiqing.zeng@canada.ca

Received: 12 August 2019; Accepted: 27 September 2019; Published: 3 October 2019
����������
�������

Abstract: Red and near-infrared line-height algorithms such as the maximum chlorophyll index (MCI)
are often considered optimal for remote sensing of chlorophyll-a (Chl-a) in turbid eutrophic waters,
under the assumption of minimal influence from mineral sediments. This study investigated the
impact of mineral turbidity on line-height algorithms using MCI as a primary example. Inherent optical
properties from two turbid eutrophic lakes were used to simulate reflectance spectra. The simulated
results: (1) confirmed a non-linear relationship between Chl-a and MCI; (2) suggested optimal use
of the MCI at Chl-a < ~100 mg/m3 and saturation of the index at Chl-a ~300 mg/m3; (3) suggested
significant variability in the MCI:Chl-a relationship due to mineral scattering, resulting in an RMSE
in predicted Chl-a of ~23 mg/m3; and (4) revealed elevated Chl a retrievals and potential false
positive algal bloom reports for sediment concentrations > 20 g/m3. A novel approach combining
both MCI and its baseline slope, MCIslope reduced the RMSE to ~5 mg/m3. A quality flag based
on MCIslope was proposed to mask erroneously high Chl-a retrievals and reduce the risk of false
positive bloom reports in highly turbid waters. Observations suggest the approach may be valuable
for all line-height-based Chl-a algorithms.

Keywords: chlorophyll-a; sediment; maximum chlorophyll index; MCI; line-height algorithms;
inland water; water quality

1. Introduction

Remote sensing is increasingly being used as a complementary approach to conventional
ground-based water quality monitoring of inland waters [1–3], with applications supporting water
resource management, protecting ecosystem services, and furthering our understanding of lake
biogeochemical processes [4]. Of particular concern in many coastal and inland waters is the occurrence
of potentially harmful cyanobacteria blooms, which can pose serious threats to the integrity of fresh
and marine aquatic ecosystems and significant public health risks [5–8]. Numerous algorithms have
been developed for the estimation of chlorophyll-a (Chl-a) concentrations from aquatic colour remote
sensing (see references [9,10] for reviews), allowing the production of synoptic mapped algal bloom
conditions for water quality managers and other water resource stakeholders. Algorithms are often
implemented using different spectral ranges for different water types. For example, the blue/green (B/G)
reflectance ratio [10–12] is considered optimal for Case 1 or oligotrophic waters, whereas algorithms
targeting spectral features in the red–near-infrared (R-NIR) are frequently applied to turbid eutrophic
waters [2,13,14]. Two main strategies have been used for Chl-a algorithms using R-NIR wavebands:
band-ratios and peak line-height measures. Band-ratio algorithms taking the form of two-band [15],
three-band [13], and four-band [16] models have been applied to a range of turbid eutrophic waters.
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The R-NIR line-height algorithms measure the height of a reflectance peak or trough associated with
an algal or cyanobacterial fluorescence, absorption or scattering feature relative to a baseline typically
defined by two wavelengths either side of that spectral feature. Such line-height algorithms include
the cyanobacteria index (CI; [17]), fluorescence line height (FLH; [18]), maximum chlorophyll index
(MCI; [14]), and maximum peak height (MPH; [2]).

The R-NIR algorithms based on band ratios or line-heights are particularly favourable for
studying eutrophication and algal/cyanobacterial blooms in optically complex coastal and inland
waters. Coloured dissolved organic matter (CDOM) absorption decreases exponentially from blue
to red wavelengths so, in many cases, with the exception perhaps of highly dystrophic systems,
the contribution of CDOM to optical properties in the R-NIR may be considered negligible. Line-height
algorithms are also considered to be less sensitive to the uncertainties in atmospheric correction [19],
which can limit the usefulness of band ratios over highly turbid or eutrophic waters (particularly B/G
where those uncertainties are often exacerbated). Indeed the application of line-height algorithms to
uncorrected top-of-atmosphere (TOA) or partially atmospherically-corrected (using bottom of Rayleigh
reflectance, BRR) image products has gained popularity in recent years [1,20–22]. Under the assumption
that the effect of mineral suspended particulate matter (MSPM) on these line-height algorithms is also
minimal, they are frequently applied in coastal and inland water environments prone to high riverine
sediment loads, resuspension events, and nearshore erosion. For example, Gower et al. [23] suggested
the MCI allowed the detection of blooms in sediment-laden plumes of the Fraser River in the eastern
Strait of Georgia. Binding et al. [24] noted the absence of elevated MCI in known mineral turbidity
zones in Lake Erie, while the CI of [17] is applied in NOAA’s operational harmful algal bloom (HAB)
Bulletin to track blooms in the shallow, turbid western basin of Lake Erie [3]. The MCI is also used
routinely by Environment and Climate Change Canada (ECCC) to monitor the progression of intensive
blooms in the shallow, turbid waters of Lake Winnipeg [1].

Despite previous validation of these approaches and confidence in their suitability for monitoring
intense blooms, instances were noted whereby under conditions of extreme sediment load false positive
bloom reports were occurring. Motivation for this study was therefore driven by a need to understand
the effect of suspended sediments on chlorophyll retrievals and reduce uncertainties associated with
bloom reports under highly turbid conditions. There has been some effort to consider the impact of
mineral suspended particulate matter (MSPM) on Chl-a retrieval algorithms, such as the three-band
ratio with an NIR band [25], a four-band ratio [16], and others [26]. These studies, however, mitigate
the effect of mineral turbidity by choosing band combinations from the best regression agreement with
Chl-a, without investigating the mechanisms by which MSPM affects the algorithms, and quantitatively
computing the impact of MSPM on Chl-a retrievals. Furthermore, due to the scarcity of in situ datasets,
algorithms are often derived over small Chl-a ranges (e.g., ~0–20 µg/L in reference [27]), have a limited
number of data points (e.g., eight samples in reference [28]), or show irregular distribution of Chl-a
concentrations over the range [29]. Such confounding factors in the process of algorithm development
and validation limit the reliability and transferability of proposed models. It would therefore be useful
to understand Chl-a algorithm performances over a wide range of biogeochemical conditions consistent
with the natural variability observed in the field. To address such concerns, radiative transfer models
can be used to build simulated reflectance spectra to provide adequate data density over the range
of conditions representative of coastal and inland waters. Such simulations can be carried out using
radiative transfer programs such as Hydrolight/Ecolight [30,31].

In this study, we used both in situ and simulated datasets to investigate the impact of mineral
turbidity on R-NIR line-height Chl-a algorithms, using the MCI as a primary example, and explore
potential solutions to mitigate MSPM-related uncertainties in Chl-a retrievals from the MCI and other
line-height algorithms. We addressed the problem by: (a) applying a large historical database of in
situ optical properties measured in turbid, eutrophic lakes, to compare in situ reflectance with results
of radiative transfer simulations; (b) generating reflectance spectra for a range of Chl-a and MSPM
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concentrations to analyze the impact of MSPM on the relationship between MCI and Chl-a; and (c)
exploring novel solutions to minimize the effect of MSPM on MCI-derived Chl-a.

2. Methods

2.1. Study Areas

Observations from two large North American lakes were used in this study. Lake Winnipeg (LW)
is a turbid eutrophic lake in Manitoba, Canada, which has experienced accelerated nutrient loading
over the last two decades leading to a substantial increase in the frequency, severity, and extent of
algal blooms [1,32,33]. Lake Erie (LE) is the most biologically productive of the Laurentian Great
Lakes and has suffered a resurgence of harmful algal blooms in the last decade, particularly in the
turbid west basin [3,7]. Both lakes are fairly shallow (LW average depth ~19 m, west basin of LE
average ~7 m), with substantial influence from river loadings of mineral sediments, shoreline erosion,
and resuspension events, providing an ideal dataset for studying the impact of mineral sediments on
chlorophyll-retrieval algorithms.

2.2. In Situ Biogeochemistry and Optical Measurements

A Hyperspectral Profiler II (Satlantic Inc., Halifax, NS, USA, now Seabird Scientific) was deployed
at each station to measure profiles of upwelling radiance (Lu) and downwelling plane irradiance
(Ed) at 2–3 nm intervals from 350–800 nm. The remote sensing reflectance, Rrs (λ, 0+) was calculated
as Lu/Ed after extrapolation to the surface and correction for interactions at the air-water interface
following Mueller et al. (2003) [34]. Profiles exhibiting ship shadow effects, low light levels, poor
extrapolation, or otherwise erroneous profiles were quality flagged and removed from the analysis.
The ECO-triplet sensors (Wetlabs, Philomath OR) were deployed for in situ spectral particulate
backscatter measurements at six custom wavelengths (532, 630, 650, 676, 700 and 880 nm).

Particulate absorption was measured using the quantitative filter technique with a VARIAN
Cary-300 dual-beam spectrophotometer after filtering surface water samples onto 47 mm Whatman
GF/C filters, scanning from 350 to 750 nm at 1 nm increments (see reference [35]). Filters were placed
on a glass slide directly in front of the detector window and the optical density of the sample was
measured relative to a reference filter treated with distilled water. A pathlength amplification factor
was applied following the theoretical calculations of [36] and residual scattering correction (assuming
negligible absorption in the NIR) was carried out by normalizing spectra to the average absorption
measured between 740–750 nm assuming no wavelength dependence. Removal of pigmented material
using sodium hypochlorite enabled the partition of a*Total, a*Ph, and a*NAP as the total, phytoplankton,
and non-algal particulate (including both mineral and organic detrital material) absorption fractions,
respectively. Here we assumed a*NAP was dominated by mineral absorption and, thus, denoted this
as a*MSPM from this point on. Spectral absorption by CDOM was measured spectrophotometrically
after filtration though 0.45 µm cellulose acetate filters, with distilled water at the same ambient
temperature used as a reference. The ranges of measured aCDOM(440) (CDOM absorption at 440 nm)
are shown in Table 1. The analysis of Chl-a was carried out by Environment and Climate Change
Canada (ECCC)’s National Laboratory for Environmental Testing. Surface water was filtered through
47 mm GFC filters and frozen immediately. After extraction with 90% acetone, Chl-a concentrations
were determined spectrophotometrically using the trichromatic equations in SCOR-UNESCO [37].
Suspended particulate matter (SPM) was measured gravimetrically after filtering surface water onto
pre-rinsed and weighed 47 mm GFC filters. Filters were subsequently reweighed after drying overnight
at 80 ◦C and again after ashing (3 h at 500 ◦C) to provide concentrations of total SPM and MSPM,
respectively. Data from several inland water research and monitoring cruises between 2011 and
2015 on board the CCGS Limnos and MV Namao provided a wide range of biogeochemical and optical
conditions on the two lakes (see Table 1). Table 1 presents the number of observations used in this
study and the range of water constituent concentrations measured on both lakes, which were used
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both as input to Ecolight for model validation purposes and as a guide to determine the appropriate
ranges over which reflectance was simulated.

Table 1. A summary of in situ optical and water quality parameters from lakes Erie (LE) and
Winnipeg (LW).

# Observations Water Constituent
Concentration

MEAN MIN MAX SD

LE
Water 372 Chl-a (mg/m3) 13.1 0.5 161 20.4
IOPs 292 MSPM (g/m3) 4.3 0.01 24.7 5.1
Rrs 138 aCDOM(440) (m−1) 0.4 0.03 2.4 0.4

LW
Water 316 Chl-a 7.6 0.8 290 24.6
IOPs 209 MSPM 7.0 0.01 31.6 6.6
Rrs 108 aCDOM(440) 1.8 0.26 5.5 0.8

Note: IOPs: inherent optical properties; MSPM: mineral suspended particulate matter.

2.3. Rrs Modelling

Hydrolight-Ecolight 5.2 [30,31] is a widely used radiative transfer program for bio-optical
modelling, allowing the simulation of spectral Rrs by defining the concentrations and absorption,
scattering, and fluorescence properties for both Case 1 waters and for non-covarying components of
Case 2 waters. This study used Ecolight, a faster version of Hydrolight which solves the azimuthally
averaged radiative transfer equation to simulate nadir viewing Rrs. A typical Case 2 model in Ecolight
was employed, with four components: pure water (w), phytoplankton (Ph), CDOM, and MSPM.
As input for the model, default water absorption and backscatter of pure water was chosen in Ecolight
5.2 [31,38]. User-defined absorption (a) and backscattering (bb) coefficients were used according to
Equations (1)–(3).

a(λ) = aw(λ) + a∗Ph(λ)·[Chl-a] + a∗MSPM(λ)·[MSPM] + a∗CDOM(λ)·[CDOM] (1)

bb(λ) = bb w(λ) + bb
∗
Ph(λ)·[Chl-a] + bb

∗
MSPM(λ)·[MSPM] (2)

a∗Ph(λ) = A× [Chl-a]−B (3)

where a* and bb* represent the concentration-specific inherent optical properties (SIOPs), [MSPM],
[Chl-a] are the concentrations of MSPM, and chlorophyll-a respectively and [CDOM] is CDOM
absorption at 440 nm. Considering the pigment package effect of chlorophyll-a [39,40], a chlorophyll-a
dependent a*Ph(λ) was adopted as defined in Equation (3), following Bricaud et al. [41].
Concentration-specific absorption (a*) for CDOM and MSPM were determined by linear regression on
their contributions to total absorption (aCDOM and aMSPM, respectively), while the A and B coefficients
for a*Ph (Equation (3)) were fitted simultaneously using a least-squares optimization of the relationship
between [Chl-a] and a*Ph(λ) calculated as aPh(λ)/[Chl-a]. Multiple linear regression was used to obtain
the average concentration-specific backscatter for phytoplankton (bb*Ph) and MSPM (bb*MSPM) for
each of the spectral bb channels of the ECO-triplet sensors, and then linearly interpolated between
those channels. With weak absorption of CDOM in the R-NIR, previous studies [24,42] have shown
that aCDOM(440) < 1 m−1 has limited effect on Rrs simulation in this spectral range; therefore, aCDOM(440)

was kept at a constant lake-average of 0.994 m−1 for all simulations.
Average weather and viewing conditions from in situ samples were employed in the Rrs simulation,

including a constant solar zenith angle of 30◦, average cloud cover of 39.5%, and an average wind speed
of 4.85 m/s. The simulations consider inelastic scattering, including the chlorophyll-a fluorescence
with a default fluorescence efficiency of 0.02. All simulations were set to be optically deep under the
condition of negligible contribution to Rrs from the substrate, a reasonable assumption for R-NIR
wavelengths in turbid waters. Vertical profiles of biogeochemical constituents and optical properties
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were not available at all sites; therefore, constant vertical profiles equal to surface measures were used
under the assumption of a vertically mixed water column. Such an assumption may not hold where
calm conditions may have allowed algal biomass to accumulate at the surface under bloom conditions.
The remaining parameters were set to default within Ecolight, including a RADTRAN-X sky model.

2.4. MCI Calculation and Performance Assessment

Modelled and in situ measured spectral reflectance were used to calculate simulated and observed
MCI, respectively. The MCI and other line-height algorithms are defined as the height of a peak (or
trough) in spectral radiance or reflectance at a waveband centered atλ2, relative to a baseline extrapolated
between bands either side of that spectral feature at λ1 and λ3 as shown in Equation (4) [14,17]:

MCI = Rrs(λ2) −Rrs(λ1) −
λ2− λ1
λ3− λ1

·[Rrs(λ3) −Rrs(λ1)] (4)

For the ocean and land colour instrument (OLCI) sensor onboard ESA’s Sentinel-3 satellite,
and consistent with its predecessor MERIS, λ1, λ2, and λ3 are centered at 681, 708 and 753 nm,
respectively, for the MCI.

A number of performance metrics are reported throughout this manuscript when comparing
observed and simulated variables; the coefficient of determination (R2), root mean square error (RMSE),
and mean absolute percentage error (MAPE), calculated according to Equations (5)–(7).

R2 = 1−
∑
(y− ŷ)2∑
(y− y)2 (5)

RMSE =

√
1
n

∑
(ŷ− y)2 (6)

MAPE =
1
n

∑
100

∣∣∣∣∣ ŷ− y
y

∣∣∣∣∣ (7)

where n is the sample number, y is observed value, ŷ is predicted value, and y is the expectation of
observed values. y is Rrs, MCI, or [Chl-a] in different discussions in this study.

3. Results and Discussion

3.1. Inherent Optical Properties

The average concentration-specific absorption and backscatter coefficients for LE and LW are
given in Figure 1a,b, respectively. The Chl-a dependent a*Ph (Equation (3)) was defined by the A and B
coefficients presented in Figure 1a. Derived a*MSPM and a*CDOM showed the typical exponential increase
in absorption towards shorter wavelengths. Absorption spectra were consistent in shape and within
the wide-ranging magnitude of previous inland water observations [35,40,43]. Particulate absorption
measured in this study were corrected to zero NIR absorption, as has been assumed elsewhere [44,45];
however, it has been suggested that mineral sediments do exhibit significant absorption in the
NIR ([46–48]). As such, it is possible that the a*MSPM adopted here may result in overestimations in
our simulated reflectance, although the effect on simulated MCI is anticipated to be small (for example
in turbid and productive water with [Chl-a] at 50 mg/m3 and [MSPM] at 30 g/m3, the simulated MCI
difference caused by an increase of a*MSPM at 0.005 m−1 is 6.8%). Average bb*MSPM were comparable
with observations of [49] and [50] but somewhat lower than reported in [43]. The magnitude and
spectral shape of bb*Ph derived here fell within the range of observations from phytoplankton cultures
measured by [51] and [52]. Spectral bb*Ph showed elevated backscatter at wavelengths greater than
700 nm, consistent with observations of gas vacuolate cyanobacteria [52–54], which are known to be
prevalent in LW and LE. Small depressions in the bb*MSPM may be due to the anomalous dispersion
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effects due to the strong absorption features of chlorophyll-a [55] and are likely artifacts of the statistical
partitioning of organic and inorganic backscatter.Remote Sens. 2019, 11, x FOR PEER REVIEW 6 of 18 
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Figure 1. The average concentration-specific inherent optical properties (SIOPs) used in Ecolight for
reflectance simulations: (a) concentration-specific absorption coefficients, a*, and (b) concentration-specific
backscatter coefficients, bb*. A and B in (a) are coefficients of a*Ph defined in Equation (3).

3.2. MCI Simulation and Validation

To evaluate the agreement between in situ samples and the Ecolight modelling described in
Section 2.3, measured SIOPs and water constituents (Table 1, Figure 1) were used to simulate spectral
Rrs between 600 nm and 885 nm at 5 nm increments and, subsequently, compute MCI for all stations.
Ecolight-simulated MCI agreed well with MCI calculated on in situ measured Rrs (R2 = 0.885,
RMSE = 9.5 × 10−4, at Y = X, Figure 2). The strong agreement between measured and modelled
indices suggest here that we can have reasonable confidence in the model outcome. Nevertheless, care
should be taken to consider various sources of uncertainty when interpreting the model results and in
applying this approach to different systems. Figure 2 suggests some systematic underestimation of
MCI especially with higher biomass. Model simulations were based on average SIOPs measured in
two turbid eutrophic North American lakes and a default Chl-a fluorescence term. It is well known,
however, that cyanobacteria have lower Chl-a fluorescence yield than eukaryotic phytoplankton [56],
with most of the chlorophyll-a molecules belonging to the non-fluorescing photosystem I (PSI) [57].
In cyanobacteria, phycobiliproteins also contribute to fluorescence, which overlap with the spectrum
of chlorophyll emission [58]. Using the default Ecolight fluorescence term may therefore overestimate
Rrs at 681 nm, leading to a reduction in simulated MCI as observed here. Enhancing the capabilities of
Ecolight to enable multiple fluorescence terms (including phycocyanin) to be more representative of
cyanobacteria dominated waters may allow further improvements in the model agreement.
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Documented wide variation in IOPs over optically complex inland waters brought about by
regional and seasonal differences in the composition of optically active constituents [35,43] may alter
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the simulations presented here. Variations in phytoplankton community composition in Lake Erie,
for example, have been shown to have a significant influence on optical properties and remote sensing
Chl-a retrievals [53]. Differences in the spectral properties of IOPs brought about by uncertainties
in methodological and/or statistical partitioning of organic and inorganic fractions, may produce
additional variability. Furthermore, bias in simulated Rrs may be introduced by non-homogenous
vertical distributions of cyanobacterial biomass [59].

3.3. The Effect of MSPM on Simulated MCI

The MCI derived from simulated Rrs were computed over the [Chl-a] and [MSPM] ranges of
0.1–300 mg/m3 and 0.1–30 g/m3, respectively, consistent with the ranges of these two constituents
observed in the field on LW and LE (Table 1). During the simulation, [Chl-a] had increments of 1 in
the range 1–10 mg/m3, 2 from 10–30 mg/m3, 3 from 30–50 mg/m3, 5 from 50–100 mg/m3, and 10 from
100–300 mg/m3, while [MSPM] had increments of 1 from 1–30 g/m3. Figure 3a shows a non-linear
relationship between simulated MCI and [Chl-a] which tends toward saturation at ~0.02 sr−1 and [Chl-a]
~300 mg/m3. This is in good agreement with in situ observations of [24] from Lake of the Woods over
the same [Chl-a] range. The saturation of line-height algorithms is due to the increasing contribution
from absorption relative to backscatter with increasing algal/cyanobacterial biomass and the known
migration of the fluorescence/backscatter peak toward longer wavelengths. Switching algorithms,
such as the MPH, target the changing peak location and aim to extend the sensitivity of Chl-a detection
across a broader [Chl-a] range. The series of curves in Figure 3a suggest significant sensitivity of the
MCI–[Chl-a] relationship to [MSPM], leading to increases in MCI for any given [Chl-a] due to the
effects of a*MSPM and bb*MSPM, which are not spectrally neutral across the MCI wavelength interval
(see Figure 1). This variability in the relationship between MCI and [Chl-a] could lead to significant
uncertainties in derived Chl-a under turbid water conditions.
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Figure 3. The impact of MSPM on the MCI-[Chl-a] relationship. (a) MCI-[Chl-a] relationship from
simulated Rrs; each isoline indicating a constant [MSPM] in the range of 0.1 to 30 g/m3 according to
the colored legend. (b) [MSPM]-MCI relation with a [Chl-a] colored legend, and (c) [Chl-a] residuals
relative to the MCI:[Chl-a] relationship at [MSPM] = 0.
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When interpreting the impact of MSPM on the MCI–[Chl-a] relationship from another perspective
in Figure 3b, increasing [MSPM] results in an increase in MCI at a given [Chl-a], with the exception of
very low [Chl-a]. At low [Chl-a] (as indicated by the blue curves in Figure 3b), MCI first decreases
and then increases with increasing [MSPM]. The reduction in the slope of the MCI versus [MSPM]
relationship with increasing [Chl-a] suggests the impact of MSPM on MCI decreases at high [Chl-a].
Indeed Figure 3c confirms the greatest uncertainty in derived [Chl-a] occurs at [Chl-a] < 50 mg/m3

when [MSPM] is greater than 20 g/m3, with the relative error decreasing substantially for [Chl-a] >

50 mg/m3.

3.4. Global Performance Assessment of [Chl-a] Retrievals

A set of 10,000 Rrs spectra were simulated with randomly varying concentrations of Chl-a and
MSPM, approximately uniformly distributed over the ranges 0–300 mg/m3 and 0–30 g/m3 respectively.
This dataset provides sufficient samples across the full concentration ranges observed in the field
and is used to capture the joint effect of [Chl-a] and [MSPM] on MCI and assess the performance
of MCI-retrieved Chl-a from a global fit to the dataset. The large population size makes it possible
to test the fit of different types of regression models between MCI and Chl-a over a wide [Chl-a]
range. Computed MCI were divided randomly into 10 groups for separate regressions, each group
with 1000 data points, and then the coefficients and performance metrics were averaged to obtain
a stable evaluation of each model fit. A number of model forms were tested to fit the MCI–[Chl-a]
distribution (Figure 4a, Table 2); exponential, power, polynomial, and rational polynomial functions.
All the functions fitted the MCI-[Chl-a] distribution similarly well with R2 > 0.92, consistent RMSE of
~23 mg/m3 and MAPE ranging from 25% for the exponential fit to 68% for the power fit. The rational
polynomial regression was a variant of a typical first-order rational polynomial, keeping coefficients
positive and including an intercept, consistent with the approximate theoretical solution to the
MCI-[Chl-a] relationship. Because many published algorithms are based on limited in situ datasets,
the relationship between MCI and [Chl-a] and indeed many of the line-height algorithms are often
fitted with linear functions over a specific [Chl-a] range [1,4,22], thus this analysis provides evidence of
the form of the relationship over a wide range of conditions. Figure 4b shows the resulting MAPE in
[Chl-a] derived from the global exponential fit, demonstrating the underestimation of [Chl-a] at low
[MSPM] and overestimation at higher [MSPM]. Consistent with Figure 3c, the greatest overestimation
occurs at high [MSPM] and [Chl-a] < 50 mg/m3.
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Table 2. Comparison of different theoretical models for the relationship between [Chl-a] and MCI.
Note that MCI was multiplied by 103 for the coefficients below.

Model (Chl=) a b c R2 RMSE (mg/m3) MAPE (%)

a·eb·MCI + c 103 0.0685 −96.8 0.928 23.1 25.5
a·MCIb + c 1.93 1.67 15.7 0.928 23.1 68.2

a·MCI2 + b×MCI + c 0.51 4.34 11 0.929 23 39.9
a·MCI/(b−MCI) + c 332 41.8 3.09 0.928 23.2 32.1

3.5. A Novel Solution for Improved Chl-a Retrievals Using Both MCI and Its Slope

This study explored how to constrain the effect of MSPM on MCI-derived [Chl-a] using the
additional spectral information of the slope of the MCI baseline. MCIslope is defined according to
Equation (8).

MCIslope =
Rrsλmax −Rrsλmin

λmax − λmin
(8)

Figure 5a shows that under conditions of variable algal/cyanobacterial biomass when [MSPM] = 0,
the modeled MCI baseline slope increases positively with increasing [Chl-a]. In contrast, in the absence
of Chl-a (Figure 5b), there is no positive MCI under a range of [MSPM] up to 30 g/m3, and the spectral
backscatter properties of MSPM lead to an increasingly negative slope of the MCI baseline with
increasing [MSPM]. Consequently, under mixed sediment-algae conditions (Figure 5c), increasing
[MSPM] leads to the steepening negative slope of the MCI baseline while coincidentally increasing MCI.
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Figure 5. Modeled reflectance spectra and derived MCI and MCIslope for (a) varying [Chl-a] in the
absence of MSPM, (b) varying [MSPM] in the absence of Chl-a, and (c) [Chl-a] = 50 mg/m3 and
increasing [MSPM], showing the effect of MSPM on baseline slopes.

Figure 6a shows the variability of MCIslope in the relationship between MCI and [Chl-a] over the
range of [MSPM] shown in Figure 3a. As suggested by the individual spectra in Figure 5, MCIslope

increases consistently with increasing [Chl-a], to a positive slope above [Chl-a] ~200 mg/m3. For a
constant [Chl-a], MCI increases while MCIslope decreases with an increasing contribution from MSPM,
with the greatest variability being for [Chl-a] < 50 mg/m3. At very low [Chl-a] (< ~2 mg/m3, Figure 6b),
the relationship changes, where MCI decreases with increasing [MSPM] while the MCIslope continues
to decrease. Figure 6c shows the distribution of the [Chl-a] residuals relative to modeled [Chl-a] at
[MSPM] = 0, showing the large potential retrieval error when MCIslope was < ~−1.5 × 10–4 nm−1.
The low residual errors at MCI < 0 are again the product of the switch in the MCI:[Chl-a] relationship
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seen in Figure 6b. The MCI and MCIslope measured on in situ Rrs show a distribution consistent with
modeling results (Figure 6d).Remote Sens. 2019, 11, x FOR PEER REVIEW 10 of 18 
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We propose a novel multiple regression solution incorporating both MCI and MCIslope to reduce
the uncertainties in derived [Chl-a] due to the spectral variations in Rrs driven by MSPM. Figure 7a,b
show the comparison of [Chl-a] derived from MCI using only an exponential model, and both MCI
and MCIslope with a quadratic polynomial model. Model-simulated [Chl-a] (grey points in the figures)
show a large variation around the 1:1 line in Figure 7a for the MCI only approach while the combined
MCI and MCIslope approach substantially decreases the variation and forces the data closer to the
1:1 line. The combined MCI and MCIslope approach results in a significant reduction in the RMSE in
derived [Chl-a], from 23.1 to 5.1 mg/m3 for the simulated dataset and from 10.2 to 6.1 mg/m3 for in situ
derived MCI.

One major advantage of line-height algorithms in estimating Chl-a is that they are fairly insensitive
to the atmospheric contribution to the TOA remote sensing signal, and relatively robust to atmospheric
correction errors. However, that same advantage may not necessarily hold for a combined MCI and
MCIslope approach, where the nature of the slope determination may be more sensitive to spectral
atmospheric correction uncertainties than the line-height measure alone as well as errors propagated.
This study has demonstrated the potential of using line-height measures and their baseline slopes to
refine Chl-a retrieval algorithms using both in situ and modeled Rrs. Where atmospheric correction
over optically complex inland and coastal waters results in a reliable level-2 spectral Rrs product, this
approach may indeed provide enhanced Chl-a retrievals. However, due to the remaining challenges in
atmospheric correction over highly turbid waters, as well as the successful application of line-height
algorithms to TOA radiance or BRR products, we propose an alternate approach of using line-height
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slope parameters to define a quality flag. Slope thresholds would therefore mask potential areas of
significant MSPM contamination and reduce the risk of erroneously high [Chl-a] and potential false
positive algal bloom detection. A threshold MCIslope of <−1.5 × 10–4 nm−1, as shown in Figure 6a,b,
removes a large fraction of those Chl-a retrievals with high uncertainty due to MSPM contamination,
and would limit false positive bloom detection errors while maintaining the advantages and simplicity
of an MCI Chl-a retrieval. This threshold may apply to accurate atmospheric-corrected Rrs products,
but alternate thresholds are required for TOA radiance and/or BRR products. Furthermore, it is not yet
known how a threshold might vary regionally depending on IOP variability; further work is required
to confirm the stability and widespread applicability of a single threshold.
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Three example level-1 OLCI scenes of Lake Erie are presented in Figure 8, from 26 September 2017,
8 May 2018, and 3 May 2017, capturing conditions of minimal sediment loads during a late summer
algal bloom, moderate mineral resuspension with low [Chl-a], and heavy mineral resuspension with
low [Chl-a], respectively. Average wind speeds at Windsor Airport, Ontario, over the 24 h prior to
image capture were 2, 2.5, and 6.3 m/s, respectively, suggesting increasing sediment resuspension
potential. True colour images in May of both years show areas of high near-shore mineral turbidity,
for example, along the north shores (erosion of cohesive bluffs which contribute to the formation of
the Long Point spit, [60]) as well as the shallow west basin and Lake St, Clair. The image of 8 May
2018 demonstrates the MCI’s tolerance of moderate mineral turbidity, resulting in no positive bias in
the MCI-derived [Chl-a], but instead suggesting reduced [Chl-a] in turbidity zones, consistent with the
modeled underestimation of [Chl-a] at low to moderate [MSPM] and low [Chl-a]. With increasing
sediment, however, the switch evident in the modeling results is also demonstrated in imagery, where
the heavy sediment loads of 3 May 2017 lead to falsely elevated MCI-derived [Chl-a]. Mapped MCIslope

for each day can be seen to decrease from the predominantly algal conditions of September 2017 to
the sediment-laden image of May 2017. Applying a flag threshold to OLCI level-1 products of MCI >

0 mW m–2 sr−1 nm−1 and MCIslope < −0.3 nm−1 accurately masks those areas of potential sediment
contamination and false positive blooms while preserving reliable Chl-a retrievals (Figure 8).
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3.6. Applicability to Other Line-Height Algorithms

In addition to the MCI, there are many similar R-NIR line-height-based algorithms such as the
fluorescence line height (FLH) [18], cyanobacteria index (CI) [17], and maximum peak height (MPH) [2],
which may benefit from this approach to minimizing Chl-a retrieval uncertainties due to the presence
of mineral sediments. Similar to the MCI, they are often applied in turbid waters under the assumption
of insensitivity to mineral scattering. Here, for example, we present a comparable analysis of the CI,
which measures the spectral shape of Rrs centered at 681 nm with bands at 665 nm and 709 nm forming
the baseline [17]. The effect of MSPM on CI is consistent with that of the MCI (Figure 9), creating the
potential for significant overestimates in CI-derived [Chl-a] in turbid waters. Like Figure 2, Figure 4,
and Figure 7 for the MCI, Figure 9 provides the corresponding evaluation of the CI, which is very
similar in many aspects to the MCI, including performing a satisfactory model simulation (Figure 9a),
having a general variation in magnitude and shape of the CI:[Chl-a] relationship caused by [MSPM]
(Figure 9b), and in the magnitude and distribution of the MAPE residual (Figure 9c). Consistent with
the results from the MCI, a combined CI and CIslope approach results in a considerable improvement
in Chl-a retrievals, with reductions in the RMSE in derived [Chl-a], from 22.2 to 2.2 mg/m3 for the
simulated dataset and from 9.3 to 6.0 mg/m3 for in situ derived CI. Of note in Figure 9b and in
agreement with observations for the MCI is the reversal of the CI:[Chl-a] relationship with MSPM at
low [Chl-a], whereby MSPM at first causes a decrease in CI before increasing. This common feature
suggests the unlikely occurrence of false positive bloom reports due to the low to moderate [MSPM]
at low [Chl-a] using CI- or MCI-based algorithms. The OLCI images comparable to Figure 8 (not
shown) suggest extreme sediment loads are also likely to cause erroneous CI-retrieved [Chl-a]. Like the
MCI, variability in SIOPs used would result in some variability in the model outcomes, notably in
the width of the CI range and the location of the inflection point, although the general trends would
remain consistent.
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Figure 9. (a) Comparison of in situ and Ecolight simulated CI, (b) modeled variability of the CI:[Chl-a]
relationship in response to MSPM, (c) the distribution of MAPE residual when applying an exponential
CI:[Chl-a] best-fit model, (d) modeled and in situ [Chl-a] from a global best-fit regression, and (e) modeled
[Chl-a] from combined CI and CIslope regression.

4. Summary and Conclusions

This study investigated the potential impact of MSPM on chlorophyll-a concentrations as derived
from red/near-infrared line-height algorithms, such as the MCI and CI—approaches widely used in
the detection of algal blooms in turbid coastal and inland waters. Remote sensing reflectance was
simulated using the radiative transfer model Ecolight, with resulting line-height indices (MCI and
CI) agreeing well with in situ observations. Modelled spectral Rrs showed significant sensitivity to
mineral sediments in the R-NIR range. At very low Chl-a (< ~2 mg/m3), model results and image
observations suggest that false positive algal bloom reports are unlikely for MSPM < ~20g/m3 (in fact,
MCI and CI are inversely related to MSPM when Chl-a = 0 and imagery confirmed decreased MCI in
moderate turbidity zones). For higher Chl-a, and/or heavily sediment laden waters with low Chl-a,
the model results suggest MCI and CI are significantly enhanced by MSPM. Under conditions of mixed
algal/mineral turbidity, as might be expected during wind-mixed conditions in shallow lakes (when
cyanobacteria may be vertically uniform throughout the water column and sediment re-suspended
from the bottom), Chl-a may be overestimated by these algorithm approaches. Wind events have
been shown to lead to significant reductions in satellite-detected Chl-a due to the mixing of the
surface algal biomass [61,62]. Results of the present study may further complicate the interpretation
of satellite observations during wind events due to the potential for overestimated Chl-a caused by
scattering-enhanced algal indices.
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The MSPM had measurable effects on the baseline slope of the MCI and CI, which forms the
basis of a novel approach for reducing uncertainties in satellite-derived Chl-a in turbid waters.
Combining both MCI and its baseline slope parameter MCIslope (or CI and CIslope) resulted in
considerable improvements to Chl-a retrieval accuracies compared with using the MCI (or CI) alone.
Even if line-height slope parameters are not used to directly correct derived Chl-a, they can be
used effectively as a method of flagging potentially erroneous Chl-a retrievals suspected of being
contaminated by MSPM. Flag thresholds may be set on the basis of empirical evidence for both
atmospherically and non-atmospherically corrected imagery. Quality flags based on a threshold
MCIslope were able to accurately delineate those areas of OLCI imagery where MSPM led to erroneously
high Chl-a retrievals to effectively limit false positive bloom reports.

For very high Chl-a concentrations, the model results suggest continued sensitivity to MSPM,
although relative errors were reduced. However, under intense algal bloom conditions, particularly
under quiescent conditions, increased buoyancy of cyanobacteria can lead to surface scums or
cyanobacterial mats. Under such circumstances, a pure algal/cyanobacterial signal can typically be
assumed, as the satellite-measured MCI will originate only from the surface biomass and not the
potentially MSPM-laden water below it, therefore reducing the likelihood of large MSPM-induced
algorithm uncertainties under surface bloom conditions.

The model results are dependent on the predefined IOPs and, thus, may vary regionally and
seasonally depending on the composition of the main water colouring constituents. Any defined
flag thresholds therefore require further validation, and if necessary, tuning to fit various level-1 and
level-2 radiance or reflectance products, and which is the focus of ongoing research, but at present,
the approach appears promising in its potential for improved Chl-a retrievals in turbid waters.
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